E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

A. De-koning, W. Gu, T. A. Castoe, M. A. Batzer, and D. D. Pollock, Repetitive elements may comprise over two-thirds of the human genome, PLoS Genet, vol.7, 2011.

T. J. Wheeler, J. Clements, S. R. Eddy, R. Hubley, T. A. Jones et al., Dfam: a database of repetitive DNA based on profile hidden Markov models, Nucleic Acids Res, vol.41, pp.70-82, 2013.

P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei et al., The B73 maize genome: complexity, diversity, and dynamics, Science, vol.326, pp.1112-1115, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00751527

S. Solyom and H. H. Kazazian, Mobile elements in the human genome: implications for disease, Genome Med, vol.4, p.12, 2012.

H. H. Kazazian, Mobile elements: drivers of genome evolution, Science, vol.303, pp.1626-1658, 2004.

R. Cordaux and M. A. Batzer, The impact of retrotransposons on human genome evolution, Nat Rev Genet, vol.10, pp.691-703, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419189

F. Maumus and H. Quesneville, Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter, PLoS One, vol.9, p.94101, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636753

W. D. Gifford, S. L. Pfaff, and T. S. Macfarlan, Transposable elements as genetic regulatory substrates in early development, Trends Cell Biol, 2013.

D. R. Lisch and J. L. Bennetzen, Transposable element origins of epigenetic gene regulation, Curr Opin Plant Biol, vol.14, pp.156-61, 2011.

D. R. Hoen and T. E. Bureau, Plant transposable elements, pp.219-251, 1924.

J. Volff, Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, Bioessays, vol.28, pp.913-935, 2006.

D. R. Hoen and T. E. Bureau, Discovery of novel genes derived from transposable elements using integrative genomic analysis, Mol Biol Evol, vol.32, pp.1487-1506, 2015.

Y. Li, C. Li, J. Xia, and Y. Jin, Domestication of transposable elements into MicroRNA genes in plants, PLoS One, vol.6, 2011.

D. Kelley and J. Rinn, Transposable elements reveal a stem cell-specific class of long noncoding RNAs, Genome Biol, vol.13, p.107, 2012.

A. Kapusta, Z. Kronenberg, V. J. Lynch, X. Zhuo, L. Ramsay et al., Transposable elements Are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs, PLoS Genet, vol.9, p.1003470, 2013.

P. Jacques, J. Jeyakani, and G. Bourque, The majority of primate-specific regulatory sequences are derived from transposable elements, PLoS Genet, vol.9, 2013.

V. Sundaram, Y. Cheng, Z. Ma, D. Li, X. Xing et al., Widespread contribution of transposable elements to the innovation of gene regulatory networks, Genome Res, vol.24, pp.1963-76, 2014.

T. Wicker, F. Sabot, A. Hua-van, J. L. Bennetzen, P. Capy et al., A unified classification system for eukaryotic transposable elements, Nat Rev Genet, vol.8, pp.973-82, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

V. V. Kapitonov and J. Jurka, A universal classification of eukaryotic transposable elements implemented in Repbase, Nat Rev Genet, vol.9, pp.411-413, 2008.

H. Quesneville, C. M. Bergman, O. Andrieu, D. Autard, D. Nouaud et al., Combined evidence annotation of transposable elements in genome sequences, PLoS Comput Biol, vol.1, pp.166-75, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000104

T. T. Hu, P. Pattyn, E. G. Bakker, J. Cao, J. Cheng et al., The Arabidopsis lyrata genome sequence and the basis of rapid genome size change, Nat Genet, vol.43, pp.476-81, 2011.

C. M. Bergman and H. Quesneville, Discovering and detecting transposable elements in genome sequences, Brief Bioinformatics, vol.8, pp.382-92, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02665779

E. Lerat, Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs, Heredity, vol.104, pp.520-553, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539329

T. Flutre, E. Permal, and H. Quesneville, Plant transposable elements, pp.17-39, 1924.

S. Saha, S. Bridges, Z. V. Magbanua, and D. G. Peterson, Computational approaches and tools used in identification of dispersed repetitive DNA sequences, Tropical Plant Biol, vol.1, pp.85-96, 2008.

A. Caspi and L. Pachter, Identification of transposable elements using multiple alignments of related genomes, Genome Res, vol.16, pp.260-70, 2006.

M. El-baidouri, K. D. Kim, B. Abernathy, S. Arikit, F. Maumus et al., A new approach for annotation of transposable elements using small RNA mapping, Nucleic Acids Res, p.257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01215276

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res, vol.27, pp.573-80, 1999.

A. Smit and R. Hubley, , 2010.

Z. Bao and S. R. Eddy, Automated de novo identification of repeat sequence families in sequenced genomes, Genome Res, vol.12, pp.1269-76, 2002.

A. L. Price, N. C. Jones, and P. A. Pevzner, De novo identification of repeat families in large genomes, Bioinformatics, vol.21, issue.1, pp.351-359, 2005.

Z. Xu and H. Wang, LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons, Nucleic Acids Res, vol.35, pp.265-273, 2007.

E. M. Mccarthy and J. F. Mcdonald, LTR_STRUC: a novel search and identification program for LTR retrotransposons, Bioinformatics, vol.19, pp.362-369, 2003.

Y. Han and S. R. Wessler, MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences, Nucleic Acids Res, vol.38, pp.199-208, 2010.

C. Feschotte, U. Keswani, N. Ranganathan, M. L. Guibotsy, and D. Levine, Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes, Genome Biol Evol, vol.1, pp.205-225, 2009.

J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase update, a database of eukaryotic repetitive elements, Cytogenet Genome Res, vol.110, pp.462-469, 2005.

A. Smit, R. Hubley, and P. Green, , 1996.

O. Kohany, A. J. Gentles, L. Hankus, and J. Jurka, Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor, BMC Bioinformatics, vol.7, p.474, 2006.

P. Green and . Cross_match,

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, pp.403-413, 1990.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., BLAST+: architecture and applications, BMC Bioinformatics, vol.10, issue.1, p.421, 2009.

T. J. Wheeler and S. R. Eddy, nhmmer: DNA homology search with profile HMMs, Bioinformatics, vol.29, pp.2487-2496, 2013.

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element diversification in de novo annotation approaches, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00956366

R. Li, J. Ye, S. Li, J. Wang, Y. Han et al., ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun, PLoS Comput Biol, vol.1, pp.313-334, 2005.

J. D. Debarry, R. Liu, and J. L. Bennetzen, Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the assisted automated assembler of repeat families (AAARF) algorithm, BMC Bioinformatics, vol.9, p.235, 2008.

T. M. Keane, K. Wong, and D. J. Adams, RetroSeq: transposable element discovery from next-generation sequencing data, Bioinformatics, vol.29, pp.389-90, 2013.

M. Zytnicki, E. Akhunov, and H. Quesneville, Tedna: a transposable element de novo assembler, Bioinformatics, vol.30, pp.2656-2664, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02630617

P. Koch, M. Platzer, and B. R. Downie, RepARK-de novo creation of repeat libraries from whole-genome NGS reads, Nucleic Acids Res, vol.42, pp.210-80, 2014.

F. Barrón, M. G. Petrov, D. A. González, and J. , T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data, Nucleic Acids Res, vol.43, pp.22-24, 2015.

S. Ouyang and C. Buell, The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants, Nucleic Acids Res, vol.32, pp.360-363, 2004.

S. Saha, S. Bridges, Z. V. Magbanua, and D. G. Peterson, Empirical comparison of ab initio repeat finding programs, Nucleic Acids Res, vol.36, pp.2284-94, 2008.

R. Ragupathy, F. M. You, and S. Cloutier, Arguments for standardizing transposable element annotation in plant genomes, Trends Plant Sci, 2013.

K. R. Bradnam, J. N. Fass, A. Alexandrov, P. Baranay, M. Bechner et al., Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species, Gigascience, vol.2, p.10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868822

S. Balaji, S. Sujatha, S. S. Kumar, and N. Srinivasan, PALI-a database of Phylogeny and ALIgnment of homologous protein structures, Nucleic Acids Res, vol.29, pp.61-66, 2001.

I. Van-walle, I. Lasters, and L. Wyns, SABmark-a benchmark for sequence alignment that covers the entire known fold space, Bioinformatics, vol.21, pp.1267-1275, 2005.

J. D. Thompson, P. Koehl, R. Ripp, and O. Poch, BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark, Proteins, vol.61, pp.127-163, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187785

A. Talwalkar, J. Liptrap, J. Newcomb, C. Hartl, J. Terhorst et al., SMaSH: a benchmarking toolkit for human genome variant calling, Bioinformatics, vol.30, pp.2787-2795, 2014.

S. Y. Kim and T. P. Speed, Comparing somatic mutation-callers: beyond Venn diagrams, BMC Bioinformatics, vol.14, p.189, 2013.

P. C. Boutros, A. A. Margolin, J. M. Stuart, A. Califano, and G. Stolovitzky, Toward better benchmarking: challenge-based methods assessment in cancer genomics

, Genome Biol, vol.15, p.462, 2014.

J. Moult, A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction, Curr Opin Struct Biol, vol.15, pp.285-294, 2005.

W. F. Doolittle and C. Sapienza, Selfish genes, the phenotype paradigm and genome evolution, Nature, vol.284, pp.601-604, 1980.

A. F. Smit, The origin of interspersed repeats in the human genome, Curr Opin Genet Dev, vol.6, pp.743-751, 1996.

V. V. Kapitonov and J. Jurka, Rolling-circle transposons in eukaryotes, Proc Natl Acad Sci U S A, vol.98, pp.8714-8723, 2001.

N. Jiang, Z. Bao, X. Zhang, S. R. Eddy, and S. R. Wessler, Pack-MULE transposable elements mediate gene evolution in plants, Nature, vol.431, pp.569-73, 2004.

N. Juretic, D. R. Hoen, M. L. Huynh, P. M. Harrison, and T. E. Bureau, The evolutionary fate of MULE-mediated duplications of host gene fragments in rice

, Genome Res, vol.15, pp.1292-1299, 2005.

M. Morgante, S. Brunner, G. Pea, K. Fengler, A. Zuccolo et al., Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize, Nat Genet, vol.37, pp.997-1002, 2005.

E. J. Pritham and C. Feschotte, Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus, Proc Natl Acad Sci, vol.104, pp.1895-900, 2007.

L. Yang and J. L. Bennetzen, Distribution, diversity, evolution, and survival of Helitrons in the maize genome, Proc Natl Acad Sci, vol.106, pp.19922-19929, 2009.

J. Thomas, K. Vadnagara, and P. , DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (helentrons), Mob DNA, vol.5, p.18, 2014.

R. C. Edgar, G. Asimenos, S. Batzoglou, A. Sidow, and . Evolver,

S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch et al., Human-mouse alignments with BLASTZ, Genome Res, vol.13, issue.1, pp.103-110, 2003.

M. C. Frith, Y. Park, S. L. Sheetlin, and J. L. Spouge, The whole alignment and nothing but the alignment: the problem of spurious alignment flanks, Nucleic Acids Res, vol.36, pp.5863-71, 2008.

J. Caballero, A. Smit, L. Hood, and G. Glusman, Realistic artificial DNA sequences as negative controls for computational genomics, Nucleic Acids Res, vol.42, pp.99-108, 2014.

H. L. Levin and J. V. Moran, Dynamic interactions between transposable elements and their hosts, Nat Rev Genet, vol.12, pp.615-642, 2011.

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle et al., The human genome browser at UCSC, Genome Res, vol.12, issue.6, pp.996-1006, 2002.

A. Haudry, A. E. Platts, E. Vello, D. R. Hoen, M. Leclercq et al., An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions, Nat Genet, vol.45, pp.891-899, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01907704

N. De-la-chaux, T. Tsuchimatsu, K. K. Shimizu, and A. Wagner, The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata, Mob DNA, vol.3, issue.2, 2012.

D. Ellinghaus, S. Kurtz, and U. Willhoeft, LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons, BMC Bioinformatics, vol.9, p.18, 2008.

A. A. Salamov and V. V. Solovyev, Ab initio gene finding in Drosophila genomic DNA, Genome Res, vol.10, pp.516-538, 2000.

J. Cai, X. Liu, K. Vanneste, S. Proost, W. Tsai et al., The genome sequence of the orchid Phalaenopsis equestris, Nat Genet, vol.47, issue.1, pp.65-72, 2015.

P. Xu, X. Zhang, X. Wang, J. Li, G. Liu et al., Genome sequence and genetic diversity of the common carp, Cyprinus carpio, Nat Genet, vol.46, pp.1212-1221, 2014.

E. B. Rondeau, D. R. Minkley, J. S. Leong, A. M. Messmer, J. R. Jantzen et al., The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei, PLoS One, vol.9, issue.7, 2014.

M. Wang, Y. Yu, G. Haberer, P. R. Marri, C. Fan et al., The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication, Nat Genet, vol.46, issue.9, pp.982-990, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02099904

, Marmoset Genome Sequencing and Analysis Consortium. The common marmoset genome provides insight into primate biology and evolution, Nat Genet, vol.46, pp.850-857, 2014.

F. Li, G. Fan, K. Wang, F. Sun, Y. Yuan et al., Genome sequence of the cultivated cotton Gossypium arboreum, Nat Genet, vol.46, issue.6, pp.567-72, 2014.

N. Sierro, J. Battey, S. Ouadi, N. Bakaher, L. Bovet et al., The tobacco genome sequence and its comparison with those of tomato and potato, Nat Commun, vol.5, p.3833, 2014.

. International-glossina-genome-initiative, Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis, Science, vol.344, pp.380-386, 2014.

C. Berthelot, F. Brunet, D. Chalopin, A. Juanchich, M. Bernard et al., The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates, Nat Commun, vol.5, p.3657, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193812

B. Wang, R. Ekblom, I. Bunikis, H. Siitari, and J. Höglund, Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution, BMC Genomics, vol.15, p.180, 2014.

J. L. Wegrzyn, J. D. Liechty, K. A. Stevens, L. Wu, C. A. Loopstra et al., Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation, Genetics, vol.196, issue.3, pp.891-909, 2014.

W. Wang, G. Haberer, H. Gundlach, C. Gläßer, T. Nussbaumer et al., The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle, Nat Commun, vol.5, 2014.

S. Chen, G. Zhang, C. Shao, Q. Huang, G. Liu et al., Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle, Nat Genet, vol.46, issue.3, pp.253-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637825

C. Qin, C. Yu, Y. Shen, X. Fang, L. Chen et al., Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization, Pnas, vol.111, issue.14, pp.5135-5175, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02640860

S. Kim, M. Park, S. Yeom, Y. Kim, J. M. Lee et al., Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species, Nat Genet, vol.46, issue.3, pp.270-278, 2014.

D. Zhou, D. Zhang, G. Ding, L. Shi, Q. Hou et al., Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites, BMC Genomics, vol.15, issue.1, p.42, 2014.

, Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar ? Research which is freely available for redistribution Submit your manuscript at www