A classification of ${\mathbb C}$-Fuchsian subgroups of Picard modular groups

Abstract : Given an imaginary quadratic extension $K$ of $\mathbb Q$, we give a classification of the maximal nonelementary subgroups of the Picard modular group $PSU_{1,2}({\mathcal O}_K)$ preserving a complex geodesic in the complex hyperbolic plane ${\mathbb H}^2_{\mathbb C}$. Complementing work of Holzapfel, Chinburg-Stover and M\"oller-Toledo, we show that these maximal ${\mathbb C}$-Fuchsian subgroups are arithmetic, arising from a quaternion algebra $\Big(\!\begin{array}{c} D\,,D_K\\\hline{\mathbb Q}\end{array} \!\Big)$ for some explicit $D\in{\mathbb N}-\{0\}$ and $D_K$ the discriminant of $K$. We thus prove the existence of infinitely many orbits of $K$-arithmetic chains in the hypersphere of ${\mathbb P}_2({\mathbb C})$.
Liste complète des métadonnées

Contributeur : Frédéric Paulin <>
Soumis le : vendredi 25 septembre 2015 - 09:00:46
Dernière modification le : samedi 18 février 2017 - 01:11:04


  • HAL Id : hal-01205177, version 1
  • ARXIV : 1503.05801



Jouni Parkkonen, Frédéric Paulin. A classification of ${\mathbb C}$-Fuchsian subgroups of Picard modular groups. 2015. <hal-01205177>



Consultations de la notice