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A multi-observer approach for the state estimation of nonlhear systems

Romain Postoyan, Mohammed H.A. Hamid, and Jamal Daafouz

Abstract— We present a prescriptive approach for the state of these points. The sampling é{ has to be such that at
estimation of nonlinear systems. We first assume that we know |east one observer has its initial condition nearby theaiit
a local observer, i.e. a dynamical system whose state conges  cqnition of the plant by takingy sufficiently large. We then
to thf.e.plant state when it is initialized nearby. thg plant !nlthl desi itabl iterion t lect inale ob t
condition. We sample the set where the plant initial conditn is .e5|g.n a suiable cn erloln 0 select a smg € observeryt an
assumed to lie with a finite number of points; noting that this time |nstant, and we deﬁne the state estimate Of the OVera”
set can be arbitrarily large. A local observer is initialized at scheme to be the estimate provided by this observer. The
each of these sampled points to form a bank of observers cale  convergence of the selected estimate is guaranteed, pobvid
multi-observer. A supervisor is then constructed to selecone of s g sufficiently large and a detectability condition for the

these observers at any time instant. The selected state estite tat timati t hold hich i lated to th
is guaranteed to converge to the state of the plant, provided state estimalion error system holds, which IS refated to the

the number of samples is sufficiently large and a detectabty ~ concept of output-to-state stability [15].
property holds, which is expressed in terms of Lyapunov-basd The proposed technique is inspired by the supervisory
conditions. An explicit lower bound on the required number & control framework, see e.g., [6], [8], [9], [10]. Indeedkdi
observers is given when an estimate of the basin of convergen i, \yorks on supervisory control, the scheme consists of a
of the local observer is available. We explain how to apply . . . .
the approach to nonlinear systems with globally Lipschitz ad multi-estimator and_ a S!JperV'SOf' which selects one of the
differentiable nonlinearities. Simulations results are pesented Observers at each time instant. However, none of the results
for a Wilson-Cowan oscillator. on supervisory control applies to our problem as, on the one
hand, their purpose is to stabilize the origin of the system,
and, on the other hand, they typically assume the knowledge
The design of global observers for nonlinear systems i§f a global estimator that converges to the trajectory of the
a difficult task in general and available techniques apply t@ystem when there is no parametric uncertainty, which is
specific classes of systems. Local observers, on the othiry different from the scope of this paper. The supervisory
hand, are usually easier to construct. In this case, we dye ompproach has recently been extended for the estimation
interested in the behaviour of the estimation error arotied t of the states and the parameters of nonlinear Systems in
origin. We can thus use first order approximations to analyZe]. |t is assumed in [2] that a global state estimator can
it, when the involved vector fields are Suﬂ:iCiently SmOOthbe constructed when the System parameters are known. A
This leads to a time-varying dynamical system which isnethod is then proposed to also estimate the parameters on-
linear in the estimation error and hence easier to analyze jije. We therefore address a different objective compaed t
general. Various methods have been proposed in the literaty2] namely the state estimation of nonlinear systems, and
to construct local observers, see e.g., [1], [3], [4], [12B].  we resort to different assumptions, techniques and arsalysi
[19]. The presented approach is prescriptive. We explain how to
The main drawback of local observers is that they must %my it to a class of g|oba||y Lipschitz nonlinear systerss a
initialized nearby the initial condition of the system to nko an examp|e_ We provide conditions using matrix inequﬂjtie
efficiently. However, we do not know the initial condition hich guarantee the satisfaction of the assumptions needed
of the plant, it may therefore be difficult to guarantee thigor the estimation scheme to work. It has to be noted that the
requirement in practice. The aim of this paper is to presefdea to use multiple versions of the same observer inigdliz
a method to overcome this limitation. We consider genergj different values reminds of nonlinear filtering techrgu
nonlinear systems, for which it is assumed that we know guch as particle filters ([13]) or unscented Kalman filte7§)([
local observer. Any of the techniques cited above can lgr instance, which are often applied in applications, tout f
applied at this step to synthesize the local observer. Wghich there is no convergence guarantee in general.
assume that the initial condition of the plant lies in a known The paper is Organised as follows. The estimation scheme
compact set. There is no restriction of the ‘size’ of this js presented in Section Il and the convergence guarantees
set, it can therefore be taken arbitrarily large if neededye stated in Section Ill. We explain how to apply the
We then sample the compact set with points, and we approach to a class of nonlinear systems in Section 1V, and
initialize N versions of the same local observer at eaclje present simulations results for a Wilson-Cowan model
The authors are with the Universitt de Lorraine, CRAN,[18] in Section V. Section VI concludes the paper. The
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{1,2,...}. For (z,y) € R™™ (2,y) stands forz™,y™]".  (iii) The mappingh is continuous. O

The notation£’ denotes the set of piecewise continuous Item (i) of Assumption 1 requires some prior knowledge
functions f : R., — R"™, n € Z, such that||f| := of the initial condition of system (1), which is the case for
sup|f(7)| < r, with r € R>o. Let z € R"=, |z| and |z|  all stochastic Kalman filtering techniques for instancénas
720 to be emphasized that there is no restriction on the ‘size’ of
¥he setH, as it can be taken arbitrarily large. That implies
that, when the solutions to (1) are known to take value
ein a compact operating region, we can defiHeas being
tﬁis region for example. Items (ii)-(iii) of Assumption lear

matrix, whose dimensions depend on the context. A die reasonable as these hold for many physical and biological

a real matrix,|A| is the spectral norm ofd, i.e. |A] := systems.

Man(ATA). A function v : Rsg — Rsg is of class We assume that we know a local observer for system (1)

K if it is continuous, zero at zero and strictly increasingf)'c the form : 2

and it is of classk., if, in addition, it is unbounded. A P {Lg)“y) @
continuous functiony : R2 ) — R is of classKL if for Y '
eacht € R, 7(-,t) is of classk, and, for eachs € R>,, Where i € R" is the estimated statej € R" is
(s, -) is decreasing to zero. the estimated output. In particular, we make the following
assumption.

Il ESTIMATION SCHEME Assumption 2:The following holds.

The estimation scheme is inspired by WOFkS on supervisory(i) There exists a neighborhood of the origin of R™-
control (e.g., [6], [8], [3], [10]). It consists of a bank of such that for any initial conditionsy € ‘H and i €
Ioca_l obs_erve_rs, callechulti-observer and asupervisor as R"= of, respectively, systems (1) and (2), for amye
depicted in Figure 1. We present each of these components L% if 2o — & € B, then the corresponding solutions

in this section. to (1) and (2) are such that(t) —z(t)| — 0 ast — cc.

(i) For any initial conditionzy € R"=, for any u,y €
u /\ (y,u) L%, the corresponding solution to (2) is unique and is

. |

o Plant defined for all positive times. O
Item (i) of Assumption 2 means that the state of a solution

to system (2) converges to the state of the solution to system
Supervisor (1) provided their initial conditions are sufficiently ckoso

Yy —in each other. There exists several methods in the literature t
Estimateg < Local observen design local observers, i.e. to ensure Assumption 2, seg e.g
state [1], [3], [4], [12], [16], [19]. We can use any of these metisod

' to construct system (2) at this step. Item (ii) of Assump®&on

is a global property of existence and uniqueness of solsition
y—JN for system (2).
< Local observenV

respectively stand for the Euclidean norm and the infinit
norm of x. We use[z] to denotemin{n € Z : x < n}

for x € R. Let P € R™*™ be a real, symmetric matrix, we
respectively denote its maximum and minimum eigenvalu
bY Amax (P) andAmin (P). The notatiori denotes the identity

A

]

A

B. Multi-observer

System (2) is guaranteed to provide ‘good’ estimates of
Fig. 1. Estimation scheme. the statex only when the initial state estimation error is
sufficiently small. The problem is that we do not know the
initial condition of system (1), which we denotg. However,
we know thatzy, € H according to item (i) of Assumption
1. The idea is to sample the sit with N points and to
z = flz,u) (1) initialize N local observers (2) at each of these points. We
y = h(x), thus obtain a bank oV observers, which forms the multi-
wherez € R” is the statex € R™ is a vector of known observer. We denote the state of #feobserver as:* and

inputs,y € R™ is the measured output, and,, n,,n, € its output asy’, i € {1,..., N}. . .

Z~o. The objective is to estimate the stateWe require for We_ suppose that the sampling of the $6ts such that

this purpose that system (1) verifies the conditions below. the distance betweerb_and_ the closest sampled pom_t }ends
Assumption 1:The following holds. to zero asN tends to infinity. In other words, denoting,

() The initial condition to (1) lies in a known compact the initial condition of thei™" observer, fori € {1,..., N},
setH. ~min |z — & = 0asN — . ©)

(i) For any initial conditionz, € A, and any inputu € €L}
L%, system (1) generates a unique solution, which iBroperty (3) can always be ensured by uniformly sampling
defined for all positive times. ‘H. In that way, by selectindV sufficiently large, we are sure

A. Local observer
Consider the system



that, at least, one observer will be initialized neargyand I1l. CONVERGENCE ANALYSIS
that its state will converge to the state of the solution fp (1o A detectability assumption
according to Assumption 2.

It is possible to provide an estimate of the required numb%lrt
of observersV when we have prior knowledge on the basi
of attraction of the origin for the estimation error systérm,
the set3 in Assumption 2, as stated in the lemma below.

Lemma 1:Suppose the following holds.

By taking N sufficiently large, we know from (3) that
least one local observer, whose index is denoted" by
n{l, ..., N}, will be such thatr—2} € B. Consequently, the
state estimation errar—z*" will converge to zero (according
to Assumption 2), and so wily — ¢*" by continuity of

h (see item (iii) of Assumption 1). The latter implies that
(i) Item (i) of Assumption 1 is verified witl{ an hyper- ;- converges to zero, in view of (4). We would therefore

cube of edge lengtf > 0. expect thatr selects observer after some time. The issue
(if) There existsB := {7 € R : [Z|o < £}, with known is that other observers may generate output estimationserro
¢ >0, such thatB C B. converging to zero (and so, monitoring signals converging

Consider a uniform sampling &% with stepd — Q[er_ to zero), while the state estimation errors do not, see the
There existsi € {1 N1 such thatzy — @, € % and example below. We may then not be able to distinguish these
N = (24 1) Y 0 -] observers from the ‘right' observers.

0 ' Example 1:Consider the systent; = xs, @9 = —x9 —
o . . 2(x3 — x1) andy = z». This system has three equilibrium
The compact setl in item (i) of Assumption 1 can always points: (0,0), which is unstable, and—1,0) and (1,0),

be taken as an hypercube (since we assumexthlies in a . :
known compactset, see item (i) of Assumption 1), so thatWh'Ch are both locally exponentially stable. We denote the
' ’ basin of attraction of the latter byd_; ) and A o),

item (i) of Lemma 1 holds. Item (ii) of Lemma 1 requires . L ). LT
the knowledge of an estimate of the basin of attraction of threespectlvely. Assume ttéat the |n|t|a:I cAond|t|ora .“esllﬂ ?d
origin for the estimation error system, namédy The latter compact ?eﬁ = A(l’f’)'. onslequlenl';y, ssu.mptr:pn olds. d
is typically obtained from the analysis used to prove thaA copy 0 the .syste{‘r-] IS a loca O~ Ser";?r |n~t IS case, an
system (2) is local observer for system (1) (see for instanAssumon_n_Z is verified Wit = {Z € R* : |2| < 5} for
Proposition 3 in [1]). Once the constaftsand/ are derived, S~ 0 sufficiently small such thato € 74 andxo — &y €

we deduce the number of local observé¥sby using the IB IerIISS o § A(lﬂi' TakeTtrt:e |n|:|altcor1_d|t|otr_1 of the
formula in Lemma. 1. ocal observerz, in A_; ). The output estimation error

7 = x9 — o CONverges to zero as so dg and i, because
o € A andzg € A1), respectively. However, the
state estimation errot := 2 — 2 does not converge to zero

Now that we have designed the multi-observer, we needfCauser, andi; respectively converge toand —1. ~ M
a criterion to select one of the local observers at any time Y& néed an additional condition to guarantee thajify

C. Supervisor

instant. To this purpose, we introduce tienitoring signals CONverges to zero, then so does- 2', for i € {1,..., N}.
ui €R,i€{l,...,N}, whose dynamics are given by (like This is the purpose of the_ assumpnpn below. _ _
in e.g., [2], [17]) As_sumptlon 3:There exist a continuously differentiable
function V : R*= — Ry, ap,ay € Kx, 0 > 0, @
[t = —Api + vy, §°) 11:(0) =0, (4) continuous functiony : R?™ — Rsq with v(y,y) = 0
for any y € R™v, such that for any, & € R"=

where)\ > 0 is a design parameter, and R?"v — R is a
continuous function such that(y,y) = 0 for anyy € R,
which we design in the sequel. The idea is to filt¢y, ') and for anyz, € R"» andu € R™

and to use the obtained signal to select one of the local . .

observers. The selection variabtes {1,..., N} is defined <VV(x,x), (f(z,u), f(2,u, h(I)))>

as < =0V (z, &)+ v(h(x), h()).

o(t) = argmin p;(t) vt > 0. (5) O
Assumption 3 is alobal detectability property of the es-

At any timet > 0, the supervisor selects the local observetimation error system (and not of system (1)) with respect to
with the smallest monitoring signal (if several observershe outputy — g. It covers the situation where the estimation
provide the same minimal value @f, an arbitrary prefixed error system is output-to-state stable ([15]) as a speeais c
order is used). In that way, the state estimate is given Hgr which~y(h(z), h(2)) = x(|h(x)—h(Z)]) with x € K. It
7. The signalc may experience rapid switches, but thesés the functiony in (7) that is implemented in (4) to generate
do not affect the dynamics of the local observers. If that ithe monitoring signals. In Section IV, we explain how to
an issue for the implementation, hysteresis based swgchiwerify Assumption 3 for a class of nonlinear systems. The
([5]) can be used on top of (5) to avoid it. The results derivedxample below shows that the system in Example 1 satisfies
hereafter only require minor modifications to apply in thisAssumption 3 when it is equipped with a different output
case. map.

ay (Je —&]) < V(z, ) <ay(

z =), (6)

()



Example 2:Consider the same system as in Example With any N > N*, such thatxy — xg € B in view of
but with* 3y = z; (and noty = ). The local observer (2) is (3). Hence, we only have to run the local observers
still given by a copy of the plant’s dynamics. L&{(z, %) = {1,..., N}, which verify
$(x1 — #1)% + 3(x2 — 22)? for @1, 22,21,42 € R, hence

(6) holds Withgv(s) _ EV(S) _ %52 for s € RZO- For any |7J(t) - ﬁl(t” < |O|ﬂ(€’,t) vt >0, (11)
T1,T2, 21,22 € R, and not the others. Condition (11) can be evaluated on-line
(VV(2,&), F(z,u,2)) = —33 + 3813 — 282(23 — &3), as it only depends on known quantities.
(8) IV. APPLICATION

whereF(z,u, &) = (g, —xo —2(23 —21), 81, —%2 — 2(23 —

#1)), &1 = 71 — &1, andFo = s — #o. USING 3F1d2 < We study the case where system (1) has the form below

951+ 173 and2i, (2} — 23) < 133 +2(a}—23)%, we derive i = Az+o(z,u) (12)
(VV (@), F(e,u, #)) < =33 + 9 + 2(af - i7)? v o
:_%573 +97% +2(z3 — 23)? (9) whereA andC are real matrices, anglis globally Lipschitz
—237 + 133 and differentiable o™= *"«. The local observer (2) is taken
: - : as
Consequently, (7) is verified with = % and ~y(zq,21) = : . . R -
9(x% —i%)? + (9+ 1)(z1 — #1)%, which verifies the required T = AT+¢(&u)+K(%u)CF, (13)
properties. B where K(i,u) is a correction matrix, and = = — 2. We
B. Main result assume thati (z, ) is designed such that the condition
' below holds.

We are ready to state the main result. Assumption 4:There exist real, symmetric, positive def-
Theorem 1:Consider system (1), the estimation schemﬁme matricesP and Q such that, for any? € R™ and

described in Section I, and suppose Assumptions 1-3 holg.6 R™
There existsN* € Z~ such that for anyV > N*, A < ¢ '

where §# comes from Assumption 3yg € H, u € L%, (A(#,u) — K(2,u)C)" P+ P (A(Z,u) — K(2,u)C)
lz(t) — 27 (t)] — 0 ast — oo. O < -Q,
(14)
Theorem 1 ensures that-2° converges to zero when the where A(#,u) := A + % . In addition, item (ii) of
number of local observerd is sufficiently large. We recall Assumption 2 is verified. * O

that Lemma 1 provides an estimate/gf, when an estimate  The inequality (14) is a priori difficult to verify as it needs

of the basin of attractiof in Assumption 2 is available. The to hold for any# € R™ andu € R™:. To overcome this

influence of\ on the convergence df — 27| is studied in issue, linear matrix inequalities have been proposédah

simulations in Section V. which may allow designing the nonlinear galti(z,u) so

that (14) holds. We note that the gal(#, ) constructed

L ~In[3] is such that item (ii) of Assumption 2 is verified. We
The proposed estimation scheme may be computationally|| see helow that the assumptions made so far ensure the

demanding whenV* is large in Theorem 1. When we have guistaction of Assumptions 1-2 (only item (i) of Assumptio

prior quantitative knowlgdge on.tr_u.e c.onvergencgefyl for 1 will need to be explicitly assumed).

the Ioc_al_ observgrs which are initialized nearhy we can We need to introduce some notations before stating the

use this information to reduce the number of local observe|:ﬁain result of this section. Let. & € R™ andu € R™ . we

in the multi-observer, and thus reduce the computational . dé(w,u) deb(,u0) N ’

cost. To be more precise, suppose that there exists a knO\)\fﬁt write ( dx e ) Tas

C. Discussions

T

function 5 € KL such that for any local observer with a6 () dé(r) | - o
o — 2y € B, andu € LR, the corresponding solutions ( dz T T d 1) T = ¢i(z,d,u)T (15)
to (1) and (2) verify +oo(z, &, u)Cx,
lz(t) — 2°(t)] < B(|lwo — &§], 1) VvVt >0. (10) where ¢; and ¢, are such thate;(z,z,u)] < m; with
, , , o ; > 0f , T, di 1,2}. This is al
Wheny = Cx, with C is real matrix, this impliegy(t) — . fblo or any ., u an AZ ej d¢(iu) 'S |ds¢(i\qllv)ays
§i(t)] < |C|B(lxo — #5],t) for any ¢ > 0. Suppose that we POSSIPI€ as We can take (v, ,u) = =g |~ —q

know an estimate of the basin of attractirin Assumption and ¢»(z,2,u) = 0, noting that¢, is bounded sincep
2 of the formB’ = {# e R™ : |z| < ¢} with ¢ > 0. By is globally Lipschitz (and differentiable). We further veri

taking N* sufficiently large, there exists" € {1,...,N}, ¢1 (z,2,u) as

Lin this case, it is easy to construct a global observer siheesystem o1(z,&u) = MA(z,&u)R, (16)
is linear up to an output injection term. Nevertheless, thdive of this
example is only to demonstrate that Assumption 3 holds. 3The results in [3] are written for systems of the form of (12w

2These inequalities are obtained by applying the formala < ea® +  which only depends om. They also apply wheg depends on both and
1p? for anya,b € R ande € Rxo. u.



with A(z, z,w) diagonal and|A(z,Z,u)| < 1, which is
always possible since; is bounded.

whereS’(z) =

_WforzeR,and

The proposition below provides conditions tailored to Ky = [43332 -87.00 —7.06] (21)
systems (12) and (13) under which the results of Sections Ky = [42433 —89.04 —7.30].
-1l can be applied. Thus, Assumption 4 holds with
Proposition 1: Consider systems (12) and (13) and sup-
pose the following holds. 0.0184 ~ —0.0035 —0.0976
. . . . o P=| -0.0035 1.1741 —11.7681 (22)
(i) Item (i) of Assumption 1 is verified. 117681 —0.0976 122.2508

(i) Assumption 4 is verified.
(iii) There existn > 0 andv > 0 such that

~Q+4RTR—vCTC PM

MTP g | <0

(17)

where P and(@ come from Assumption 4, antf/ and
R are defined in (16).

Then Assumptions 1-3 hold and the conclusion of Theorer%g(x’

1 applies. O

V. ILLUSTRATIVE EXAMPLE

To evaluate (17), we need to knoR and M. For this
purpose, we define the functions; and ¢, in (15) as

0 CoA(z,&,u) CirfolA(z, &, u)
1z, z,u)=1 0 0 0 and
0 0 0
CiA(z, &, u)
T,u) = 0 where
0
Az, z,u) = S'(Crzy + Cozg + ) (23)

—S/(Olifl + CoZg + u),

. A . B . B
In this section, we apply the results of Section IV to theVith #,&,u € R. We derive that/ = [1 0 0] andR =

following Wilson-Cowan oscillator

&1 = —diz1 —dexo + S(Craq + Cozo +u)

To = —dzxo — dyx1

: 18
i3 = —fors+ 11 (18)
y —foxs + z1,

where x1, 20,23 € R is the state,u € R is the input,
y € R is the output,dy,ds,ds,dy, fo > 0, dy < 0 and
C1,Cy € R are parameters. The functigh is a sigmoid,
which we define asS(z) arctarfz) +  for z € R.
The (z1,x2)-system is similar to system (1) in [14] for
instance. Wilson-Cowan oscillators are commonly used
computational neurosciences to investigate neuroplogiol

ical phenomena. Thes-system is introduced to generate

an output signaly, which is centered aft. This is justified
by the fact that the electrophysiological signals recorihed

practice often have a zero offset; this is usually the cadle wi
electroencephalography for example (see Section Il in [3])S

System (18) can be written as (12) with

—dy —d2 O
A = —dy —d3 0
1 0 —fo (29)
dlz,u) = [S(Cray+ Cozg+u) 0 0]
C =11 0 —fo.

We note that¢ is globally Lipschitz and differentiable as
required.

K(Z,u)
the following parameters valuegd; = dy = ds = dy = 10,
C1 = 100, Cy = —100, fo = 10. The obtained gain is, for
z,u € R,

K(Z,u)

= (1 —S/(lecl +CQSE2 +U)) K1
(1 + S/(lecl + CQQA?Q =+ U)) KQ,
(20)

by applying the technique in [3]. We have taken

[0 Co C1fo]in(16). We have verified that LMI (17) holds
and we have obtaine@l = 0.11 in (7). We assume that the
initial condition o to system (18) lies i = [—10,10].
Hence, all the conditions of Proposition 1 are satisfied.
We have uniformly sampled the hyperrectanglewith
N 27 points. The inputu is given by a continuous
Gaussian signal with meahand variancd 0, and the initial
condition to (18) iszy = (—5,5,9). The value of\ is set
to 0.1. Figure 2 confirms that” converges to the state of
system (18). The signal is plotted in Figure 3, which shows
that the switches only occur during the first instants and

ift single observer is selected afterwards. Simulations have

revealed that no significant difference appears when taking
smaller values of\.

VI. CONCLUSIONS

We have presented an estimation scheme for nonlinear
ystems, which consists of a bank o&f identical local
observers initialized at different values, and a superviso
which selects one of these observers at any time instant.
The convergence of the estimated state to the true state of
the plant is guaranteed faW sufficiently large, provided
a detectability condition holds. An explicit lower bound on
N is provided when we know an estimate of the basin of
attraction of the origin for the estimation error system. It
is also explained how to reduce the potential computation
burden of the scheme.

. In future work, we will extend the presented results to
Ronlinear systems affected by exogenous disturbances and
measurement noises. The multi-observer approach adapted i
this paper might also be useful to improve the performance
of existing observers in terms of speed of convergence, in
the same spirit as what is done for the control of nonlinear
systems with the united controllers technique, see [11] for

instance. Contrary to the control problem, we can direcily i

tialize one observer nearby the plant by sufficiently sangpli
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the set where the plant initial condition is. The challenge i
then to find an appropriate criterion to select this obsefmer
one which is initialized nearby), as it is expected to cogeer
faster than those initialized further. Arguments like tos
invoked in Section 11I-C should probably be used to solve
this problem.
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