A. Aksamit, T. Choulli, and M. Jeanblanc, On an Optional Semimartingale Decomposition and the Existence of a Deflator in an Enlarged Filtration, Memoriam Marc Yor -Séminaire de Probabilités XLVII, pp.187-218, 2015.
DOI : 10.1007/978-3-319-18585-9_9

URL : https://hal.archives-ouvertes.fr/hal-01250968

M. Arnsdorff and I. Halperin, BSLP: Markovian bivariate spread-loss model for portfolio credit derivatives, The Journal of Computational Finance, vol.12, issue.2, pp.77-107, 2008.
DOI : 10.21314/JCF.2008.179

J. Amendinger, Martingale representation theorems for initially enlarged filtrations, Stochastic Processes and their Applications, pp.101-116, 2000.
DOI : 10.1016/S0304-4149(00)00015-6

J. Amendinger, D. Becherer, and M. Schweizer, A monetary value for initial information in portfolio optimization, Finance and Stochastics, vol.7, issue.1, p.2946, 2003.
DOI : 10.1007/s007800200075

T. R. Bielecki, S. Crépey, and M. Jeanblanc, Up and down credit risk, Quantitative Finance, vol.12, issue.10, p.11371151, 2010.
DOI : 10.1142/S0219024907004408

T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, 2002.
DOI : 10.1007/978-3-662-04821-4

G. Callegaro, M. Jeanblanc, and B. Zargari, Carthaginian enlargement of filtrations, ESAIM: Probability and Statistics, vol.17, pp.550-566, 2013.
DOI : 10.1051/ps/2011162

D. Coculescu, Default contagion with interacting intensities: a non Markovian approach, 2016.

P. Collin-dufresne, R. Goldstein, and J. Helwege, Is credit event risk priced? Modeling contagion via the updating of beliefs, 2003.

R. Cont and A. Minca, RECOVERING PORTFOLIO DEFAULT INTENSITIES IMPLIED BY CDO QUOTES, Mathematical Finance, vol.5, issue.1, pp.94-121, 2013.
DOI : 10.1111/j.1467-9965.2011.00491.x

URL : https://hal.archives-ouvertes.fr/hal-00788571

A. Dassios and H. Zhao, A dynamic contagion process, Advances in Applied Probability, vol.2, issue.03, pp.814-846, 2011.
DOI : 10.2307/3212693

R. J. Elliott, M. Jeanblanc, and M. Yor, On Models of Default Risk, Mathematical Finance, vol.10, issue.2, pp.179-195, 2000.
DOI : 10.1111/1467-9965.00088

P. Ehlers and P. Schönbucher, Background filtrations and canonical loss processes for??top-down models of portfolio credit risk, Finance and Stochastics, vol.11, issue.1, pp.79-103, 2009.
DOI : 10.1007/s00780-008-0080-x

E. Karoui, N. Jeanblanc, M. Jiao, and Y. , What happens after a default: The conditional density approach, Stochastic Processes and their Applications, pp.1011-1032, 2010.
DOI : 10.1016/j.spa.2010.02.003

URL : https://hal.archives-ouvertes.fr/hal-00381090

E. Karoui, N. Jeanblanc, M. Jiao, and Y. , Density Approach in Modeling Successive Defaults, SIAM Journal on Financial Mathematics, vol.6, issue.1, pp.1-21, 2015.
DOI : 10.1137/130939791

D. Filipovi´cfilipovi´c, L. Overbeck, and T. Schmidt, DYNAMIC CDO TERM STRUCTURE MODELING, Mathematical Finance, vol.12, issue.1, pp.53-71, 2009.
DOI : 10.1111/j.1467-9965.2010.00421.x

R. Frey and A. Mcneil, Dependent defaults in models of portfolio credit risk, The Journal of Risk, vol.6, issue.1, pp.59-92, 2003.
DOI : 10.21314/JOR.2003.089

P. V. Gapeev, M. Jeanblanc, L. Li, and M. Rutkowski, Constructing Random Times with Given Survival Processes and Applications to Valuation of Credit Derivatives, Contemporary quantitative finance, pp.255-280, 2010.
DOI : 10.1007/978-3-642-03479-4_14

K. Giesecke, L. R. Goldberg, and X. Ding, A Top-Down Approach to Multi-Name Credit, SSRN Electronic Journal, vol.59, issue.2, pp.283-300, 2011.
DOI : 10.2139/ssrn.1142152

A. Grorud and M. Pontier, Insider Trading in a Continuous Time Market Model, International Journal of Theoretical and Applied Finance, vol.01, issue.03, pp.331-347, 1998.
DOI : 10.1142/S0219024998000199

X. Guo, R. Jarrow, and Y. Zeng, Credit Risk Models with Incomplete Information, Mathematics of Operations Research, vol.34, issue.2, pp.320-332, 2009.
DOI : 10.1287/moor.1080.0361

J. Jacod, Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, pp.225-244, 1975.
DOI : 10.1007/BF00536010

J. Jacod, Grossissement initial, hypothese (H???) et theoreme de Girsanov, Séminaire de Calcul Stochastique, 1982.
DOI : 10.1007/BF00715187

J. Jeulin, Semi-martingales et grossissement d'une filtration, Lecture Notes, vol.833, 1980.
DOI : 10.1007/BFb0093539

Y. Kchia, M. Larsson, and P. Protter, Linking Progressive and Initial Filtration Expansions, Springer Proceedings in Mathematics & Statistics, pp.469-487, 2013.
DOI : 10.1007/978-1-4614-5906-4_21

URL : http://arxiv.org/abs/1104.4139

F. Knight, A Predictive View of Continuous Time Processes, The Annals of Probability, vol.3, issue.4, pp.573-596, 1975.
DOI : 10.1214/aop/1176996302

P. Meyer, Une remarque sur le calcul stochastique dependant d'un parametre, pp.199-203, 1979.
DOI : 10.1007/BFb0070861

I. Norros, Systems weakened by failures, Stochastic Processes and their Applications, pp.181-196, 1985.

S. Resnick, A Probability Path, Birkhäuser, 1999.

S. Song, Optional splitting formula in a progressively enlarged filtration, ESAIM: Probability and Statistics, vol.18, pp.881-899, 2014.
DOI : 10.1051/ps/2014003

J. Sidenius, V. Piterbarg, and L. Andersen, A NEW FRAMEWORK FOR DYNAMIC CREDIT PORTFOLIO LOSS MODELLING, International Journal of Theoretical and Applied Finance, vol.11, issue.02, pp.163-197, 2008.
DOI : 10.1142/S0219024908004762

C. Stricker and M. Yor, Calcul stochastique dépendant d'un paramètre, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, pp.109-133, 1978.
DOI : 10.1007/bf00715187