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A multi-observer approach for the state estimation of nonlinear systems

Romain Postoyan, Mohammed H.A. Hamid, and Jamal Daafouz

Abstract— We present a prescriptive approach for the state
estimation of nonlinear systems. We first assume that we know
a local observer, i.e. a dynamical system whose state converges
to the plant state when it is initialized nearby the plant initial
condition. We sample the set where the plant initial condition is
assumed to lie with a finite number of points; noting that this
set can be arbitrarily large. A local observer is initialized at
each of these sampled points to form a bank of observers called
multi-observer. A supervisor is then constructed to selectone of
these observers at any time instant. The selected state estimate
is guaranteed to converge to the state of the plant, provided
the number of samples is sufficiently large and a detectability
property holds, which is expressed in terms of Lyapunov-based
conditions. An explicit lower bound on the required number of
observers is given when an estimate of the basin of convergence
of the local observer is available. We explain how to apply
the approach to nonlinear systems with globally Lipschitz and
differentiable nonlinearities. Simulations results are presented
for a Wilson-Cowan oscillator.

I. I NTRODUCTION

The design of global observers for nonlinear systems is
a difficult task in general and available techniques apply to
specific classes of systems. Local observers, on the other
hand, are usually easier to construct. In this case, we are only
interested in the behaviour of the estimation error around the
origin. We can thus use first order approximations to analyze
it, when the involved vector fields are sufficiently smooth.
This leads to a time-varying dynamical system which is
linear in the estimation error and hence easier to analyze in
general. Various methods have been proposed in the literature
to construct local observers, see e.g., [1], [3], [4], [12],[16],
[19].

The main drawback of local observers is that they must be
initialized nearby the initial condition of the system to work
efficiently. However, we do not know the initial condition
of the plant, it may therefore be difficult to guarantee this
requirement in practice. The aim of this paper is to present
a method to overcome this limitation. We consider general
nonlinear systems, for which it is assumed that we know a
local observer. Any of the techniques cited above can be
applied at this step to synthesize the local observer. We
assume that the initial condition of the plant lies in a known
compact setH. There is no restriction of the ‘size’ of this
set, it can therefore be taken arbitrarily large if needed.
We then sample the compact set withN points, and we
initialize N versions of the same local observer at each
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of these points. The sampling ofH has to be such that at
least one observer has its initial condition nearby the initial
condition of the plant by takingN sufficiently large. We then
design a suitable criterion to select a single observer at any
time instant, and we define the state estimate of the overall
scheme to be the estimate provided by this observer. The
convergence of the selected estimate is guaranteed, provided
N is sufficiently large and a detectability condition for the
state estimation error system holds, which is related to the
concept of output-to-state stability [15].

The proposed technique is inspired by the supervisory
control framework, see e.g., [6], [8], [9], [10]. Indeed, like
in works on supervisory control, the scheme consists of a
multi-estimator and a supervisor, which selects one of the
observers at each time instant. However, none of the results
on supervisory control applies to our problem as, on the one
hand, their purpose is to stabilize the origin of the system,
and, on the other hand, they typically assume the knowledge
of a global estimator that converges to the trajectory of the
system when there is no parametric uncertainty, which is
very different from the scope of this paper. The supervisory
approach has recently been extended for the estimation
of the states and the parameters of nonlinear systems in
[2]. It is assumed in [2] that a global state estimator can
be constructed when the system parameters are known. A
method is then proposed to also estimate the parameters on-
line. We therefore address a different objective compared to
[2], namely the state estimation of nonlinear systems, and
we resort to different assumptions, techniques and analysis.

The presented approach is prescriptive. We explain how to
apply it to a class of globally Lipschitz nonlinear systems as
an example. We provide conditions using matrix inequalities,
which guarantee the satisfaction of the assumptions needed
for the estimation scheme to work. It has to be noted that the
idea to use multiple versions of the same observer initialized
at different values reminds of nonlinear filtering techniques,
such as particle filters ([13]) or unscented Kalman filters ([7])
for instance, which are often applied in applications, but for
which there is no convergence guarantee in general.

The paper is organised as follows. The estimation scheme
is presented in Section II and the convergence guarantees
are stated in Section III. We explain how to apply the
approach to a class of nonlinear systems in Section IV, and
we present simulations results for a Wilson-Cowan model
[18] in Section V. Section VI concludes the paper. The
proofs are omitted for space reasons.

Notation. Let R := (−∞,∞), R≥0 := [0,∞), R>0 :=
(0,∞), Z := {. . . ,−2,−1, 0, 1, 2, . . .}, and Z>0 :=



{1, 2, . . .}. For (x, y) ∈ R
n+m, (x, y) stands for[xT, yT]

T
.

The notationLpc
∞ denotes the set of piecewise continuous

functions f : R≥0 → R
n, n ∈ Z>0, such that‖f‖∞ :=

sup
τ≥0

|f(τ)| < r, with r ∈ R≥0. Let x ∈ R
nx , |x| and |x|∞

respectively stand for the Euclidean norm and the infinity
norm of x. We use⌈x⌉ to denotemin{n ∈ Z : x ≤ n}
for x ∈ R. Let P ∈ R

n×n be a real, symmetric matrix, we
respectively denote its maximum and minimum eigenvalues
by λmax(P ) andλmin(P ). The notationI denotes the identity
matrix, whose dimensions depend on the context. LetA be
a real matrix,|A| is the spectral norm ofA, i.e. |A| :=√
λmax(ATA). A function γ : R≥0 → R≥0 is of class

K if it is continuous, zero at zero and strictly increasing,
and it is of classK∞, if, in addition, it is unbounded. A
continuous functionγ : R2

≥0 −→ R≥0 is of classKL if for
eacht ∈ R≥0, γ(·, t) is of classK, and, for eachs ∈ R≥0,
γ(s, ·) is decreasing to zero.

II. ESTIMATION SCHEME

The estimation scheme is inspired by works on supervisory
control (e.g., [6], [8], [9], [10]). It consists of a bank of
local observers, calledmulti-observer, and asupervisor, as
depicted in Figure 1. We present each of these components
in this section.

.
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Fig. 1. Estimation scheme.

A. Local observer

Consider the system

ẋ = f(x, u)
y = h(x),

(1)

wherex ∈ R
nx is the state,u ∈ R

nu is a vector of known
inputs, y ∈ R

ny is the measured output, andnx, nu, ny ∈
Z>0. The objective is to estimate the statex. We require for
this purpose that system (1) verifies the conditions below.

Assumption 1:The following holds.
(i) The initial condition to (1) lies in a known compact

setH.
(ii) For any initial conditionx0 ∈ H, and any inputu ∈

Lpc
∞, system (1) generates a unique solution, which is

defined for all positive times.

(iii) The mappingh is continuous. �

Item (i) of Assumption 1 requires some prior knowledge
of the initial condition of system (1), which is the case for
all stochastic Kalman filtering techniques for instance. Ithas
to be emphasized that there is no restriction on the ‘size’ of
the setH, as it can be taken arbitrarily large. That implies
that, when the solutions to (1) are known to take value
in a compact operating region, we can defineH as being
this region for example. Items (ii)-(iii) of Assumption 1 are
reasonable as these hold for many physical and biological
systems.

We assume that we know a local observer for system (1)
of the form

˙̂x = f̂(x̂, u, y)
ŷ = h(x̂),

(2)

where x̂ ∈ R
nx is the estimated state,̂y ∈ R

ny is
the estimated output. In particular, we make the following
assumption.

Assumption 2:The following holds.

(i) There exists a neighborhoodB of the origin of Rnx

such that for any initial conditionsx0 ∈ H and x̂0 ∈
R

nx of, respectively, systems (1) and (2), for anyu ∈
Lpc
∞, if x0 − x̂0 ∈ B, then the corresponding solutions

to (1) and (2) are such that|x(t)−x̂(t)| → 0 ast → ∞.
(ii) For any initial condition x̂0 ∈ R

nx , for any u, y ∈
Lpc
∞, the corresponding solution to (2) is unique and is

defined for all positive times. �

Item (i) of Assumption 2 means that the state of a solution
to system (2) converges to the state of the solution to system
(1) provided their initial conditions are sufficiently close to
each other. There exists several methods in the literature to
design local observers, i.e. to ensure Assumption 2, see e.g.,
[1], [3], [4], [12], [16], [19]. We can use any of these methods
to construct system (2) at this step. Item (ii) of Assumption2
is a global property of existence and uniqueness of solutions
for system (2).

B. Multi-observer

System (2) is guaranteed to provide ‘good’ estimates of
the statex only when the initial state estimation error is
sufficiently small. The problem is that we do not know the
initial condition of system (1), which we denotex0. However,
we know thatx0 ∈ H according to item (i) of Assumption
1. The idea is to sample the setH with N points and to
initialize N local observers (2) at each of these points. We
thus obtain a bank ofN observers, which forms the multi-
observer. We denote the state of theith observer aŝxi and
its output aŝyi, i ∈ {1, . . . , N}.

We suppose that the sampling of the setH is such that
the distance betweenx0 and the closest sampled point tends
to zero asN tends to infinity. In other words, denotinĝxi

0

the initial condition of theith observer, fori ∈ {1, . . . , N},

min
i∈{1,...,N}

|x0 − x̂i
0| → 0 asN → ∞. (3)

Property (3) can always be ensured by uniformly sampling
H. In that way, by selectingN sufficiently large, we are sure



that, at least, one observer will be initialized nearbyx0 and
that its state will converge to the state of the solution to (1),
according to Assumption 2.

It is possible to provide an estimate of the required number
of observersN when we have prior knowledge on the basin
of attraction of the origin for the estimation error system,i.e.
the setB in Assumption 2, as stated in the lemma below.

Lemma 1:Suppose the following holds.

(i) Item (i) of Assumption 1 is verified withH an hyper-
cube of edge lengthΩ > 0.

(ii) There existsB̂ := {x̃ ∈ R
nx : |x̃|∞ ≤ ℓ}, with known

ℓ > 0, such thatB̂ ⊆ B.

Consider a uniform sampling ofH with stepδ = Ω⌈ Ω
2ℓ⌉

−1
.

There existsi ∈ {1, . . . , N} such thatx0 − x̂i
0 ∈ B and

N = (Ω
δ
+ 1)nx . �

The compact setH in item (i) of Assumption 1 can always
be taken as an hypercube (since we assume thatx0 lies in a
known compactset, see item (i) of Assumption 1), so that
item (i) of Lemma 1 holds. Item (ii) of Lemma 1 requires
the knowledge of an estimate of the basin of attraction of the
origin for the estimation error system, namelŷB. The latter
is typically obtained from the analysis used to prove that
system (2) is local observer for system (1) (see for instance
Proposition 3 in [1]). Once the constantsΩ andℓ are derived,
we deduce the number of local observersN by using the
formula in Lemma 1.

C. Supervisor

Now that we have designed the multi-observer, we need
a criterion to select one of the local observers at any time
instant. To this purpose, we introduce themonitoring signals
µi ∈ R, i ∈ {1, . . . , N}, whose dynamics are given by (like
in e.g., [2], [17])

µ̇i = −λµi + γ(y, ŷi) µi(0) = 0, (4)

whereλ > 0 is a design parameter, andγ : R2ny → R≥0 is a
continuous function such thatγ(y, y) = 0 for any y ∈ R

ny ,
which we design in the sequel. The idea is to filterγ(y, ŷi)
and to use the obtained signal to select one of the local
observers. The selection variableσ ∈ {1, . . . , N} is defined
as

σ(t) := argminµi(t) ∀t ≥ 0. (5)

At any time t ≥ 0, the supervisor selects the local observer
with the smallest monitoring signal (if several observers
provide the same minimal value ofµi, an arbitrary prefixed
order is used). In that way, the state estimate is given by
x̂σ. The signalσ may experience rapid switches, but these
do not affect the dynamics of the local observers. If that is
an issue for the implementation, hysteresis based switching
([5]) can be used on top of (5) to avoid it. The results derived
hereafter only require minor modifications to apply in this
case.

III. C ONVERGENCE ANALYSIS

A. A detectability assumption

By taking N sufficiently large, we know from (3) that
at least one local observer, whose index is denoted byi⋆ ∈
{1, . . . , N}, will be such thatx0−x̂i⋆

0 ∈ B. Consequently, the
state estimation errorx−x̂i⋆ will converge to zero (according
to Assumption 2), and so willy − ŷi

⋆

by continuity of
h (see item (iii) of Assumption 1). The latter implies that
µi⋆ converges to zero, in view of (4). We would therefore
expect thatσ selects observeri⋆ after some time. The issue
is that other observers may generate output estimation errors
converging to zero (and so, monitoring signals converging
to zero), while the state estimation errors do not, see the
example below. We may then not be able to distinguish these
observers from the ‘right’ observers.

Example 1:Consider the systeṁx1 = x2, ẋ2 = −x2 −
2(x3

1 − x1) and y = x2. This system has three equilibrium
points: (0, 0), which is unstable, and(−1, 0) and (1, 0),
which are both locally exponentially stable. We denote the
basin of attraction of the latter byA(−1,0) and A(1,0),
respectively. Assume that the initial conditionx0 lies in a
compact setH ⊂ A(1,0). Consequently, Assumption 1 holds.
A copy of the system is a local observer in this case, and
Assumption 2 is verified withB = {x̃ ∈ R

2 : |x̃| ≤ ε} for
ε > 0 sufficiently small such thatx0 ∈ H and x0 − x̂0 ∈
B implies x̂0 ∈ A(1,0). Take the initial condition of the
local observer̂x0 in A(−1,0). The output estimation error
ỹ = x2 − x̂2 converges to zero as so dox2 and x̂2 because
x0 ∈ A(1,0) and x̂0 ∈ A(−1,0), respectively. However, the
state estimation error̃x := x− x̂ does not converge to zero
becausex1 and x̂1 respectively converge to1 and−1. �

We need an additional condition to guarantee that, ify−ŷi

converges to zero, then so doesx− x̂i, for i ∈ {1, . . . , N}.
This is the purpose of the assumption below.

Assumption 3:There exist a continuously differentiable
function V : R

2nx → R≥0, αV , αV ∈ K∞, θ > 0, a
continuous functionγ : R

2ny → R≥0 with γ(y, y) = 0
for any y ∈ R

ny , such that for anyx, x̂ ∈ R
nx

αV (|x− x̂|) ≤ V (x, x̂) ≤ αV (|x− x̂|), (6)

and for anyx, x̂ ∈ R
nx andu ∈ R

nu

〈
∇V (x, x̂), (f(x, u), f̂(x̂, u, h(x)))

〉

≤ −θV (x, x̂) + γ(h(x), h(x̂)).
(7)

�

Assumption 3 is aglobal detectability property of the es-
timation error system (and not of system (1)) with respect to
the outputy− ŷ. It covers the situation where the estimation
error system is output-to-state stable ([15]) as a special case
for whichγ(h(x), h(x̂)) = χ(|h(x)−h(x̂)|) with χ ∈ K∞. It
is the functionγ in (7) that is implemented in (4) to generate
the monitoring signals. In Section IV, we explain how to
verify Assumption 3 for a class of nonlinear systems. The
example below shows that the system in Example 1 satisfies
Assumption 3 when it is equipped with a different output
map.



Example 2:Consider the same system as in Example 1
but with1 y = x1 (and noty = x2). The local observer (2) is
still given by a copy of the plant’s dynamics. LetV (x, x̂) =
1
2 (x1 − x̂1)

2 + 1
2 (x2 − x̂2)

2 for x1, x2, x̂1, x̂2 ∈ R, hence
(6) holds withαV (s) = αV (s) =

1
2s

2 for s ∈ R≥0. For any
x1, x2, x̂1, x̂2 ∈ R,

〈∇V (x, x̂), F (x, u, x̂)〉 = −x̃2
2 + 3x̃1x̃2 − 2x̃2(x

3
1 − x̂3

1),
(8)

whereF (x, u, x̂) = (x2,−x2−2(x3
1−x1), x̂1,−x̂2−2(x̂3

1−
x̂1)), x̃1 = x1 − x̂1, and x̃2 = x2 − x̂2. Using2 3x̃1x̃2 ≤
9x̃2

1+
1
4 x̃

2
2 and2x̃2(x

3
1− x̂3

1) ≤
1
2 x̃

2
2+2(x3

1− x̂3
1)

2, we derive

〈∇V (x, x̂), F (x, u, x̂)〉≤− 1
4 x̃

2
2 + 9x̃2

1 + 2(x3
1 − x̂3

1)
2

=− 1
4 x̃

2
2 + 9x̃2

1 + 2(x3
1 − x̂3

1)
2

− 1
4 x̃

2
1 +

1
4 x̃

2
1.

(9)

Consequently, (7) is verified withθ = 1
2 and γ(x1, x̂1) =

2(x3
1− x̂3

1)
2+(9+ 1

4 )(x1− x̂1)
2, which verifies the required

properties. �

B. Main result

We are ready to state the main result.
Theorem 1:Consider system (1), the estimation scheme

described in Section II, and suppose Assumptions 1-3 hold.
There existsN⋆ ∈ Z>0 such that for anyN ≥ N⋆, λ ≤ θ

where θ comes from Assumption 3,x0 ∈ H, u ∈ Lpc
∞,

|x(t) − x̂σ(t)(t)| → 0 as t → ∞. �

Theorem 1 ensures thatx− x̂σ converges to zero when the
number of local observersN is sufficiently large. We recall
that Lemma 1 provides an estimate ofN⋆, when an estimate
of the basin of attractionB in Assumption 2 is available. The
influence ofλ on the convergence of|x− x̂σ| is studied in
simulations in Section V.

C. Discussions

The proposed estimation scheme may be computationally
demanding whenN⋆ is large in Theorem 1. When we have
prior quantitative knowledge on the convergence ofy−ŷi for
the local observers which are initialized nearbyx0, we can
use this information to reduce the number of local observers
in the multi-observer, and thus reduce the computational
cost. To be more precise, suppose that there exists a known
function β ∈ KL such that for any local observer with
x0 − x̂i

0 ∈ B, and u ∈ Lpc
∞, the corresponding solutions

to (1) and (2) verify

|x(t) − x̂i(t)| ≤ β(|x0 − x̂i
0|, t) ∀t ≥ 0. (10)

When y = Cx, with C is real matrix, this implies|y(t) −
ŷi(t)| ≤ |C|β(|x0 − x̂i

0|, t) for any t ≥ 0. Suppose that we
know an estimate of the basin of attractionB in Assumption
2 of the formB̂′ = {x̃ ∈ R

nx : |x̃| ≤ ℓ′} with ℓ′ > 0. By
taking N⋆ sufficiently large, there existsi⋆ ∈ {1, . . . , N},

1In this case, it is easy to construct a global observer since the system
is linear up to an output injection term. Nevertheless, the objective of this
example is only to demonstrate that Assumption 3 holds.

2These inequalities are obtained by applying the formula2ab ≤ ǫa2 +
1

ǫ
b2 for any a, b ∈ R and ǫ ∈ R>0.

with any N ≥ N⋆, such thatx0 − x̂i⋆

0 ∈ B̂′ in view of
(3). Hence, we only have to run the local observersi ∈
{1, . . . , N}, which verify

|y(t)− ŷi(t)| ≤ |C|β(ℓ′, t) ∀t ≥ 0, (11)

and not the others. Condition (11) can be evaluated on-line
as it only depends on known quantities.

IV. A PPLICATION

We study the case where system (1) has the form below

ẋ = Ax + φ(x, u)
y = Cx,

(12)

whereA andC are real matrices, andφ is globally Lipschitz
and differentiable onRnx+nu . The local observer (2) is taken
as

˙̂x = Ax̂ + φ(x̂, u) +K(x̂, u)Cx̃, (13)

whereK(x̂, u) is a correction matrix, and̃x = x − x̂. We
assume thatK(x̂, u) is designed such that the condition
below holds.

Assumption 4:There exist real, symmetric, positive def-
inite matricesP and Q such that, for anŷx ∈ R

nx and
u ∈ R

nu ,

(A(x̂, u)−K(x̂, u)C)
T
P + P (A(x̂, u)−K(x̂, u)C)

≤ −Q,
(14)

whereA(x̂, u) := A + dφ(x,u)
dx

∣∣∣
x̂
. In addition, item (ii) of

Assumption 2 is verified. �

The inequality (14) is a priori difficult to verify as it needs
to hold for anyx̂ ∈ R

nx and u ∈ R
nu . To overcome this

issue, linear matrix inequalities have been proposed in3 [3],
which may allow designing the nonlinear gainK(x̂, u) so
that (14) holds. We note that the gainK(x̂, u) constructed
in [3] is such that item (ii) of Assumption 2 is verified. We
will see below that the assumptions made so far ensure the
satisfaction of Assumptions 1-2 (only item (i) of Assumption
1 will need to be explicitly assumed).

We need to introduce some notations before stating the
main result of this section. Letx, x̂ ∈ R

nx andu ∈ R
nu , we

first write
(

dφ(x,u)
dx

∣∣∣
x
− dφ(x,u)

dx

∣∣∣
x̂

)
x̃ as

(
dφ(x,u)

dx

∣∣∣
x
− dφ(x,u)

dx

∣∣∣
x̂

)
x̃ = φ1(x, x̂, u)x̃

+φ2(x, x̂, u)Cx̃,
(15)

where φ1 and φ2 are such that|φi(x, x̂, u)| ≤ mi with
mi ≥ 0 for any x, x̂, u and i ∈ {1, 2}. This is always

possible as we can takeφ1(x, x̂, u) =
dφ(x,u)

dx

∣∣∣
x
− dφ(x,u)

dx

∣∣∣
x̂

and φ2(x, x̂, u) = 0, noting thatφ1 is bounded sinceφ
is globally Lipschitz (and differentiable). We further write
φ1(x, x̂, u) as

φ1(x, x̂, u) = M∆(x, x̂, u)R, (16)

3The results in [3] are written for systems of the form of (12) with φ

which only depends onx. They also apply whenφ depends on bothx and
u.



with ∆(x, x̂, u) diagonal and|∆(x, x̂, u)| ≤ 1, which is
always possible sinceφ1 is bounded.

The proposition below provides conditions tailored to
systems (12) and (13) under which the results of Sections
II-III can be applied.

Proposition 1: Consider systems (12) and (13) and sup-
pose the following holds.

(i) Item (i) of Assumption 1 is verified.
(ii) Assumption 4 is verified.
(iii) There existη > 0 andν ≥ 0 such that

[
−Q+ ηRTR− νCTC PM

MTP −ηI

]
< 0, (17)

whereP andQ come from Assumption 4, andM and
R are defined in (16).

Then Assumptions 1-3 hold and the conclusion of Theorem
1 applies. �

V. I LLUSTRATIVE EXAMPLE

In this section, we apply the results of Section IV to the
following Wilson-Cowan oscillator

ẋ1 = −d1x1 − d2x2 + S(C1x1 + C2x2 + u)
ẋ2 = −d3x2 − d4x1

ẋ3 = −f0x3 + x1

y = −f0x3 + x1,

(18)

where x1, x2, x3 ∈ R is the state,u ∈ R is the input,
y ∈ R is the output,d1, d2, d3, d4, f0 > 0, d4 < 0 and
C1, C2 ∈ R are parameters. The functionS is a sigmoid,
which we define asS(z) = arctan(z) + π

2 for z ∈ R.
The (x1, x2)-system is similar to system (1) in [14] for
instance. Wilson-Cowan oscillators are commonly used in
computational neurosciences to investigate neurophysiolog-
ical phenomena. Thex3-system is introduced to generate
an output signaly, which is centered at0. This is justified
by the fact that the electrophysiological signals recordedin
practice often have a zero offset; this is usually the case with
electroencephalography for example (see Section II in [3]).

System (18) can be written as (12) with

A =




−d1 −d2 0
−d4 −d3 0
1 0 −f0




φ(x, u) = [S(C1x1 + C2x2 + u) 0 0]
T

C = [1 0 − f0] .

(19)

We note thatφ is globally Lipschitz and differentiable as
required.

We consider the local observer (13). We design the gain
K(x̂, u) by applying the technique in [3]. We have taken
the following parameters values:d1 = d2 = d3 = d4 = 10,
C1 = 100, C2 = −100, f0 = 10. The obtained gain is, for
x̂, u ∈ R,

K(x̂, u) = 1
2 (1− S′(C1x̂1 + C2x̂2 + u))K1

+ 1
2 (1 + S′(C1x̂1 + C2x̂2 + u))K2,

(20)

whereS′(z) = 1
1+z2 for z ∈ R, and

K1 := [433.32 − 87.00 − 7.06]
K2 := [424.33 − 89.04 − 7.30].

(21)

Thus, Assumption 4 holds with

P =




0.0184 −0.0035 −0.0976
−0.0035 1.1741 −11.7681
−11.7681 −0.0976 122.2508


 . (22)

To evaluate (17), we need to knowR and M . For this
purpose, we define the functionsφ1 and φ2 in (15) as

φ1(x, x̂, u) =




0 C2∆(x, x̂, u) C1f0∆(x, x̂, u)
0 0 0
0 0 0


 and

φ2(x, x̂, u) =




C1∆(x, x̂, u)
0
0


 where

∆(x, x̂, u) = S′(C1x1 + C2x2 + u)
−S′(C1x̂1 + C2x̂2 + u),

(23)

with x, x̂, u ∈ R. We derive thatM = [1 0 0]T andR =
[0 C2 C1f0] in (16). We have verified that LMI (17) holds
and we have obtainedθ = 0.11 in (7). We assume that the
initial condition x0 to system (18) lies inH = [−10, 10]3.
Hence, all the conditions of Proposition 1 are satisfied.

We have uniformly sampled the hyperrectangleH with
N = 27 points. The inputu is given by a continuous
Gaussian signal with mean3 and variance10, and the initial
condition to (18) isx0 = (−5, 5, 9). The value ofλ is set
to 0.1. Figure 2 confirms that̂xσ converges to the state of
system (18). The signalσ is plotted in Figure 3, which shows
that the switches only occur during the first instants and
a single observer is selected afterwards. Simulations have
revealed that no significant difference appears when taking
smaller values ofλ.

VI. CONCLUSIONS

We have presented an estimation scheme for nonlinear
systems, which consists of a bank ofN identical local
observers initialized at different values, and a supervisor
which selects one of these observers at any time instant.
The convergence of the estimated state to the true state of
the plant is guaranteed forN sufficiently large, provided
a detectability condition holds. An explicit lower bound on
N is provided when we know an estimate of the basin of
attraction of the origin for the estimation error system. It
is also explained how to reduce the potential computation
burden of the scheme.

In future work, we will extend the presented results to
nonlinear systems affected by exogenous disturbances and
measurement noises. The multi-observer approach adopted in
this paper might also be useful to improve the performance
of existing observers in terms of speed of convergence, in
the same spirit as what is done for the control of nonlinear
systems with the united controllers technique, see [11] for
instance. Contrary to the control problem, we can directly ini-
tialize one observer nearby the plant by sufficiently sampling
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the set where the plant initial condition is. The challenge is
then to find an appropriate criterion to select this observer(or
one which is initialized nearby), as it is expected to converge
faster than those initialized further. Arguments like those
invoked in Section III-C should probably be used to solve
this problem.
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