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Abstract

Previous works have shown that catadioptric systems are particularly suited for
egomotion estimation thanks to their large field of view and thus numerous al-
gorithms have already been proposed in the literature to estimate the motion. In
this paper, we present a method for estimating six degrees of freedom camera mo-
tions from central catadioptric images in man-made environments. State-of-the-art
methods can obtain very impressive results. However our proposed system provides
two strong advantages over the existing methods: first, it can implicitly handle the
di±culty of planar/non-planar scenes, and second, it is computationally much less
expensive. The only assumption deals with the presence of parallel straight lines
which is reasonable in a man-made environment. More precisely, we estimate the
motion by decoupling the rotation and the translation. The rotation is computed
by an e±cient algorithm based on the detection of dominant bundles of parallel
catadioptric lines and the translation is calculated from a robust 2-point algorithm.
We also show that the line-based approach allows to estimate the absolute attitude
(roll and pitch angles) at each frame, without error accumulation. The e±ciency
of our approach has been validated by experiments in both indoor and outdoor
environments and also by comparison with other existing methods.

Key words: Catadioptric vision, line detection, rotation estimation, translation
estimation, motion decoupling, camera-IMU calibration
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1 Introduction

Autonomous robotic systems are the subject of an increasing interest in many
applications and one of the most important steps towards their autonomy is
the motion control of the vehicle. In order to estimate the motion of the robot,
several methods have been proposed using traditional navigation equipments
such as Global Positioning System (GPS) or Inertial Navigation System (INS)
[27][56]. However, it is now well established that these sensors suÆer from many
limitations. For example, GPS is sensitive to signal dropout and hostile jam-
ming. The drawback of INS is that its position error compounds over time and
may cause large localization errors. In order to overcome the cited disadvan-
tages, a vision-based approach of the navigation problem has been proposed.
The goal is to estimate location and/or orientation of the robot when GPS or
inertial guidance is not available [31][48][16][60]. Most of the existing works
use conventional cameras that have a relative small field of view, which might
lead to important di±culties (lack of features, translation/rotation ambigu-
ity, etc...). Intuitively, wider the field of view is, the more information we can
gather from the environment (Fig 1). Therefore an imaging system that is able
to see “in all direction” has an important role to play. Such sensors are simply
called omnidirectional systems and provide a wide field of view. Catadiop-
tric cameras are a specific kind of omnidirectional systems. They are devices
which use both mirrors (catoptric elements) and lenses (dioptric elements) to
form images through a conventional camera [21]. Such systems usually have
a field of view greater than 180 degrees and are getting both cheaper and
more eÆective. Among the several advantages provided by catadioptric vision,
we can especially cite the larger amount of common information between im-
ages [17] and the handling of the traditional ambiguity of rotation-translation
inherent to traditional cameras [15]. Regarding these important properties,
some researchers have proposed using catadioptric sensors and applied them
for various tasks [13][55][61][10][62].

Based on these previous works, we study the role of catadioptric vision for au-
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tonomous robots. Our project refers to the camera motion estimation problem
which has been studied for several applications such as visual odometry [9],
SLAM [34] or structure from motion [22][36]. In this paper, we aim to demon-
strate the e±ciency of our approach for the motion estimation problem with
respect to 3 criteria: accuracy, robustness and speed. Accuracy refers to the
precision of the rotation and translation estimations. For the robustness part,
we study the dependency of our method to noisy matching points and inac-
curate rotations. For the speed part, the complexity of the proposed methods
will be analyzed.

Before presenting our approach, we review the existing methods of motion
estimation. They can be classified into three categories: firstly, optical flow [23];
secondly, estimation and decomposition of the essential/fundamental matrix
[54] or homography [46]; and thridly, direct methods based on translation and
rotation decoupling [1][2]. Whereas these three categories of methods have
been deeply studied in traditional perspective vision, this paper focuses on
the methods adapted to omnidirectional images and especially catadioptric
vision.

For the first category, Gluckman and Nayar have been the first to propose
an adapted version of the optical flow for catadioptric images [23]. They first
begin by computing the velocity field directly in the image. Then this field is
projected onto a unit sphere by the Jacobian of the transformation between the
spherical projection model and the image formation model. Once the velocity
field is projected, they suggest applying classical algorithms of ego-motion
estimation. This initial approach requires the Jacobian definition for each type
of catadioptric system but Vassallo and Santos-Victor [58] have proposed to
use the sphere equivalence model developed by Geyer and Daniilidis [21] in
order to generalize the Jacobian definition. Both cases require the translation
to be not null or the a priori knowledge that the translation is null in order to
modify the motion model. Instead of using the unit sphere, Shakernia and al.
project the optical flow on a virtual curved retina that explicitly depends on
the mirror parameters [52]. They demonstrated that their approach is more
e±cient for planar displacement. For all these methods, the velocity field is
calculated directly in the image before being projected on a quadric surface and
none take into account the image distortions due to the mirror, except in [14]
but this work requires to interpolate the image on the sphere, which introduces
noise and is time consuming. It is also obvious that all the methods based on
optical flow perform correctly only in case of small displacements because the
features must be tracked in the image sequence. A method proposed by Lee et
al. uses a Kalman filter that allows larger motions [33]. However this approach
might require a high number of iterations and thus might not lead to a fast
algorithm.

The second category of methods consists in first estimating the epipolar ge-
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ometry by either the essential E, fundamental F or homography H matrix
and then extracting translation and rotation from the estimated matrix. To
compute the epipolar geometry, most of these methods rely on point correspon-
dences in an pair of images. Nowadays, the two most widely used techniques
to extract and match interest points are SIFT [41] or Harris corners [25] com-
bined with ZNCC [35]. Svoboda and al. [54] have been the first to propose an
adapted version of the 8-point algorithm [26] for omnidirectional images and
performed a series of experiments in pure translation. In [37], Lhuillier applies
the 7-point algorithm to compute F and then forces the two largest singular
values of F to be the same in order to obtain E. This approach is text book
material [26], except that it takes place in sphere space instead of the image
plane. However combined with an existing quasi-dense matching technique
[38] and texture mapping, impressive results for urban 3D reconstruction are
obtained. [46] tracks planar templates and computes the homography matrix
H to compute the camera motion. [47] proposed an original method to esti-
mate the epipolar geometry for uncalibrated omnidirectional cameras with a
circular field of view. This autocalibration method is formulated as a polyno-
mial eigenvalue problem and requires 9 point correspondences. All these cited
works have demonstrated the feasibility of motion estimation using point fea-
tures. However the di±culty of the methods based on E/F or H concerns the
matching of interest points and the motion estimation from these matched
points. Indeed, in case of large displacement, the neighborhood of the inter-
est points is highly modified due to the distortions introduced by the mirror.
Thus, these methods can correctly be applied only for small displacements
since interest points will be more reliably extracted and easily matched and
it permits to avoid the computationally expensive methods of features extrac-
tion/matching adapted for omnidirectional images [24]. Moreover it is well
known that these epipolar-based methods suÆer from important degeneracies.
Especially, the essential and fundamental matrices cannot compute the rota-
tion in pure-rotation case, like for the optical-flow based methods, and are
degenerate for planar scenes. On the contrary, the homography approach re-
quires features on a plane and is not suitable for general 3D environment.
To handle scenes of diÆerent geometries (planar vs non-planar scenes), some
mechanisms have been proposed to automatically switch between E/F and H
[20], but lead to a longer computation time.

The third and last category directly searches the rigid transformation that
best matches the primitives in two images. The innovative approach of [44]
converts the image in the frequency domain by spherical Fourrier transform
and then the motion is refined from the conservation of harmonic coe±cients.
However the conversion to frequency domain is computationally very expen-
sive and moreover, this method is sensitive to dynamic environment. The
work of Antone and Teller lies on vanishing points to estimate the rotation [1]
and performs a Hough transform on the set of possible translations [2]. This
method presents interesting results but also requires a large computational
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time.

In this paper, we propose an algorithm that is situated at the boundary be-
tween the second and the third category. Our method is based on the explicit
decoupling of the motion into rotation and translation between two catadiop-
tric images. First, the rotation is estimated by at least two bundles of parallel
lines whose 3D directions can be accurately computed using the proposed al-
gorithm and for which the matching is not di±cult. Then, the translation can
be deduced, using the proposed 2-point algorithm, from the correspondence
of only two points whose rotation has been compensated in the first image.
Similarly to Antone and Teller [1][2], we assume the environment is composed
of at least two bundles of parallel lines and the camera is calibrated [5]. Our
method diÆers on the following points:

• the images are acquired from a monocular catadioptric camera instead of
the composition of several perspective views,

• we do not have a priori knowledge about the camera pose,
• our algorithm can accurately compute the absolute attitude (roll and pitch

angles) without error accumulation,
• our approach is fast and thus could be used for autonomous robot naviga-

tion.

The methods proposed in this paper provide several advantages that we may
divide into two groups. The first one deals with the estimation of rotation
and attitude. For this part, one contribution is a new line detection algo-
rithm in catadioptric images. Experiments on both synthesized and real data
demonstrated that our line extraction method is fast, accurate and robust
to both noise and occlusion. A second contribution is a method that can
compute the absolute attitude (roll and pitch angles) without error accu-
mulation. It requires the vertical direction in the image and we propose an
algorithm that can automatically select or compute the vertical among the
detected vanishing directions. The second group deals with the estimation of
translation. Our contribution is a 2-point algorithm for catadioptric vision.
This method oÆers numerous advantages, the three most important ones be-
ing the following. First, it is independent to the planarity/non-planarity of
the scene, contrary to essential/fundamental matrix and homography, and
thus does not require complicated switching mechanism between E/F and H.
Second, the 2-point algorithm requires to extract and match feature points,
similarly to most of epipolar-based methods. However, thanks to the rotation
constraint and the fact that only two points are su±cient, the translation es-
timation is more robust to noisy correspondences of matching points and thus
can handle not only small displacements but also large rotations and trans-
lations. The third advantage is a fast execution. As less correspondences are
needed, the number of iterations required in robust estimators (e.g. RANSAC
or M-estimator) to guarantee that at least one sample is free from outliers de-
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creases strongly. Moreover given two correspondences, 3 simple cross-products
permit to compute the translation contrary to other existing methods (es-
sential/fundamental matrix, homography, etc...) that require computationally
expensive Singular Value Decomposition (SVD).

In order to demonstrate the advantages of our approach, we have performed
a series of experiments for rotation and translation estimations. The experi-
mental setup is composed of a monocular catadioptric vision camera to which
a gyroscope is rigidly attached. The motion is estimated from the catadiop-
tric images and the gyroscope permits to acquire ground truth rotation. The
e±ciency of the rotation estimation strongly depends on the accuracy of the
line extraction algorithm. Using synthesized and real data, we have demon-
strated that our algorithm is able to handle noise and very high occlusion.
Our implementation in C++ has shown that it can extract lines and vanish-
ing points in less than 30 ms. For the translation estimation, experiments on
synthesized data have proved that the 2-point algorithm is more robust to
noisy matching points, compared to essential matrix and homography, thanks
to the constraint imposed by the rotation, even when the rotation is corrupted
up to a certain level of noise. This result was confirmed on real catadioptric
images where better results were obtained for both rotation and translation
estimations.

The paper is organized as follows. First, we propose an algorithm for fast
and accurate line detection in catadioptric images and then we simply ex-
tract vanishing directions by an existing technique. Section 3 presents a new
method to compute the absolute attitude (roll and pitch angles) without er-
ror accumulation. Then we estimate the complete relative rotation (roll, pitch
and yaw angles) using vanishing directions in catadioptric images. In section
5, we introduce our 2-point algorithm to compute the translation from the
correspondences of only two feature points. Finally, we perform a series of
experiments to validate our proposed methods. To compare our results with
ground truth rotation, we also present a method for computing the relative
rotation calibration between a catadioptric camera and a gyroscope.

2 Catadioptric Line Detection

This section studies how to detect lines in catadioptric images. First, we be-
gin by reminding the line projection model for catadioptric vision. Then af-
ter reviewing the existing algorithms of line detection, we introduce our new
method. The proposed approach provides several advantages compared to pre-
vious works: it works for any central catadioptric systems, runs in real-time,
does not require that each edge chain corresponds to the projection of a unique
real 3D line and provides accurate and robust results despite noise and large

6



Fig. 1. Compared to traditional perspective cameras (left), catadioptric systems
(right) can gather much more information from the environment.

occlusion.

2.1 Line Projection Model

For a better clarity of the paper, the line projection model for catadioptric
vision is reminded. We adopt the formalism defined in [5] [3] and first, we con-
sider the projection of a 3D point by the way of the unitary sphere as proposed
in [5] [3] [21]. This projection is depicted in figure 2(a) and is composed of the
following steps. In the first step, we consider the oriented projective ray P1

passing by a 3D point xw and the center of the sphere O1. This ray intersects
the surface of the sphere in xs. Then, we consider the oriented projective ray
P2 passing by xs and a point O2 situated on the z-axis between the center of
the sphere and the north pole. This point O2 is at distance ª from the center
of the sphere and depends only on the mirror geometric characteristics. P2

intersects plane at infinity in point xi. Finally, homography Hc defined be-
tween the plane at infinity and the catadioptric image plane projects point xi

into point xc on the image. Hc includes intrinsic parameters of the camera,
possible rotations between the sphere frame and the camera frame, and also
the parameters of the mirror.

Using this model, it is also possible to project a 3D line into the catadioptric
image plane, as depicted in figure 2(b). We consider the plane which contains
the real 3D line and the center of the sphere O1. This plane intersects the
sphere and then defines a great circle onto its surface. The set of oriented pro-
jective rays passing by the points of the great circle and point O2 define then
a cone which intersects plane at infinity into conic Ci. Finally, homography
Hc projects Ci into conic Cc in the catadioptric image plane.
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(a) (b)

Fig. 2. (a) Image formation model. Example of projection via the unitary sphere for
a 3D point. (b) Projection of a 3D line via the unitary sphere into the catadioptric
image plane.

2.2 Related Works

Methods for catadioptric line detection can be divided into three categories.
The first category deals with methods applicable as well in the calibrated
case as in the uncalibrated case and includes the algorithms of conic fitting
[64]. The second category concerns calibrated sensors and most of the proposed
techniques are based on adaptation of Hough transform [59] [63] [46]. Methods
for uncalibrated sensors form the third category. These methods use particular
geometric constraints of catadioptric sensors and are generally dedicated to
paracatadioptric sensors [6] [57]. In the rest of this section, we only develop
the two first categories because the third is not enough general and concerns
only paracatadioptric cameras.

Conic fitting algorithms determine the curve that best fits the data points
according to a certain distance metric [64]. In [6], the authors present a
comparison of the normal least squares (LMS), approximate mean square
(AMS), Fitzgibbon and Fisher (FF) [19], gradient weighted least square fitting
(GRAD) and orthogonal distances (ORTHO) methods for the specific prob-
lem of paracatadioptric line detection. Their conclusions are that GRAD and
ORTHO are the most robust to noise and that all methods perform poorly
when the amplitude of the occlusion is above 240±. Since most of the cata-
dioptric lines have an amplitude less than 45±, it clearly appears that these
methods are unsuitable for general central catadioptric line detection and es-
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timation. Moreover, these methods suppose that the data points have been
already classified into chains, where each chain represents the projection of a
unique and real 3D line.

For the second category, the system is calibrated: homography Hc and pa-
rameter ª are known. In this way, a 3D line is determined thanks to a vector
(nx, ny, nz)T . This vector represents the normal of the great circle on the uni-
tary sphere obtained by the intersection of the plane which contains the center
of the sphere and the 3D line (fig. 2(b)). A 3D line can also be represented by
two angles ¡ and µ which respectively are the elevation angle and the azimuth
angle of the normal vector. Each catadioptric line is then represented by only
two parameters and a simple adaptation of the Hough transform can solved
the problem. This is this kind of approach which is proposed in [63] and [59].
The main diÆerence between these methods deals with the space in which the
treatments are performed. In [59], the image is projected on the unit sphere
and then the 3D spherical coordinates of the pixels are used, while authors of
[63] apply the algorithm directly in the image. Although these two approaches
present interesting results, it is worth noting that they present the classic de-
fects of the Hough transform such as the importance of parameter sampling
(¡ and µ) and also an expensive computation. In [46], the authors proposed a
randomized Hough transform which randomly selects two points in the image
of edges in order to compute the ¡ and µ angles. Whereas this method runs
faster, it still suÆers from the sampling parameters dependency.

2.3 Central Catadioptric Line Detection Algorithm

The review of existing works leads to the conclusion that general, accurate
and fast methods for line extraction in catadioptric images do not exist. That
is why we propose a new approach that is able to overcome these limitations.
Our line detection algorithm for central catadioptric sensor is composed of 4
steps. First, we apply a Canny edge detector to obtain potential line points
(Fig 3(a)). In the second step, we proceed to an edge chaining which extracts
connected pixels from edges (Fig 3(b)). One may note that some extracted
chains might not refer to a unique and real 3D line. Indeed some chains might
be composed of the projection of several lines or correspond to geometric
objects other than lines (e.g. sphere). Therefore detecting the lines in the
scene consists then in verifying if the chains are the projections of 3D lines. For
this, we apply a split and merge algorithm to the chains. First, an adaptation
of the polygonal approximation is proposed in order to find which chains or
parts of chains are catadioptric projections of lines (step 3, Fig 3(c)). This
process is performed thanks to a splitting criterion which cuts the chains at a
particular position if the chain is not verified as a catadioptric line. Finally, we
use a merging criterion in order to group the diÆerent chains which represent
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the same central catadioptric lines (step 4, Fig 3(d)). These both criteria are
discussed in the two following parts.

2.3.1 Splitting Criterion

Consider the two endpoints of a chain composed of N pixels with coordinates
P1 = (X1, Y1, Z1) and PN = (XN , YN , ZN) on the unitary sphere S2. These
points define a single central catadioptric line in the image and then a great
circle C on the sphere (Fig2(b)). This circle results from the intersection of
the unitary sphere and a plane which contains the sphere origin 01 and whose
normal vector is °!n =

°°°!
O1P1 £

°°°!
O1PN = (nx, ny, nz)T . Then, the equation of C

is : 8
><

>:

nxX + nyY + nzZ = 0

(X, Y, Z) 2 S2

We consider that a point of the chain on the sphere, with coordinates Pi =
(Xi, Yi, Zi), belongs to the great circle if the distance between this point and
the plane defined by the great circle is less than a threshold ∏split:

|nxXi + nyYi + nzZi| ∑ ∏split

If all the points of the chain belong to the great circle, then this chain is
considered as a central catadioptric line. In the opposite case, we split the chain
into two sub-chains at the point (Xj, Yj, Zj) which maximizes the following
error ||(Xi, Yi, Zi).

°!n ||, i = 1 · · ·N (i.e. the furthest point from the plane)
and this procedure is re-applied on the two sub-chains. This iterative splitting
step stops when the chain either is considered as a central catadioptric line or
becomes too short (i.e. its length is less than a threshold NbPixels). At the
end of this step, we obtain a list of central catadioptric lines detected in the
image (Fig 3(c)).

2.3.2 Merging Criterion

Because of possible edge discontinuity during the edge detection step, a line
might be decomposed into more than one chain. That is why we suggest merg-
ing the catadioptric lines based on a similarity measure. Let define two cata-
dioptric lines d1 and d2 detected with the previous method. These lines respec-
tively characterized by °!n1 and °!n2 define two planes in the 3D space passing
through the origin of the unit sphere: ¶1 = {U = (X, Y, Z)T 2 R3,°!n T

1 .U = 0}
and ¶2 = {U = (X, Y, Z)T 2 R3,°!n T

2 .U = 0} . We consider that these de-
tected catadioptric lines are similar if they define the same 3D plane, that is
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) Canny edge detector result (edge pixels have been enlarged for a better
display), (b) Extracted chains, (c) Catadioptric line detection results after splitting
step, (d) Catadioptric line detection results after merging step, (e)(f) Detailed view
of final results. Note how accurately the detected lines match the building column
and the parking lane.
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to say if:

1° |°!n 1.
°!n 2| ∑ ∏merge

In this case, the two catadioptric lines are merged into a single line. The
catadioptric line equation is then updated from the pixels of the chains which
belong to d1 and d2 as follows. Let note respectively M1 = (X1

i , Y 1
i , Z1

i )i=1···N1

and M2 = (X2
i , Y 2

i , Z2
i )i=1···N2 , the pixels of the catadioptric lines d1 and d2.

Let M be the matrix of dimension (N1 + N2)£ 3 defined as

M =

0

@ M1

M2

1

A =

0

BBBBBBBBBBBBB@

X1
1 Y 1

1 Z1
1

...
...

...

X1
N1

Y 1
N1

Z1
N1

X2
1 Y 2

1 Z2
1

...
...

...

X2
N2

Y 2
N2

Z2
N2

1

CCCCCCCCCCCCCA

,

The normal vector °!n = (nx, ny, nz)T of the great circle associated to the
merged catadioptric lines d1 and d2 is then solution of :

M.°!n = (0, · · · , 0)T . (1)

The solution of (1) is obtained from the SVD of matrix M [30].

3 Parallel Line Bundle Detection

Once the catadioptric lines have been extracted, it is valuable to detect the
vanishing points. These points correspond to the intersection of the images
of parallel lines and provide key information for attitude/rotation estimation
as will be shown in section 4 and 5. In the current section, we first propose
an extension of a geometrical property involving the direction of vanishing
points towards catadioptric vision. And then we apply an existing algorithm
for the extraction of vanishing directions and explain the key advantages of
catadioptric images for this task.

3.1 Properties of vanishing points

To detect bundles of parallel lines and their associated vanishing points, we
introduce and prove the following proposition :

12



Proposition:
If L1 and L2 are two parallel 3D lines with unit vector °!u , then their equivalent
great circles C1 and C2 on the unitary sphere intersect into two antipodal
points I1 and I2. These points have the property of being independent from
the position of L1 and L2 in the 3D scene and only depend on direction °!u .
Especially, we have

°°!
I1I2 = °!u (Fig 4).

Fig. 4. Parallel line projection onto the surface of the unitary sphere.

Proof:
Let º1 and º2 be two planes which contain respectively L1 and L2 and pass
through O1. These two planes intersect into a line l which includes O1. This
demonstrates that two great circles C1 and C2 intersect into two antipodal
points I1 and I2.
Let note °!n1 (respectively °!n2) be the normal of plane º1 (respectively º2). We
have L1 2 º1 and L2 2 º2, then °!n1.

°!u = °!n2.
°!u = 0 and °!u = °!n1 £ °!n2. In the

same way,
°°!
I1I2 2 º1 \ º2, then

°°!
I1I2.

°!n1 =
°°!
I1I2.

°!n2 = 0 and
°°!
I1I2 = °!n1£°!n2 = °!u .

This property has then two consequences :

• The set of parallel lines with unit vectors °!u provides a set of great circles
which intersect into two antipodal points I1 and I2, and

°°!
I1I2 = °!u .

• Consider two bundles of parallel lines with unit vector °!u and °!v . Note I i
1

and I i
2 the intersection points of each bundle (i = 1, 2). If these two bundles

are perpendicular, we obtain
°°!
I1
1I

1
2 .
°°!
I2
1I

2
2 = 0

3.2 Extraction of vanishing directions

Given a set of lines, many methods have been proposed for grouping parallel
lines and computing their vanishing points [43][51][53][1]. For this task, we
simply use the following common algorithm. Let us consider N lines detected
in the image and their associated normal vectors ni, i = 1...N . For every pair
of lines (N(N °1)/2 combinations), we compute the associated direction d by
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cross-product d = ni£nj, i > j and then for each line, we measure the distance
to d. If the measurement is small, then the lines are considered parallel and we
add a vote for the accumulator A(d). The dominant direction d corresponds to
the A(d) that have received the highest number of votes and in the same way,
it is possible to detect the other dominant directions. Since the extracted lines
do not perfectly intersect in one single point, the final direction d is simply
computed by SVD as the solution of:

bd = arg min
PX

i=1

dT .ni (2)

where ni, i = 1...P are the P normal vectors of the lines belonging to the
current bundle. As our application takes place in man-made environment, the
dominant vanishing directions are usually orthogonal. Figure 5(b) shows the
results of vanishing direction extraction. For information, the angle between
the two detected directions is 90.7 degrees.

One may note that a similar method could be applied to traditional perspective
cameras but the inherent wide field of view of catadioptric sensors provides
some important extra advantages. First, the catadioptric image contains a
much larger number of lines, thus we do not suÆer from lack of information
when extracting parallel lines. Second, the vanishing points, i.e. the intersec-
tion of the projection of the parallel lines, lie in the image and therefore their
estimation is more robust. Finally, a vanishing point can be tracked during a
very long sequence. This is a very important property because it permits that
the error of attitude and rotation estimation does not accumulate as long as
the vanishing points can be tracked continuously, as will be shown in the two
following sections.

(a) (b)

Fig. 5. (a)Automatic line extraction (b) Automatic detection of two dominant or-
thogonal directions. The conics have been enlarged for a better visualization.
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4 Attitude Computation

In this section, we show the key role that line information can play by present-
ing a method for attitude estimation. Attitude is defined as the orientation of
a vehicle with respect to the horizon and is a function of two angles: pitch and
roll (a method to compute the 3 rotation angles will be proposed in section
5.1). Our method is based on the vertical direction detected in the image and
does not suÆer, by construction, from the traditional problem of error accu-
mulation. Moreover it does not have to deal with the complicated problem
of point features extraction and matching. In urban environment (Fig 6), ei-
ther 2 or 3 orthogonal directions (two horizontal and one vertical) are usually
extracted but our proposed method can be also applied for other cases since
it does not rely on the orthogonality of the vanishing points. In this section,
first, we explain how to compute the absolute roll and pitch angles from the
vertical direction. Then we present an original method that can automatically
select the vertical among the detected directions.

Fig. 6. Scene with three buildings and the obtained orthogonal frame.

4.1 Attitude estimation

This section explains how to compute the absolute roll and pitch angles from
the vertical direction. Let

°!
N = (nx, ny, nz) be the vertical direction (obtained

by the proposed line extraction and vanishing point extraction steps) and
(Ω,√, Æ) the roll, pitch and yaw rotation angles respectively. Thus the following
relation holds:

0
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where

RÆ,Ω,√ =

2
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3
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.

Given
°!
N , one may deduce roll Ω and pitch √ angles as follows :

√ = arctan
°nxq
n2

y + n2
z

(4)

Ω = arctan
ny

nz
(5)

Therefore it clearly appears that it is possible to estimate the absolute roll
and pitch angles from the vertical direction without error accumulation. Indeed
the absolute attitude is estimated independently of the result of the previous
frames and thus, the proposed method can be used for long term robotic
applications.

4.2 Automatic detection of the vertical direction

In order to use eq (3), the vertical direction is needed. If the vertical direction
is observed, then we can directly compute the absolute roll and pitch angles. If
it is not observed, then the vertical can be computed from the cross-product of
the two detected horizontal directions and thus it is also possible to estimate
the absolute attitude.

In this section, we propose an original sky-based algorithm that can automat-
ically classify the detected directions into the classes {horizontal}{vertical}.
The sky detection in images is a subject which has often been treated for
outdoor robotics [39] and also for image orientation [42]. Most of these sys-
tems use color and/or texture information in order to manage the diÆerent
appearances of the sky (clear, gray, cloudy,. . . ). In our approach, in order to
obtain a fast algorithm, we propose to only use the brightness information.
With that aim, we suppose that the sky represents the brightest part of the
image, which is a reasonable assumption. The second suggested hypothesis is
that the sky is almost always in the part close to the omnidirectional image
border. Except if the camera is turned upside down, this assumption is always
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true and we will see that even this case can be easily resolved. The algorithm
can then be described in the following way:

(1) Find the point of maximum brightness in the image.

(2) Consider a circle centered on the image center and with a radius Rmax°
5, where Rmax is the radius of the omnidirectional image perimeter (Fig
7(a))

(3) Normalize the brightness of the pixels which belong to this circle by the
maximum brightness.

(4) Binarize the brightness of the pixels on the circle respecting a threshold
BrigthThresh (typically 0.95 in our experiments) in order to preserve only
the points of high brightness (Fig 7(b)).

(5) Eliminate arcs of circle with a length lower than LengthThresh (typically
15 in our experiments) pixels having a binarized brightness equal to 255.

(6) Seek the longest arc of circle whose points have a null binarized bright-
ness. This arc of circle is considered as the part without sky. The com-
plementary arc of circle is then considered as the image part where the
sky is located (Fig 7(c)).

(7) Use a region growing process by using initial seeds determined from the
complementary arc of circle previously detected (Fig 7(d)).

In the case where the sky is not detected, we apply the same algorithm in
considering an inner circle, rather than an outer circle as described previously.
In practice, this happens only when the camera is upside down.

Let °!u1 and °!u2 be the 2 detected directions. A third direction °!u3 can be simply
computed by °!u3 = °!u1£°!u3 or extracted in the image if the scene contains three
main directions. The vectors °!u1,

°!u2 and °!u3 permit to define 3 planes, ºijwhich
contain O1,

°!ui and °!uj , i 6= j. These 3 planes define 3 diÆerent partitions of
the sphere. The horizontal plane is in fact the plane ºij which partitions the
spherical image without separating points of the sky (Fig 8). Let us note that
in few cases, it can happen that two ºij planes can be candidate. In this case,
we make a simple tracking of the horizontal plane in the sequence in order to
clear up this ambiguity.

Once the horizontal plane has been detected, the vertical direction of the scene
is simply the vector °!ui which is not contained in the horizontal plane. This
original approach to automatically pick up the vertical VP is useful at the
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(a) (b)

(c) (d)

Fig. 7. (a) Original image with the circle of points used for sky detection, (b)
binarized histogram of the circle, (c) probable position of the sky with the initial
seeds for the region growing (d) detected sky after region growing process

initialization and especially to reset and verify the tracking of the vertical
VP. If the sky is not observable (e.g. indoor environment), then we switch
to common techniques to detect and track the vertical VP. Experiments to
qualitatively measure the accuracy will be performed in section 7.4.

5 Estimation of camera motion between two images

In this section, we aim to estimate the motion between two catadioptric images
(fig 9). Let us consider a 3D point M observed by two cameras whose centers
are located at C1 and C2 and linked by a rigid transformation (R, T ) where

R 2 SO(3) and T 2 R3, i.e.
°°°!
C2M = R.

°°°!
C1M + T . The spherical projection of

M is noted P 2 S2 for the first image and P 0 2 S2 for the second image. P
and P 0 are linked by the epipolar constraint:

(RP £ P 0)T T = 0. (6)
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Fig. 8. The horizontal plane (°!u1,
°!u2) partitions the spherical image without sepa-

rating sky points and °!u3 corresponds to the vertical, where °!ui i = 1 · · ·K represent
the dominant directions of the scene.
Traditional epipolar-based methods, such as essential and fundamental ma-
trix (5, 7 and 8-point algorithms) or homography (4-point algorithm) provide
a closed-form solution by SVD for the calculation of R and T given a mini-
mal number of correspondences. However, as explained in the introduction, it
suÆers from several limitations like the di±culty of planar/non-planar scene,
the non-computation of R in pure-rotation motion and a high complexity for
a robust estimation. To avoid these drawbacks, our approach consists in de-
coupling the motion into rotation and translation. In the first part, we explain
how to estimate R using the direction of the parallel lines bundles and in
the second part, we present our 2-point algorithm for catadioptric vision to
estimate T from eq (6).

5.1 Rotation estimation

In section 4, we presented a method to compute the absolute attitude (roll and
pitch angles). We now present how to compute the complete rotation (i.e. roll,
pitch and yaw) from extracted vanishing directions. First, we use a common
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Fig. 9. Our goal is to estimate the rotation R and the translation T between two
catadioptric images.

technique for the matching of dominant directions in an image sequence. And
then we introduce an original method for the computation of R given the
correspondences of two directions.

As a first step for rotation estimation, we have to set the correspondences
between the detected vanishing directions. A method consists in matching the
lines of the bundles (cf [32] for a recent review of existing methods) but it
is computationally expensive and thus cannot be used for real-time experi-
ments. That is why we preferred using a simple continuity constraint. Let ui

(respectively u0i) be the directions detected in the first image (respectively in
the second image) with i = 1, 2, · · · . The continuity constraint simply matches
the pair (ui, u0j) having the lowest angle. This method assumes the relative ro-
tation between two images is lower than 45± for the 3 angles. This assumption
is valid for video sequences, as will be shown in the experiments section, and
moreover, this method has the advantage to be very fast. An important remark
is that during a long path, some vanishing points might appear/disappear. In
our implementation, we inspired from a method usually applied for robust fea-
ture point tracking in SLAM: a VP is added to (reciprocally removed from) the
list of VPs when it gets observed (reciprocally not observed) for some frames.
A VP is classified as observed (reciprocally not observed) when the number
of its associated lines is higher (reciprocally lower) than a certain threshold.
This situation is discussed in details in Appendix A.1.

The second step consists in computing the relative rotation given some VP
correspondences and we present an original linear method for this task. From
the property proven in section 3, the correspondence of two vanishing direc-
tions u and u0 in two images verify u0 = Ru where R is the rotation between
the two images. Each vanishing direction correspondence provides two inde-
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pendent equations, which means that two correspondences are su±cient to
estimate R. Let u1 and u2 be two dominant directions in the first image, and
their correspondences u01 and u02 in the second image. The following relation
holds :

u01 = Ru1 and u02 = Ru2 (7)

Traditionally, this system is non-linear with respect to the three rotation angles
roll, pitch and yaw. We propose an original linear method to compute the
rotation.

Proposition:
Let us consider a rotation R such that u01 = Ru1 and u02 = Ru2, where ku1k =
ku2k = 1. If we decompose R into a rotation axis N and an angle ¡ by
Rodrigues’ formula (cf Fig 10 and eq 8), then N and ¡ can be estimated as
follows :

• if u01 = u1 and u02 = u2 (case 1), then R = I and the motion is rotation-free.
• if u01 = u1 and u02 6= u2 (case 2), then

N = u1, cos ¡ = u0
2.u2°(u2.N)2

1°(u2.N)2 and sin ¡ = u0
2.(N£u2)
kN£u2k2

By symmetry, we obtain the same relations by switching u1 and u2, i.e.
if u01 6= u1 and u02 = u2.

• else (case 3), i.e. u01 6= u1 and u02 6= u2, then

N = (u1°u0
1)£(u2°u0

2)
k(u1°u0

1)£(u2°u0
2)k , cos ¡ = u0

2.u2°(u2.N)2

1°(u2.N)2 and sin ¡ = u0
2.(N£u2)
kN£u2k2

Therefore, if two bundles of lines are detected in the images, trivial mathematic
operations (cross and dot products) permits to easily retrieve the rotation
between the two images.

Proof:
By Rodrigues’ formula, R can be decomposed into a rotation axis N and an
angle ¡ as follows:

u0 = Ru

u0 = cos ¡.u + (1° cos ¡)(u.N)N + sin ¡[N £ u].
(8)

To compute R, three cases can occur:

• case 1: obvious
• case 2: if u01 = u1 and u02 6= u2, then u1 is invariant by R and thus N = u1.

Moreover, from eq (8):

u02.u2 = cos ¡ku2k2 + (1° cos ¡)(u2.N)2
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therefore

cos ¡ =
u02.u2 ° (u2.N)2

1° (u2.N)2

In the same way, we obtain

sin ¡ =
u02.(N £ u2)

kN £ u2k2
.

• case 3: to verify the proposed relation, it su±ces to notice that N is orthog-
onal to both (u01 ° u1) and (u02 ° u2). It can be seen by geometry on the
figure 10 or by the Rodrigues’ formula (N.(u01 ° u1) = N.(u02 ° u2) = 0)

Fig. 10. Representation of the axis-angle notation for rotation. The point P is ro-
tated to the point P 0 around an axis N by an angle µ.

5.2 Translation estimation

We are now able to compute the rotation R between two images. What we
aim to do now is to calculate the translation T from eq (6). Since T can
be known only up to scale, there are only 2 DOF to compute T . As each
correspondence provides one equation, two correspondences are su±cient to
estimate T . Therefore we name this method the 2-point algorithm.

Let us consider two spherical points Pi and Pj in the first image and their
correspondences P 0

i and P 0
j in the second image. From eq (6), we can determine

the translation up to scale by a simple cross-product:

T ª (RPi £ P 0
i )£ (RPj £ P 0

j). (9)

22



Fig. 11. Geometric interpretation of the 2-point algorithm: each point correspon-
dence (note the compensation of the rotation in the first camera) defines an epipolar
plane and the intersection of 2 epipolar planes corresponds to the translation.

The geometric interpretation is presented in Fig 11: the translation is the in-
tersection of 2 epipolar planes obtained from 2 pairs of point correspondences.
One may note that a degeneracy occurs when the points P and P 0 are in
the direction of the translation. Using 2 non-degenerate correspondences, T
can be easily computed by eq (9). For the over-determined case (i.e. K > 2
correspondences are given), eq (9) can be extended as follows:

T = arg min
T

KX

i=1

MiT (10)

where the ith row of M (with i = 1, . . . , K) corresponds to the ith point
correspondence: Mi = (RPi £ P 0

i )
T . The solution T of this system is easily

obtained from the Singular Value Decomposition (SVD) of M . When K = 2
correspondences are given, T can be computed by eq (10) but eq (9) is more
recommended due to its much lower computation.

To determine the orientation of T , we simply verify that the “scalar triple
product” between RP , P 0 and RP £ T is negative, that is to say:

(RP £ P 0).(RP £ T ) < 0 (11)

Indeed the vectors RP £ P and RP £ T have “an opposite orientation” (cf
Appendix A.2).

The direct estimation of T is sensitive to incorrect and noisy matching. Thus it
is necessary to use a robust estimation algorithm that can handle point noise
and outliers. In [45], the authors review some important robust techniques
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and here, we focus on two important ones: M-estimator [8][29] and RANSAC
[18]. The principle of the M-estimators is to modify the objective function of
the least squares by penalizing the largest residues. On one hand, it can be
implemented using a simple iterative re-weighted least squares algorithm, but
on the other hand, it requires an initial estimate of the parameters and might
not be faster than RANSAC when the data is very noisy. RANSAC approach
estimates the considered parameters from a minimal set of data (in our case
2 correspondences), counts the number of data verifying the validity of the
estimated parameters and finally retains the best consensus. This method is
widely used and very e±cient from the robustness point of view, but is quite
time consuming.

In the following, we show that the 2-point algorithm decreases the theoretical
complexity of RANSAC, which permits to use it for a fast and robust esti-
mation of T . [26] defines the theoretical minimum number of samples that is
required to ensure that at least one sample is free from outliers and an exam-
ple is depicted by Table 1. It clearly shows that the 2-point algorithm requires
much less iterations than the 4, 5, 7 or 8-point algorithms, especially when
the percentage of outliers is high. Concretely, for 50% of outliers, the number
of RANSAC iterations for the 2-point algorithm is 4, 9, 35 and 69 times lower
than for the 4, 5, 7 or 8-point algorithms respectively.

Sample size proportion of outliers ≤

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177
Table 1
The number of samples required to ensure, with a probability p = 0.99, that at least
one sample has no outliers for a given number s of minimal points and a proportion
of outliers ≤. s = 2 refers to our approach and s = 4, 5, 7, 8 refers respectively to the
4, 5, 7 and 8-point algorithms. From [26].

6 Relative rotation calibration between a catadioptric camera and
a gyroscope

In order to analyze the accuracy of the proposed methods for attitude and
rotation estimation, we propose to compare the computed rotation angles with
ground truth data obtained by a gyroscope rigidly attached to the camera.
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Fig. 12. The coordinate systems of the camera and the gyroscope

The gyroscope returns the orientation between its own frame and an Earth
coordinate system composed of magnetic North, West and opposite gravity
directions. On the contrary, our method computes the orientation between
the vanishing directions detected in an image pair. That is why the results
obtained from these two sensors cannot be directly compared. In order to
calibrate an Inertial Measurement Unit (IMU) with a camera, [40] estimates
the relative rotation by having both sensors observing the vertical direction
at diÆerent poses (fig 12). Vertical is obtained from the camera by using a
chessboard target and from the IMU by magnetic field information. However
our gyroscope only provides absolute angles and thus this method cannot be
directly applied. Nevertheless, the knowledge of the orientation angles (Ω,√, Æ)

permits to recompute the vertical direction
°!
N = (nx, ny, nz) in the gyroscope

frame by the relation defined in eq (4).

The vertical direction in the image could be computed from a specific target
(e.g. line pattern), but it is not very convenient. We preferred to run the
algorithm presented in sections 2.3 and 3.2 and select the vertical among
the detected directions. In theory, such a procedure would also be possible
for conventional cameras but in practice, it is complicated because of the
limited number of observable lines, the sensitivity to measurement noise and
the fact that the vanishing points do not lie inside the image. Given the vertical
direction in the gyroscope and camera frames, we simply have to find the unit
quaternion q̇ that maximizes:

nX

i=1

(q̇Niq̇
§) · Vi (12)

where Vi and Ni respectively represent the vertical in the camera and the
gyroscope frames and n is the number of images. This system is easily solved
by [28] and permits to obtain the calibration rotation matrix Rcalib.

25



7 Experimental results

This section presents some important experimental results concerning the
methods that we have proposed in this paper. First, we perform the rela-
tive rotation calibration between a catadioptric camera and a gyroscope. The
obtained alignment correctly corresponds to the layout of our system. Then,
we qualitatively measure the accuracy of the proposed attitude estimation
and obtain a mean error of 2.5± and 3.5± degrees for the roll and pitch an-
gles. Experiments also prove the inherent non-accumulation of error. Finally,
we measure the performance of the 2-point algorithm on synthesized and real
data. Tests have proved that the 2-point algorithm is more robust and accu-
rate than essential matrix and homography, even if the rotation information
is noised.

7.1 Equipment

Two catadioptric systems have been used for the experiments. The first one
is composed of a paraboloid mirror manufactured by Panosmart and a Sony
DFW-SX910 camera. The second system combines a mirror made by the com-
pany 0-360 and a Canon PowerShot G10. The image resolutions are 1024x768
for the section 7.4 of rotation estimation and 1280x960 for the motion esti-
mation. To calibrate the catadioptric system, we have used the toolbox based
on [4] and available on Internet. The ground truth rotation data have been
acquired from the Xsens MTi.

7.2 Line extraction

This section aims to demonstrate the advantages of our line detection ap-
proach: general, fast, accurate and robust. By construction, it is obvious that
our method is general in the sense that it can deal with any central cata-
dioptric cameras (equivalent sphere). In order to study the execution time, we
have implemented our method in C++ using OpenCV library. We are able
to detect lines in less than 30 ms (about 34 fps) for 1280x960 images with
non-optimized code. Therefore our method can be used for real-time systems.

Then we analyze the robustness and accuracy aspects. First we study the de-
pendance to edge pixel noise and we apply the following procedure: generate
1000 synthesized catadioptric images containing the projection of one random
line, add gaussian noise with zero mean and an increasing standard deviation
(from 0 to 5 pixels) and apply the proposed split-and-merge algorithm. The
error is defined as the angle in degrees between the detected and the true
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(a) (b)

Fig. 13. Typical results of line detection on noisy data. (a): line detection results
after splitting step. The green dots corresponds to the noisy data points and the
red conics to the extracted lines. (b): line detection results after merging step and
imposing only one line.

(a) (b)

Fig. 14. Mean (a) and standard deviation (b) of the angular error in degrees (y-axis)
with respect to standard deviation of noise on edge pixels (from 0 to 5 pixels on
x-axis)

normals: for perfect detection, error is 0± and in the worst case error is 90±.
In case of very strong noise, our algorithm might not merge all the detected
normals, so we force to use all the data points in order to get only one normal
vector (cf Fig 13 for intermediate results). Results are presented in Fig 14.
As expected, the error increases when the noise standard deviation increases.
The important fact to notice is that even with a very high standard deviation
of 5 pixels, the mean error is less than 1±. Secondly, we study the dependance
to conic occlusion (Fig 15). For this, we extracted one arc of a specific max-
imum amplitude from the displayed conic (from 0± to 358±), then added a
gaussian noise with mean=0 and std=2 pixels on the edge pixels and finally
applied the previous procedure (i.e. split-and-merge algorithm and mean of
detected normals). Results of Fig 16 confirm the intuitive idea according to
which the error becomes higher when the conic occlusion increases (inversely
conic amplitude decreases). It is worthwhile noting that even for a very high
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(a) (b)

Fig. 15. Typical results of line detection on noisy data (mean=0, std=2 pixels) and
very high occlusion (350±). For information, the error is 2.18± for (a) and 4.55± for
(b).

(a) (b)

Fig. 16. Mean (a) and standard deviation (b) of the angular error in degrees (y-axis)
with respect to conic occlusion (from 0± to 358± on x-axis) with an additional noise
of std=2 pixels on edge pixels

(a) (b)

Fig. 17. EÆect of the merging step on the line detection accuracy. Same legend than
16.
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Fig. 18. Observation of the vertical direction (vx, vy, vz in the y-axis) from the
gyroscope (left) and the catadioptric camera (right) along 520 frames (x-axis). One
may notice the relationship between these two sensors: a near 180± rotation about
the camera z-axis.

occlusion of 350±, the mean error is less than 0.3±. Thirdly, we study the eÆect
of the merging step. Due to occlusion, some lines can be separated into sev-
eral parts during the chaining step. The merging step is going to re-associate
these parts. Since more parts will be used, the occlusion will be smaller and
the fitting more accurate, especially when occlusion is high. For validation, we
compare the accuracy of line detection with and without the merging step.
Results are depicted in Fig 17 and confirm this intuitive idea. As a conclusion,
these experimental results demonstrate the robustness and accuracy of our
proposed method.

7.3 Camera-gyroscope rotation calibration

As explained in section 6, the camera-gyroscope rotation calibration is based
on the vertical directions observed from the gyroscope and the camera. The
vertical in the gyroscope frame was computed by reading the orientation an-
gles and applying eq (4). To obtain the vertical direction in the camera frame,
we have detected the dominant directions in the images, manually selected
the vertical for the first frame, and finally tracked it during a video sequence.
Figure 18 depicts these measurements. The quaternion obtained by [28] cor-
responds to the following relative angles: roll = °2.82±, pitch = 0.01± and
yaw = °179.1±, i.e. a near 180± rotation about the camera z-axis, which is
consistent to the layout of our system. Comparing the gyroscope vertical with
the newly calibrated camera vertical, we have obtained a mean error of 2.0±

with a standard deviation of 1.1±.
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7.4 Rotation estimation

The robustness of the method strongly depends on the number of catadioptric
lines available in the scene and on the quality of their extraction. Since we have
shown that our method of catadioptric line extraction is particularly robust
to noise and occlusion (cf section 7.2), the single real constraint deals with the
possibility to detect at least two bundles of parallel lines. Since it is necessary
to detect at least three lines for each bundle, the presence of two sets of three
parallel lines is su±cient for our algorithm to estimate the complete rotation.

(a) (b)

(c) (d)

Fig. 19. Detection of the 2 dominant vanishing points and their associated parallel
lines. Each conic represents a detected line and its color corresponds to the set
of parallel lines it belongs to. It shows that the vanishing points can be robustly
extracted and continuously tracked along the whole sequence despite large camera
motion.

To analyze our method for rotation estimation, we have acquired a video
sequence composed of 520 frames at 2 frames per second and the associated
gyroscope data. The video was acquired in a parking lot of our university (i.e. a
typical urban scene). The total travel path is about 40 meters and the rotation
amplitude is about 40± for roll, 60± for pitch and 360± for yaw angles. Figure
19 depicts typical results of vanishing points extraction for this sequence and
Fig 20 compares the evolution of the roll, pitch and yaw angles obtained by
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Fig. 20. Comparison of roll (top), pitch (middle) and yaw (bottom) angles between
gyroscope (red dashed line) and the proposed method (blue solid line). The “jumps”
of the yaw angle are simply due to the discontinuities (-180±,+180±).

the gyroscope and our approach. The mean errors for the 3 angles are 1.2±,
1.3± and 3.9±, which proves the accuracy of our method. One may also note
that the evolution of the angles is very smooth whereas no filtering technique
has been used.

7.5 Motion estimation

This part analyzes the accuracy and the robustness of the 2-point algorithm.
First, we perform some experiments on synthesized data to study its depen-
dency to noised matching points and inaccurate rotation estimation. Then we
apply the algorithm on real indoor and outdoor sequences.

7.5.1 Synthesized data

Noise dependency
To analyze the dependency of our 2-point algorithm to data noise, we synthe-
sized 1000 catadioptric images composed of 100 matching points and we have
applied to their coordinates a gaussian noise of mean=0 and std=1pixel and
3pixels. In a first series of experiments, the ground truth rotation was directly
used for the computation of T by the 2-point algorithm. To simulate the fact
that the rotation cannot be perfectly estimated from the images, we have per-
formed a second series of experiments where the 3 rotation angles have been
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(a) (b)

(c) (d)

Fig. 21. Comparison of mean (left column) and std (right column) error in degrees
(y axis) for the estimation of the translation direction on synthesized catadioptric
images by the 5-point and the proposed 2-point algorithm, with respect to rotation
noise (mean=0 and increasing std on x-axis in degrees). On top row, data points
have been noised by a gaussian distribution of mean=0 and std=1pixel; on bottom
row, std=3pixels. It clearly shows that the 2-point algorithm is more reliable that
the 5-point method up to a certain level of rotation noise, especially when the data
noise increases.

corrupted by a gaussian noise of mean=0 and an increasing std=[0±, . . . , 2±].
For comparison, we have also applied the state-of-the-art 5-point algorithm
to compute the essential matrix [50]. Figure 21 depicts the mean/std error in
degrees for the estimation of the translation direction. The std noise for data
points is 1± for top row and 3± for bottom row. As the 5-point algorithm and
the 2-point algorithm with true rotation do not depend on the rotation noise,
their error is constant. It can be noticed that the error of the 2-point algorithm
with noised rotation linearly increases with the level of rotation noise but that
it performs better than the state-of-the-art 5-point algorithm up to a certain
level of rotation noise. It shows that the 2-point algorithm is more e±cient
than the 5-point algorithm even when the rotation is corrupted by an accept-
able level of noise, especially when the noise of data points increases. It is a
very important result because it demonstrates that the constraint provided by
the rotation and the fact that only 2 points are required permits to obtain a

32



more robust estimation by the proposed method.

Fig. 22. Comparison of execution time (note the y-axis scale, base unit for the
2-point method) for the translation estimation by the 2 (our), 4, 5, 7 and 8-point
algorithms for a single RANSAC iteration. Refer to text for more details.

Computation time
In this section, we want to demonstrate that the translation estimation by
our 2-point algorithm is faster than by commonly used techniques: 4, 5, 7 and
8-point algorithms. For the implementation of the 4, 7 and 8-point algorithms,
we referred to [26]. For the 5-point algorithm, we based our implementation

Fig. 23. Comparison of execution time (in ms with a logarithmic scale) for the
translation estimation by the 2 (our), 4, 5, 7 and 8-point algorithms for the minimum
number of theoretical RANSAC iterations with an increasing percentage of outliers
from 5% to 50% . Refer to text for more details.
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on [50]. Therefore, in this section about synthesized data, the execution time
of RANSAC iteration contains only the computation of the associated matrix
(T for 2-point by eq (9), H for 4-point, E for 5-point and F for 7 and 8-
point algorithms). For generality purpose and fair comparison, this execution
time does not contain the count of the number of consistent inliers because
it depends on the synthesized points (e.g. E matrix obtained by the 5-point
algorithm can have between 1 and 10 solutions and F obtained by the 7-
point algorithm between 1 and 3) and especially the robust procedure which
is used (e.g. preemptive RANSAC [49], Td.d-test-RANSAC [11] or RANSAC
with SPRT [12]). Figure 22 compares the average execution time for a single
RANSAC iteration. It shows that the translation estimation by the proposed
eq (9) is at the order of 200, 900, 250 and 300 faster than the 4, 5, 7 and
8-point algorithms respectively. It can be noticed that the 5-point algorithm
is at least 3 times slower than any other algorithms because it requires several
extensive computations: matrix nullspace, Gauss-Jordan elimination, roots of
a tenth degree polynomial, etc. Figure 23 compares the average execution time
to compute the associated matrices for the minimum number of theoretical
RANSAC iterations, as listed in Table 1, with an increasing percentage of
outliers. It shows that our proposed 2-point algorithm is drastically faster
than the commonly used techniques, at the order of 800, 7800, 860 and 2000
compared to the 4, 5, 7 and 8-point algorithms respectively for 50% of outliers.
Section on real data will compare the execution time of the entire RANSAC
procedure (computation of the associated matrix and count of the number of
inliers).

7.5.2 Indoor sequence

In this experiment, we aim to estimate the camera trajectory for an indoor se-
quence. This sequence is composed of 33 images taken in pure translation with
an interval of 30cm to 50cm between each acquisition (Fig. 24). Pure trans-
lation was preferred simply because it simplifies the measurement of ground
truth motion. .

Before computing the motion, we have to choose a method for features extrac-
tion and matching. Because of the distortions introduced by the mirror, the
analysis of omnidirectional images needs adapted tools [14][24]. However these
methods increase the execution time significantly. Indeed they impose a reg-
ular sampling of the spherical image and require image interpolation. That is
why we cannot use this kind of techniques. As we need a few correspondences
(at least 2) between the images, a classical method of point feature matching
is su±cient. Thus we have simply used SIFT [41]. Even if this method is not
theoretically appropriate to omnidirectional images, experimental results have
shown a very good robustness.
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Whereas it is known there is almost no rotation in our indoor sequence, we
have applied our rotation estimation algorithm to show that our method can
handle this situation correctly. Then we have estimated the translation using
the 2-point algorithm of section 5.2. Let (Pi, P 0

i ), i = 1 · · ·N be N points
matched between two images and ni = RPi£P 0

i . Each vector ni define a great
circle Ci (fig 4) and equation (9) means that all these great circles intersect in
two antipodal points I1, I2 2 S2 and that I1I2 ª T .

(a) (b)

Fig. 24. (a) great circles Ci (red curves) defined from the matching of N feature
points (green dots) between two images of the indoor sequence (b) great circles
defined as inliers by RANSAC. Great circles and feature points have been enlarged
for a better visualization.

Figure 24 shows the translation estimation between two consecutive images of
the sequence. On Fig 24(a), we project the great circles Ci of the N matched
points in the catadioptric images. As these circles do not intersect in the
same points, we can notice several incorrect features matchings. RANSAC
permits to solve this problem and detect the outliers (Fig. 24(b)). To compute
the camera trajectory, we composed the estimated motions estimated at each
frame. Formally, let (Rk, Tk) be the rotation and translation between Ck°1 and
Ck, where Ci is the camera location of the i + 1th image. The camera location
(xk, yk, zk) at Ck is computed by composition:
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The trajectory is expressed with respect to the coordinate system of the first
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camera. Figure 25 shows the estimated camera motion using the proposed
method, which is consistent with the rectilinear ground truth motion.

(a) (b)

(c)

Fig. 25. Motion estimation for the indoor sequence: 3D view (a), top-view (b) and
side-view (c).

7.5.3 Outdoor sequence

This section presents the results of our method in outdoor environment. This
outdoor sequence is composed of 72 frames with an interval of 50-70 cm and
the camera moves along a rough rectilinear path. However, we do not know
the exact trajectory. Figure 26 depicts the extraction of vanishing points for
rotation estimation in this outdoor sequence. Figure 27 shows the evolution of
the camera’s 3D position along the sequence. In the top-view, the estimated
trajectory follows the rough rectilinear path. In the side-view, the altitude
seems to decrease. It is simply due to the fact that the trajectory is expressed
with respect to the coordinate system of the first camera which is not aligned
with the vertical. An interesting fact is that the estimated altitude is linear,
which means the camera’s height is constant. This result is consistent with
the experiment since the camera was attached on a tripod with a fixed height.

Figure 28 compares the execution time for the minimum number of theoretical
RANSAC iterations for 50% of outliers. This execution time contains the entire
RANSAC process: random selection of the N required correspondences, the
computation of the associated matrix (T for 2-point, H for 4-point, E for
5-point and F for 7 and 8-point algorithm) and also the count of the number
of consistent inliers. This graph clearly shows that our proposed method is
greatly faster than traditional 4, 5, 7 and 8-point algorithms and runs in real-
time. It is also interesting to note that figure 22 showed that computing F by
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(a) (b)

Fig. 26. Rotation estimation for the outdoor sequence by vanishing point extraction.
Same legend than figure 19.

(a) (b)

(c)

Fig. 27. Motion estimation for the outdoor sequence: 3D view (a), side-view (b) and
top-view (c).

the 8-point algorithm is faster than computing E by the 5-point algorithm, but
in figure 28 the complete RANSAC procedure is slower for the 8-point than
for the 5-point algorithm. This is due to the fact that the 8-point algorithm
requires much more RANSAC iterations to ensure that at least one sample
has no outliers (cf Table 1). On the contrary, the proposed 2-point algorithm
is not only the fastest to compute T but also requires the lowest number of
RANSAC iterations.

8 Conclusion

In this paper we have presented a new approach for estimating egomotion
in man-made environments by catadioptric vision. The main idea consists in
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Fig. 28. Comparison of execution time in ms (y-axis), in each frame of the sequence,
for the translation estimation by the 2 (our), 4, 5, 7 and 8-point algorithms using the
minimum number of theoretical RANSAC iterations for 50% outliers and applied
for the real outdoor sequence. Refer to text for more details.

decoupling the motion into rotation and translation. The proposed method
for rotation estimation is based on our new line detection algorithm for cata-
dioptric images. We have experimentally demonstrated that extracting lines
and the associated vanishing points can be performed in real-time, and is
accurate and robust to both noise and occlusion. Using line information, we
have also introduced a method that is able to explicitly estimate the absolute
attitude (roll and pitch angles) without error accumulation. It requires the
vertical direction in the image and we have proposed an original algorithm
that can automatically select or compute the vertical from the detected van-
ishing directions. Comparison of attitude estimation with ground truth data
demonstrated the accuracy of our method and the inherent non-accumulation
of error.

Concerning translation estimation, we have introduced a 2-point algorithm for
catadioptric vision. This method oÆers many advantages compared to other
existing methods. First, it can implicitly handle diÆerent scene geometries
(planar/non-planar) contrary to essential/fundamental matrix and homogra-
phy, and thus does not need complicated switching mechanism between E/F
and H. Second, the translation estimation is more robust to noised corre-
spondences thanks to the constraint provided by the rotation. Thus it can
handle not only small displacements but also large rotations and translations.
The third advantage is the fast execution. The fact that only 2 points are re-
quired permits to greatly reduce the number of required RANSAC iterations
to guarantee that at least one sample is free from outliers. We have shown
that the 2-point algorithm requires 4, 9, 35 and 69 times less RANSAC iter-
ations than the 4, 5, 7 and 8-point algorithms for 50% of outliers, speeding
up the RANSAC procedure by at least these orders of comparison. More-
over 3 simple cross-products permit to compute the translation contrary to
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other existing methods (4,5,7,8-point algorithms) that require computation-
ally expensive Singular Value Decomposition. To confirm the validity of our
approach, we have also tested the 2-point algorithm in synthesized and real
data. Experiments have also proved that the 2-point algorithm is more ro-
bust and accurate than essential matrix and homography, even if the rotation
information is noised.

Finally, we would like to add that our work has lead to the development of two
Matlab toolboxes: one for line extraction and one for gyroscope-catadioptric
camera calibration. These toolboxes are now freely available on our website
[7].

A Appendix

A.1 Vanishing points tracking

The correspondence of a vanishing point could disappear for two main reasons:
either a vanishing point is not detected or the matching is not possible. Let
us analyze these two reasons. A vanishing point might be not detected if
its supporting lines are not extracted. For example, the horizontal vanishing
point extracted at the red spot in the “East street” (cf Fig A.1) cannot be
continuously observed when the camera moves to the red spot in the “South
street” simply because the “East street” does not contain any lines in the same
direction than the “South Street”. Inversely, in the middle of the cross-road,
both vanishing points can be observed.

Our approach to handle the visibility of the vanishing points is simple but
e±cient. When a new vanishing point appears (reciprocally disappears), add it
to (reciprocally, remove it from) the list of observed vanishing points. In urban
environments, the change of visibility typically happens at cross-roads and 3
vanishing points are temporarily observable. When two or more vanishing
points are tracked during at least one pair of frames, the rotation can be
estimated.

To concretely explain our approach to handle the visibility of the vanishing
points, we use the following scenario:

• On the figure A.1, let suppose that the camera is located in the South
street and that two vanishing points are observed: the vertical VP and the
vanishing point associated to the South Street. In this simple case, the
rotation can be estimated using the 2 VPs contained in the VP list.

• When the camera moves from the red spot of the ”South street” to the
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intersection of the South and East street, the vanishing point associated to
the East street appears and is added to the list of the observed vanishing
points. Thus the list now contains 3 VPs: the vertical, the South and the
East directions. When the VP of the East street is observed for the very
first time, it has no correspondence (not yet tracked) and thus is not used
to estimate the rotation, i.e. the rotation is computed using the vertical
VP and the South direction. When the VP of the East street becomes to
be tracked, the rotation can be estimated using the 3 vanishing directions.
Note that this last case may occur only for a limited number of frames.

• Finally, when the camera moves inside the East street, the VP associated
to the South street becomes unobservable and is removed from the VP list.
Thus, the rotation is estimated using the vertical and the east directions.

Fig. A.1. Cross-road is a typical location where a vanishing point ap-
pears/disappears. This change of observability must be handle to estimate the ro-
tation from the vanishing points.

A.2 Orientation of translation

Figure A.2 geometrically explains the sign constraint of the “scalar triple
product”. All the valid P 0 (displayed in blue rays) verify the constraint: (RP£
P 0).(RP £ T ) < 0. If T does not verify this constraint, then °T is selected.
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from video. In Computational Geometry, volume 15, pages 3–23, 2000.

[18] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
In Communications of the ACM, volume 24, pages 1769–1786, 1981.

[19] Andrew W. Fitzgibbon and Robert B. Fisher. A buyer’s guide to conic fitting.
In Proceedings of the British conference on Machine vision (BMVC’95), pages
513–522.

[20] J.M. Frahm and M. Pollefeys. Ransac for (quasi-)degenerate data (qdegsac).
In Proc Conference on Computer Vision and Pattern Recognition (CVPR06),
pages 453–460, 2006.

[21] C. Geyer and K. Daniilidis. Catadioptric projective geometry. International

Journal of Computer Vision (IJCV’01), 45(3):223–243.

[22] C. Geyer and K. Daniilidis. Structure and motion from uncalibrated
catadioptric views. Proc. of IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’01), pages 279–286, 2001.

[23] J. Gluckman and S. K. Nayar. Ego-motion and omnidirectional cameras. In
Proc. International Conference on Computer Vision (ICCV98), pages 999–
1005, 1998.

[24] P. Hansen, P. Corke, W. Boles, and K. Daniilidis. Scale-invariant features on
the sphere. In Proc International Conference on Computer Vision (ICCV07),
pages 1–8, 2007.

[25] C. Harris and M. Stephens. In Proceedings of The Fourth Alvey Vision

Conference, pages 147–151.

42



[26] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition, 2004.

[27] B. He, D. Wang, M. Pham, and T. Yu. Gps/encoder based precise navigation for
a 4ws mobile robot. Proc. of International Conference on Control, Automation,

Robotics and Vision (ICARCV’02), 2002.

[28] B. K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America. A, 4(4):629–642, Apr
1987.

[29] P. J. Huber. Robust Statistics. Wiler, New York, 1981.

[30] A. Jennings and J.J. McKeown. Matrix Computation. John Wiley & Sons,
second edition edition, 1992.

[31] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson. Advances
in cooperative multi-sensor video surveillance. Proc. of Darpa Image

Understanding Workshop, pages 3–24, 1998.

[32] Ghader Karimian, Abolghasem A. Raie, and Karim Faez. A new e±cient
stereo line segment matching algorithm based on more eÆective usage of the
photometric, geometric and structural information. IEICE - Transactions on

Information and Systems, E89-D(7):2012–2020, 2006.

[33] J.W. Lee, S. You, and U. Neumann. Large motion estimation for
omnidirectional vision. In Proc IEEE Workshop on Omnidirectional Vision

(OMNIVIS00), pages 161–168, 2000.

[34] T. Lemaire and S. Lacroix. Monocular-vision based slam using line
segments. Proc. of IEEE International Conference on Robotics and Automation

(ICRA07), pages 2791–2796, 2007.

[35] J.P. Lewis. Fast normalized cross-correlation. In Vision Interface, pages 120–
123. Canadian Image Processing and Pattern Recognition Society, 1995.

[36] M. Lhuillier. EÆective and generic structure from motion using angular error.
Proc. of International Conference on Pattern Recognition (ICPR06), pages 67–
70, 2006.

[37] M. Lhuillier. Automatic scene structure and camera motion using a catadioptric
system. Computer Vision and Image Understanding (CVIU’08), 109(2):186–
203, 2008.

[38] M. Lhuillier and L. Quan. Match propagation for image-based modeling and
rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(8):1140–1146, 2002.

[39] S. Li. Estimating head orientation based upon sky-ground representation. In
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS’05), pages 580–585, 2005.

43



[40] J. Lobo and J. Dias. Relative pose calibration between visual and inertial
sensors. The International Journal of Robotics Research (IJRS’07), 26(6):561–
575, 2007.

[41] D. Lowe. Distinctive image features from scale-invariant keypoints. In
International Journal of Computer Vision, volume 20, pages 91–110, 2003.

[42] J. Luo and M. Boutell. Automatic image orientation detection via confidence-
based integration of low-level and semantic cues. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI’05), 27:715–726.

[43] M. J. Magee and J. K. Aggarwal. Determining vanishing points from perspective
images. Proc Computer Vision, Graphics and Image Processing, pages 256–267,
1984.

[44] A. Makadia, C. Geyer, and K. Daniilidis. Correspondence-free structure from
motion. In International Journal of Computer Vision (IJCV’07), volume 75,
pages 311–327, 2007.

[45] E. Malis and E. Marchand. Experiments with robust estimation techniques
in real-time robot vision. In Proceedings of the International Conference on

Intelligent Robots and Systems (IROS’06), pages 223–228, 2006.

[46] C. Mei, S. Benhimane, E. Malis, and P. Rives. Homography-based tracking for
central catadioptric cameras. In Proceedings of the International Conference on

Intelligent Robots and Systems (IROS’06), pages 669–674, 2006.

[47] B. Micusik and T. Pajdla. Structure from motion with wide circular field of
view cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI’06), 28(7):1135–1149, 2006.

[48] P. C. Naval, M. Mukunoki, M. Minoh, and K. Ikeda. Estimating camera
position and orientation from geographical map and mountain image. In 38th

Research Meeting of the Pattern Sensing Group, Society of Instrument and

Control Engineers, pages 9–16, 1997.

[49] D. Nistér. Preemptive ransac for live structure and motion estimation. In Proc.

International Conference on Computer Vision (ICCV’03, volume 1, page 199,
2003.

[50] D. Nistér. An e±cient solution to the five-point relative pose problem. In
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI’04),
volume 26, pages 756–777, 2004.

[51] L. Quan and R. Mohr. Determining perspective structures using hierarchical
hough transform. In Pattern Recognition Letters (PRL’89), 9(4):279–286, 1989.

[52] O. Shakernia, R. Vidal, and S. Sastry. Omnidirectional egomotion estimation
from back-projection flow. In Proc IEEE Workshop on Omnidirectional Vision

(OMNIVIS03), page 3, 2003.

[53] J. A. Shufelt. Performance evaluation and analysis of vanishing point detection
techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI’99), 21(3):282–288, 1999.

44



[54] T. Svoboda, T. Pajdla, and V. Hlaváč. Motion estimation using panoramic
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