N. Bailey, The Elements of Stochastic Processes with Applications to the Natural Sciences, 1963.

S. Bengtsson, J. Hallquist, A. Werker, and T. Welander, Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production, Biochemical Engineering Journal, vol.40, issue.3, pp.492-499, 2008.
DOI : 10.1016/j.bej.2008.02.004

F. Campillo and C. Fritsch, Weak Convergence of a Mass-Structured Individual-Based Model, Applied Mathematics & Optimization, vol.12, issue.6, pp.37-7375, 2015.
DOI : 10.1007/s00245-014-9271-3

URL : https://hal.archives-ouvertes.fr/hal-01090727

F. Campillo, N. Champagnat, and C. Fritsch, Variation of invasion fitness A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stochastic Processes and their Applications, pp.1127-1160, 2006.

N. Champagnat, R. Ferrì-ere, and S. Méléard, Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations, Seminar on Stochastic Analysis, pp.75-114, 2005.
DOI : 10.1007/978-3-7643-8458-6_6

URL : https://hal.archives-ouvertes.fr/hal-00011146

N. Champagnat, P. Jabin, and S. Méléard, Adaptation in a stochastic multi-resources chemostat model, Journal de Math??matiques Pures et Appliqu??es, vol.101, issue.6, pp.755-788, 2014.
DOI : 10.1016/j.matpur.2013.10.003

URL : https://hal.archives-ouvertes.fr/hal-00784166

D. Deangelis and L. Gross, Individual-based models and approaches in ecology: populations, communities and ecosystems, 1992.
DOI : 10.1007/978-1-4757-0869-1

M. Demazure, Bifurcations and catastrophes : geometry of solutions to nonlinear problems, TIT) Géométrie-catastrophes et bifurcations, 2000.
DOI : 10.1007/978-3-642-57134-3

U. Dieckmann and R. Law, The dynamical theory of coevolution: a derivation from stochastic ecological processes, Journal of Mathematical Biology, vol.39, issue.5-6, pp.579-612, 1996.
DOI : 10.1007/BF02409751

M. Doebeli, A model for the evolutionary dynamics of cross-feeding polymorphisms in microorganisms, Population Ecology, vol.44, issue.2, pp.59-70, 2002.
DOI : 10.1007/s101440200008

M. Doumic, Analysis of a Population Model Structured by the Cells Molecular Content, Mathematical Modelling of Natural Phenomena, vol.2, issue.3, pp.121-152, 2007.
DOI : 10.1051/mmnp:2007006

URL : https://hal.archives-ouvertes.fr/hal-00327131

M. Doumic, M. Hoffmann, N. Krell, and L. Robert, Statistical estimation of a growthfragmentation model observed on a genealogical tree, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01102799

D. Jauffret, M. Gabriel, and P. , EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL, Mathematical Models and Methods in Applied Sciences, vol.20, issue.05, pp.757-783, 2010.
DOI : 10.1142/S021820251000443X

URL : https://hal.archives-ouvertes.fr/hal-00408088

J. Engländer and A. Kyprianou, Local extinction versus local exponential growth for spatial branching processes, Ann Probab, vol.32, issue.1A, pp.78-99, 2004.

A. Fredrickson, D. Ramkrishna, and H. Tsuchiya, Statistics and dynamics of procaryotic cell populations, Mathematical Biosciences, vol.1, issue.3, pp.327-374, 1967.
DOI : 10.1016/0025-5564(67)90008-9

C. Fritsch, Approches probabilistes et numériques de modèles individus-centrés du chemostat, Thèse, 2014.

C. Fritsch, F. Campillo, and O. Ovaskainen, Numerical analysis of invasion in a chemostat, 2015.

C. Fritsch, J. Harmand, and F. Campillo, A modeling approach of the chemostat, Ecological Modelling, vol.299, issue.0, pp.1-13, 2015.
DOI : 10.1016/j.ecolmodel.2014.11.021

URL : https://hal.archives-ouvertes.fr/hal-01090651

S. Geritz, E. Ksidi, G. Meszéna, and J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, vol.34, issue.1, pp.35-57, 1998.
DOI : 10.1023/A:1006554906681

J. Gillepsie, A simple stochastic gene substitution model, Theoretical Popoulation Biology, vol.23, p.202, 1983.

S. Hsu, S. Hubbell, and P. Waltman, A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of Micro-Organisms, SIAM Journal on Applied Mathematics, vol.32, issue.2, pp.366-383, 1977.
DOI : 10.1137/0132030

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 1981.

M. Jacobsen, Point process theory and applications. Probability and its Applications, 2006.

J. Kuenen and O. Johnson, Continuous cultures (chemostats) In: Schaechter M (ed) Desk Encyclopedia Of Microbiology, pp.309-326, 2009.

S. Méléard and V. Tran, Trait Substitution Sequence process and Canonical Equation for age-structured populations, Journal of Mathematical Biology, vol.12, issue.8, pp.881-921, 2009.
DOI : 10.1007/s00285-008-0202-2

J. Metz, R. Nisbet, and S. Geritz, How should we define ???fitness??? for general ecological scenarios?, Trends in Ecology & Evolution, vol.7, issue.6, pp.198-202, 1992.
DOI : 10.1016/0169-5347(92)90073-K

J. Metz, S. Geritz, G. Meszéna, F. Jacobs, and J. Van-heerwaarden, Adaptive dynamics: A geometric study of the consequences of nearly faithful reproduction Stochastic and spatial structures of dynamical systems, pp.183-231, 1995.

S. Mirrahimi, B. Perthame, and J. Wakano, Evolution of species trait through resource competition, Journal of Mathematical Biology, vol.13, issue.2, pp.1189-1223, 2012.
DOI : 10.1007/s00285-011-0447-z

URL : https://hal.archives-ouvertes.fr/hal-00566888

J. Monod, LA TECHNIQUE DE CULTURE CONTINUE TH??ORIE ET APPLICATIONS, Annales de l'Institut Pasteur, vol.79, issue.4, pp.390-410, 1950.
DOI : 10.1016/B978-0-12-460482-7.50023-3

A. Novick and L. Szilard, Description of the Chemostat, Science, vol.112, issue.2920, pp.715-716, 1950.
DOI : 10.1126/science.112.2920.715

P. Protter, Stochastic integration and differential equations1) edn The Theory of the Chemostat: Dynamics of Microbial Competition, Applications of Mathematics Waltman PE, vol.21, issue.2, 1995.

V. Tran, Large population limit and time behaviour of a stochastic particle model describing an age-structured population, ESAIM: Probability and Statistics, vol.12, pp.345-386, 2008.
DOI : 10.1051/ps:2007052

URL : https://hal.archives-ouvertes.fr/hal-00122191

L. Wick, H. Weilenmann, and T. Egli, The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics, Microbiology, vol.148, issue.9, pp.2889-2902, 2002.
DOI : 10.1099/00221287-148-9-2889