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SUMMARY

Nowadays, computing hardware continues to move toward more parallelism and more heterogeneity, to
obtain more computing power. From personal computers to supercomputers, we can find several levels of
parallelism expressed by the interconnections of multi-core and many-core accelerators. On the other hand,
computing software needs to adapt to this trend, and programmers can use parallel programming models
(PPM) to fulfil this difficult task. There are different PPMs available that are based on tasks, directives, or low
level languages or library. These offer higher or lower abstraction levels from the architecture by handling
their own syntax. However, to offer an efficient PPM with a greater (additional) high-level abstraction level
while saving on performance, one idea is to restrict this to a specific domain and to adapt it to a family
of applications. In the present study, we propose a high-level PPM specific to digital signal processing
applications. It is based on data-flow graph models of computation, and a dynamic run-time model of
execution (StarPU). We show how the user can easily express this digital signal processing application, and
can take advantage of task, data and graph parallelism in the implementation, to enhance the performances
of targeted heterogeneous clusters composed of CPUs and different accelerators (e.g., GPU, Xeon Phi).
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1. INTRODUCTION

Since about 2005, the hardware trend has moved toward the era of multi-cores and many-cores
architecture to offer improved performance. However, these architectures are still difficult to
handle. Programmers need to express parallelism of tasks and data, and deal with their constraints,
such as communication, load balancing, memory management, and synchronization. In addition,
programmers have to face heterogeneity problems with the use of different softwares for each
accelerator. For all of these reasons, parallel programming models (PPM)s have emerged. These are
a programming concept that is used to abstract the cited hardware specificities in order to decrease
implementation needs on parallel and heterogeneous clusters, while increasing performance, which
is not a simple problem.

In the present study, we exploit the idea that a domain-specific parallel programming model
(PPM) can offer high abstraction, and at the same time, allow efficient implementation of a family
of applications on a heterogeneous cluster. Following this idea, we focus on the digital signal
processing (digital signal processing (DSP)) domain, where the major challenge is to more easily
express these applications in a high-level mode while efficiently exploiting the performance of the
clusters. Thus, we propose a design flow that is based on a dynamic run-time (StarPU), to efficiently
implement DSP applications by simply specifying them graphically as a data flow graph (Data Flow
Graph (DFG)) model of computation (model of computation (MOC)).

The organization of this paper will be as follow: first, in section 2, we present PPMs and their
classification according to their abstraction level. In section 3, we present related studies on the
implementation of DSP applications on heterogeneous clusters, and we study and extract their
characteristics that are necessary to optimize their implementation on a cluster. Finally, we position
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our approach by comparing it to related studies. In section 4, we describe our programming model
and detail its functionalities. Finally, in section 5, we present a comparison of the implementation
of two applications, to validate our approach.

2. PARALLEL-PROGRAMMING MODELS

A PPM is a bridge between a system developer’s natural model of an application and its
implementation on parallel architectures. It is a programming concept to provide connections
between the user applications and the functionality of clusters. A PPM has to achieve the best
trade-off between designer productivity and implementation efficiency. Indeed, as presented in [1],
a good PPM should have some specific proprieties, such as: (1) simplification of the programming
effort; (2) portability and architecture undependability; (3) efficiency of implementation.

To achieve all of these requirements in a PPM might be a difficult task, knowing that several
of them are in opposition to each other. The abstraction levels of PPMs is an important basis to
distinguish them, because they affect several evaluation metrics, as cited above. In [1], they proposed
to classify PPMs according to whether or not they offer some inherent functionality of abstraction:
(1) Decomposition of a program into parallel threads or processes; (2) Mapping of threads to
processing elements (processing element (PE)s); (3) Communication among the threads; and (4)
Synchronization among the threads. Figure 1 shows a classification of several PPMs according to
the abstraction level of their hardware.

Figure 1. Classification of parallel programming models according to their abstraction level. SignalPU is shown as a
combination between a task-based run-time (StarPU) and a DFG model, with an additional abstraction level.

3. RELATED STUDIES ON IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
APPLICATIONS ON PARALLEL AND HETEROGENEOUS ARCHITECTURES

Throughout the history of computing, DSP applications have pushed the limits of compute power.
Calculations have been performed on different hardware, like the FPGA, DSP, and SMP platforms.
Recently, DSP applications have seen rapid advance in multimedia computing and high-speed
communications. They process large data volumes using complex algorithms. In response to these
advances, research is focusing on the implementation of several of these applications on parallel
architectures, including heterogeneous accelerators like GPU, Xeon Phi and others. Next, we present
the state of the art of the implementation of DSP applications on these architectures.
Low-level parallel-programming models (mostly explicit implementation) Traditional
implementations are based on low-level tools or PPMs. In [2], they implemented a Ray-tracing
application on a Cray XD-1 many-core architecture with distributed memory architecture. They
used a message-passing interface (MPI)[3] to decompose the algorithm over hundreds of MPI
processes that iteratively performed a number of rays, while communicating over the network.
In [4], a synthetic aperture sequential beamforming GPU implementation of ultrasound images
was performed. The algorithm processed two-dimensional data sampling. The authors used both
OpenCL[5] and OpenGL[6] to decompose the algorithm into thread blocks. Each block of threads
processed a two-dimensional subset of input image. In [7], they used CUDA[8] PPM to implement
a medical ultrasound algorithm to generate B-mode images. They decomposed the algorithm into
four kernels that were sequentially processed on the GPU to execute one frame. The algorithm was
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iteratively re-executed for each frame of the input dataset. In [9], they implemented a least mean
square algorithm on different GPUs by also using a CUDA model. They optimized their algorithms
for a least mean square algorithm family using shared memory. These implementations using low-
level models are efficient and the authors achieved good performance in comparison to sequential
implementation. However, the programming effort is significant. Indeed, for all of the cited PPMs,
the programmer has to carry out the following manually: (1) decompose the algorithm into threads
by unrolling loops of data samples to exploit data parallelism, or loops of algorithm steps to exploit
task parallelism; (2) manage the memory allocation for each thread; (3) synchronize the threads
to save data coherence, using barriers, Mutex or Semaphore; (4) manage communications among
threads over shared memory or distributed memory architecture; and (5) map the parts that result
from the decomposition over threads or processes. In addition, the low-level PPMs used are specific
to a kind of PE, so CUDA, OpenCL, and OpenGL for GPU (accelerators), and Pthread and MPI
for multi-core and many-core. Finally, these are also specific to one memory architecture. MPI for
distributed memory, and the others for shared memory architecture.

Directive-based parallel-programming models (partly implicit implementation) Common
tools and models that are used to implement DSP applications on parallel and heterogeneous
architecture are directive-based high-level PPMs. The users explicitly annotate the sequential
code to decompose the algorithm into parallel parts only at compilation times that can increase
the productivity and portability of the codes. The user does not care about communication,
synchronization, and mapping in default mode, but has to explicitly specify them in performance
mode. In [10], they used OpenMP[11] to implement geodesic applications on multi-core
architecture. The authors inserted directives to data parallelize the execution of two-dimensional
images, where each OpenMP thread processed a row at a time. The algorithm was iteratively
repeated until convergence. OpenMP is a commonly used standard and targets both multi-core and
many-core architecture, and accelerators in its last version (OpenMP 4.0). This allows the user to
unroll loops over CPU or accelerator threads, or to construct sets of dependent tasks. However, it is
a structured (fork-join) execution model. It allows parts of parallel regions, called Chuncks, to be
dynamically scheduled, but their sizes are manually fixed by the user, and there is no task scheduling
across heterogeneous PEs. OpenMP implementation and more details are discussed in section 5.1.1.
Another PPM very close to OpenMP is OpenACC[12]. This is also a directive-based PPM, but it
is more oriented to GPU accelerators. In [13], they presented an OpenACC implementation of a
three-dimensional elastic wave simulator on a multi-core plus GPUs architecture. They manually
decomposed the algorithm over two MPI processes, and parallel regions to off-load onto GPUs.
They obtained good performance in comparison to the programming effort. However, it is necessary
for the user to manually tune the data allocation and transfer, and the scheduling of parallel regions
on GPU architecture. In addition, the user has to use MPI to target the distributed memory of
the two GPUs. Finally, the OpenACC implementation required a commercial compiler, such as
PGI or Cap’s. Other directive-based tools and models, like HMPP[14] or OmpSS[15], follow the
same model of OpenMP, with some extensions. However, they include the same inconvenience in
their implementation of DSP applications. They do not manage data-flow dependencies, except
for OmpSS and OpenMP 4.0. They are restricted to shared memory architecture. In addition, in
performance mode, the user has to deal with the architecture to map parallel work over PEs.

Task-based parallel-programming models (mostly implicit implementation) Other models
and run-times to implement DSP applications are task-based PPMs. Using these, the user explicitly
decomposes the algorithm in the form of a graph of the task, in general in the form of directional
acyclic graphs (Directional Acyclic Graph (DAG)s) of tasks that are managed according to data-
flow dependencies. The user is saved from explicitly managing the communication, synchronization,
and scheduling of tasks over the architecture. In [16], they used StarPU[17] to implement
applications of coin and contour detection in a large-volume database of images on heterogeneous
cluster. They pre-loaded all of the images into memory, and then executed the algorithm that was
decomposed into DAGs of tasks, where each task partly processed one image on the CPU or GPU.
The authors obtained good performances in comparison to sequential implementation, and exploited
all of the PEs of the cluster using dynamic scheduling, like work-stealing or heterogeneous earliest
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finish time (HEFT). However, they needed to manually construct the DAGs of the tasks. They had
to manipulate the API to create codelets, tasks and buffers. They had to link tasks between these,
using some functions and data-struct. Finally, they had to submit the DAG to the run-time. Cilk[18],
X-Kaapi[19], TBB[20], Ptask[21], are run-times and models based on DAGs of tasks, but these all
include the same cited disadvantages.

Data flow graph model-of-computation-based parallel-programming models (DSP-specific
implementation) There are models and tools based on DFG MOCs that can be used to simulate
and implement DSP applications on different parallel platforms. As discussed in [22, 23], the DFG
MOC models algorithms as nodes, known as operators, that represent sub-functions of the system.
These are connected with directional edges that represent FIFO buffers and that transport sub-result
data, known as Tokens, to synchronize operations. An operation runs as soon as all of its inputs
become valid. Thus, this model is inherently parallel and allows the user to easily express task
parallelism on the application. In [24], they presented StreamIT, which is a language with specific
syntax to textually model the algorithm as a DFG. This includes an execution model to implement
the algorithm that exploits different levels of parallelism, and targets multi-core architecture, but
not accelerators. Another major tool to model, simulate and execute DSP applications is Ptolemy
[22]. This offers the expression of several DFG MOCs using a graphical interface; however, this
execution model is restricted to a mono-core DSP. PREESM [25] is another tool to implement
DSP applications on multi-cores using DFG MOCs. However, the user has to manually express
the application and the architecture in the form of a graph, and to statically map these according to
specific scenarios. All of these tools are specific for simulation and execution of DSP applications.
They take in account the characteristics, such as data-flow synchronization, granularity, iterative
forms, and scaling. These are implicit models for communications and synchronization. However,
they are restricted to mono-core or multi-core accelerators. In [26], they presented an extension
of StreamIT that can automatically map streaming applications represented as DFGs onto GPUs.
However, the mapping is static and it is performed at compilation time. In [27], they proposed a
compiler-based PPM to implement streaming DSP applications on multi-GPU architecture. The
tool they proposed is in the form of a source-to-source compiler that generates GPU and CPU codes
from the SystemC [28] description of the application as a DFG. They also used the SynDEX tool
[29] to map application graphs onto architecture graphs. Thus, also here, the user has to manually
represent the architecture as a graph, and the scheduling generated from SynDEX is static. The
same inconvenience characterizes the PACCO [30, 31] tool. This is manual and static scheduling,
and the user has to describe the architecture graph. In addition, it is a BSP tool [32] that implies a
synchronization barrier for each iteration. In[33], they introduced a framework based on OpenCL to
execute DSP applications specified as DFGs on a heterogeneous cluster. However, the user has to
manually map the operators onto OpenCL workers in charge of PEs.

Summary and contribution For all of the above-cited implementations of DSP applications,
we can characterize them as follows: they use repetitive (iterative) processing of an input set of
digital signal samples to produce an output set; e.g., a set of images. DSP algorithms are usually
and preferably modeled with inherently parallel DFG MOCs [22, 23], where the application is
designed with an oriented graph. The nodes represent the operators (functions of an algorithm)
and the edges represent the data exchange between these, as sub-results or variables. In the
parallel implementation of DSP applications, programmers must exploit these specificities to take
advantage of targeted heterogeneous and parallel architectures. First, to highlight the operators that
can be executed in parallel (task parallelism), they have to express their algorithm with a set of
tasks, using threads or process. They have to manage thread communication and synchronization
according to the data-flow application dependencies (edges of graphs) on both shared and
distributed memory architectures. In addition, to benefit from the accelerator capacity to speed up
the SIMD processing (data parallelism), the user has to off-load a part of their tasks toward PEs,
like GPU or Xeon Phi. The user has to deal with memory allocation on the accelerators, copy-in
the input data, launch the execution, copy-out the results, and finally free the allocated memory
space. DSP applications are also mostly iterative, so in some cases, the designer has to unroll
the main loop of the application to increase the task parallelism, to increase the occupancy of the
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computing units. So, the designer must duplicate the process (thread) in charge of executing the
main loop, while taking care of the data coherency. The programmer must also cope with other
difficulties, like overlapping the communication with the computation, the load balancing between
PEs that assumes a scheduling algorithm that takes into account the communication cost, the
efficient memory management to reduce the bottleneck due to allocating or freeing buffers, and the
unnecessary synchronizations that can delay the execution, plus more.

Taking into account all of these implementation constraints carried out by hand, this is particularly
bad and leads to application-specific implementation. Using low-level tools and models like
CUDA and MPI presented in section 3, the programmer has to combine the handling of some
API, language or extension of language to explicitly decompose the algorithm, and to manage
memory, communications, synchronizations, and scheduling. These models are very close to
hardware language and restricted to a specific architecture, which can decrease the productivity.
Otherwise, users can use directive-based tools like OpenMP and OpenACC presented in section 3
to implement DSP applications on heterogeneous architecture. However, it can be hard for them
to exploit the above-cited characteristics of this application family such as DFG decomposition
and synchronization. In addition, to obtain good performance, users have to focus on allocation
and communication of data, and scheduling of parallel region onto threads. Another solution the
users can use to implement DSP applications on heterogeneous architecture is the task-based
tools like StarPU discussed in paragraph 3. These tools are more adapted for decomposition and
synchronization of DSP applications. However, programmers have to manipulate their API to
create, delete, and submit tasks. They have to create buffers and link them to synchronize tasks.
They also have to manually unroll loops of input data to exploit data parallelism, to create a DAG of
tasks. In addition, users have to take care of the overhead cost due to run-time management. Finally,
users can use the DFG MOC-based models cited in section 3, which are the most adapted tools for
implementing DSP applications. However, according to our discussion in section 3, part of these
do not target heterogeneous architecture. Other parts of these are static tools; i.e., at compilation
time construction and mapping of tasks. Finally, the others are manual scheduling of applications,
and are not architecture aware. So, in our opinion, there are no tools that can implement DSP
applications using DFG MOCs on heterogeneous clusters that use an architecture-aware run-time,
and that offer dynamic scheduling. In [34, 35], they discussed the advantage of dynamic versus static
scheduling for DFG applications. Indeed, even if several DFG MOCs are decidable and predictable
at compilation time, there are some dynamic DFG MOCs that need to be scheduled at run-time.
In addition, some applications are data dependent, where the processing time is not predictable and
changes according to the input data. Finally, dynamic scheduling is more adapted for clusters to
optimally take advantage of all of the heterogeneous PEs by load balancing the work. Thus, for all
of these reasons, in the next section we propose to enrich the StarPU programming model with a
novel design flow, to adapt it for implementing DSP applications represented with DFG models
of computation that simplify their expression and computation, and at the same time increase their
performance. On this basis, our major contributions are:

Conceptual contribution: A novel design flow to implement DSP applications on heterogeneous
clusters based on DFG models of computation in high-level abstraction, and the architecture-
aware and dynamic run-time (StarPU).

Functional contribution: Based on DSP domain characteristics, we propose the additional
functionalities of:

1. Dynamic and implicit construction of the DAG of the task.
2. Automatic unfolding of the DFG of the application.
3. Implicit allocation and reuse of buffers.
4. Automatic execution and saving of the initialization part of repetitive tasks.
5. Dynamic auto-tunning of GPU tasks.
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4. THE PROPOSED PROGRAMMING MODEL

In this section, we propose the use of SignalPU, a novel parallel programming model based
on DFG models of computation, and the dynamic run-time StarPU [17] to implement DSP
applications on heterogeneous clusters. With SignalPU, programmers do not have to manipulate
StarPU API to deal with the algorithm expression and the architecture specificities, like memory
management, task creation and synchronization, execution placement, and others. Using the DFG
model of computation, they can implicitly express tasks, data, and graph parallelisms in their
implementations, to optimally take advantage of the hardware. In addition, because it is based on
StarPU, our PPM makes use of shared and distributed memory architectures. It deals with many-
node clusters using the MPI, and it can target several accelerators: GPU, Xeon Phi, Cell..etc

Figure 2. SignalPU design: Three levels of processing

We present our proposed PPM in the form of three levels of processing, as shown in Figure 2.
First, the user can easily express the application with a DFG using an XML interface. Thus, the user
is freed to manipulate the StarPU API for: tasks and codelet creating, buffer management between
pairs of tasks, and jobs submitted onto the corresponding PE. Second, at run-time, the DFG-
XML is analyzed and transformed using some DSP-adapted functionalities (e.g., graph-unfolding
techniques [36], pipelining of tasks, buffer re-use, MPI multi-node distributions) to produce a
DAG of the independent tasks distributed over MPI nodes. The goal is to express all levels of
parallelism, while limiting the overhead due to memory and task management. Also, at this level of
processing, the user does not have to deal with any API to unroll the main loop, manage necessary
memory buffers, submit and synchronize tasks, or distribute the processing over MPI nodes. Finally,
at the third level, the StarPU run-time is in charge of task management, scheduling and load
balancing, data-flow dependency, and PE management. However, we have added two optimizations:
initialization saving, and auto-tuning, to enhance the performance of each task. Next, we illustrate
these levels through the synthetic example application presented in Figure 3.

Figure 3. DFG model of an example of a DSP application. Z-1 is a delayed auto-dependence.

4.1. Level 1: SignalPU DFG-XML interface

In this step, we propose an interface that is based on the DFG model of computation and the
XML description, where the programmer can easily express the application. First, the programmer
has to describe each operator (function) of the algorithm in the form of a node (vertex) using an
XML structure. The programmer has to input the name of the functions, which will be called in
the code, the number of input and output arguments of these functions, and the architecture kind
that corresponds to each of them (e.g., CPU, GPU,..). Second, the programmer has to describe in
the same manner all of the data flows in the form of graph edges, with a structure that includes
information about the type and size of the data that exchange between operators. After this, a DFG-
XML of the application is produced. Finally, the programmer has to include its functions in the code,
written in the form of a combination of two sub-functions: an initialization one, and an execution
one ( Init(..), Exec(..)). The XML code below (Table I) gives an example of how a node and an edge
of the DFG can be described.
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1 <!-- ***************************************
2 NODES
3 *****************************************-->
4 <node id="n0">
5 <data key="k_node_id">n0</data>
6 <data key="k_node_name">producer</data>
7 <data key="k_kernel">producer(out0)</data>
8 <data key="k_kind">CPU/GPU</data>
9 <data key="k_time">7</data>

10 </node>

1 <!-- ************************************
2 EDGES
3 ************************************* -->
4 <edge source="n0" target="n1">
5 <data key="k_edge_name">n0_to_n1</data>
6 <data key="k_port_from">out0</data>
7 <data key="k_port_to">in0</data>
8 <data key="k_type">mat</data>
9 <data key="k_size">262144</data>

10 </edge>

Table I. A portion of the XML code that represents a description of one node and one edge.

4.2. Level 2: SignalPU implementation

As illustrated in Figure 4, at run-time, the XML description of the DFG is parsed with the
Boost Graphml Reader [37], and the StarPU API is invoked to generate an implementation that
can highlight all of the levels of parallelism (i.e., task, data, graph parallelism) to be efficiently
executed on the cluster. Several instances of the graph will be submitted to StarPU run-time using
the unfolding techniques presented in the following section. The later sections describe first the
buffer reuse strategy to avoid unnecessary memory allocation and release, second, the pipelining
functionality to limit the number of submitted tasks, and finally, the decomposition of the DAG of
tasks over MPI nodes.

Graph unfolding Unfolding is a transformation technique to duplicate the functional blocks to
reveal hidden parallelism of the DSP program in such a way that preserves its functional behavior
at its outputs. It is usually used for low-level implementation on FPGA, DSP, and ASIC hardware
[36]. We propose to use it to unroll the main loop of the application and to increase task parallelism,
to achieve better occupancy and load balancing across processing elements of the cluster. Next, we
exemplify that technique through the z transformation of a digital signal: Zn=a∗Xn+b∗Yn

If k is the kth iteration of the J unfolding. So, the J-unfolded application becomes:
Zj∗k=a∗Xj∗k+b∗Yj∗k

Zj∗k+1=a∗Xj∗k+1+b∗Yj∗k+1

....

Zj∗k+(j−1)=a∗Xj∗k+(j−1)+b∗Yj∗k+(j−1)

Thus, as illustrated in Figure 4, at run-time, we express first each operator of the DFG-XML
with a StarPU structure, called a ”codelet”, which denotes tasks and contains all of the information
about the corresponding operator (e.g., number of input arguments, number of output arguments,
function identifiers, architecture kind). We then iteratively J-unfold the DFG to create a DAG of
tasks. The unfolding degree can be adjusted dynamically according to the measured occupancy, the
load balancing, and the available resources.

Buffer reuse Many DSP applications have static communication patterns. So, to avoid
unnecessary overhead due to buffer allocations and freeing, a fixed number of buffers is allocated
according to the available resources (i.e., the available memory on the node), the DFG-XML
description of the application (i.e., data type, data size, number of dependencies), and the unfolding
degree. Each time an iteration (graph level) of the original submitted DAG is finished, its buffers
are used by the next submitted iteration (graph level). To implement this mechanism and to control
the unfolding degree, we use a semaphore initialized with J. Each time an iteration of the original
graph is finished, a semaphore is given to the main loop of the control thread that is waiting for a
semaphore before launching a new iteration.

Tasks pipelining In addition, all of the DSP applications process a high number of iterations, so
to reduce overhead due to task management (e.g., dependency management, scheduling, task status
updating), we limit the number of submitted tasks using pipelining functionality. So, at run-time, by
using semaphores, only a fixed number of pipeline levels are submitted, where this number is J, the
unfolding degree, and each pipeline level corresponds to one graph level in the DAG. As illustrated
in Figure 4, the pipeline depth (length) is four, and a semaphore locks all of the buffers of the four
graph levels. So, to add (submit) a new graph level to the pipeline, it is necessary to wait for the
termination of the processing of one iteration (graph level) of the submitted graph.
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Figure 4. Illustration of the implementation process of the DSP application shown in Figure 3

MPI multi-node distribution Finally, our design flow allows the user to deploy the application
over multi-nodes using the StarPU-MPI [38] library. Indeed, the user can distribute the processing
costs over the MPI nodes in a SIMD way by assigning to each node the unit of data needed to be
processed. So, using a predefined function called MPI data schedule(), the user simply has to specify
the number of the iterations that the node has to process. Of note, the DAG of tasks is dynamically
divided across nodes. Below we give a simplistic example of how the user can process this function:

1 int MPI_data_schedule(int loop, int rank) { return( loop % rank ); }

At run-time, each MPI node processes its part of the DAG composed of graph levels
corresponding to the number of iterations, as specified by the user. All of the MPI nodes follow
the same design described by the functionality cited above. So each node dynamically unfolds its
part of the DAG of tasks, and it automatically re-uses buffers and pipiline tasks. Also, each MPI
node uses the functionality we cite next.

4.3. Level 3: SignalPU run-time (StarPU)

In this step, as illustrated in Figure 5, we focus on the efficient execution of the tasks. On each MPI
node, StarPU run-time manages the submitted sub-DAG of the tasks generated in the previous level.
StarPU dynamically schedules them by taking into account the data-flow dependencies between the
tasks, to guarantee data coherence and to limit superfluous synchronizations. At run-time and on
each MPI node, the submitted unfolded part of the DAG of tasks relative to this node are stored on
a pile and scheduled. StarPU dynamically assures that they are executed on the ”best” computation
unit using some heuristic algorithms to balance the load, such as work-stealing or HEFT [17],
while taking into account the location of the data. Also, to mask communication cost, we enable
asynchronous data copy between accelerators and the host, and we activate the streaming processing
to increase the occupancy of the computation units. Finally, to reduce the execution time of each
task, we propose two DSP-specific functionalities, as described below:

Figure 5. SignalPU runtime levels.

Initialization saving Many DSP operators include an initialization part to initialize the data
structures used for the computation. This implementation phase can be long relative to the
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computation time. For example, the Gabor filter used in the Saliency application presented in section
5 has an initialization phase of about 380 milliseconds, compared to the computation phase that has
a duration of about 2.5 milliseconds on a Quadro4000 GPU. Thus, it is obvious that this phase has to
be executed only one time for each processing element on which the operator is mapped. However,
no such native mechanism exists in StarPU. Therefore, we propose that the designer specifies its
operators with two sub-functions: an initialization one, named ”Init”, which is executed only once
on each processing element, and an execution one, named ”Exec”, which contains the computations.
With this mechanism, the Init sub-function is executed only once on each processing element and
the initialized data are preserved.

Kernels auto-tuning As stated above, clusters today are heterogeneous in terms of the processing
element types (e.g., CPU, GPU, Xeon Phi), but they can also be heterogeneous for one processing
element type. For example, a cluster can contain GPUs of different generations, with different
computation capabilities. The GPUs can be different in terms of, for example, the number of
cores and registers, the size of the memory levels, the throughput, and the latency. The GPU
performances are particularly affected by the threads per block parameter. Moreover, the optimal
value of this parameter can depend on the GPU characteristics. Thus, we propose an iterative-
specific functionality to determine the best thread per block parameter for GPU tasks. We propose a
function interface, which iteratively explores a three-dimensional space of parameters (threads per
block (x,y,z)) limited by the designer, which saves the best ones for each kernel for each device.
Thus, due to the auto-determined most efficient parameter, the processing time of tasks is enhanced,
while the user is freed to adapt the code of each kernel according to each processing element.

5. EVALUATION

In this section, we present some comparisons, experimentation, and results used to validate
our approach. We use two DSP applications that we implement using: the SignalPU,
MPI+OpenMP+CUDA, and PACCO tools, to provide expressiveness and performance
comparisons. First, we present these applications and compare their implementation according to
the time effort and abstraction level. Second, we show and discuss the results of each experiment by
comparing the performances.

5.1. Applications and implementations

Here, we present the two DSP applications and describe their implementation. First, a synthetic
application as a computing intensive case with inherent task parallelism is presented and
implemented using SignalPU and MPI+OpenMP+CUDA. Second, we show a relevant real-world
application (image processing), which is a relatively communication-bound case without inherent
task parallelism, with the implementation of the SignalPU and PACCO tools.

Algorithm 1: Synthetic DSP application.

Require: A image r im of size w·l,
Number of images (Nbr)

Ensure: Processed image
1: for each imagei in Nbr do
2: (V ar11

,V ar12
)←Producer()

3: V ar21
←PixelProcesSimu(V ar11

,k1)

4: V ar22
←PixelProcesSimu(V ar21

,k2)

5: (V ar31
,V ar32

,V ar33
)←JoinFork(V ar21

,V ar22
)

6: V ar41
,←PixelProcesSimu(V ar31

,k3)

7: V ar42
,←PixelProcesSimu(V ar32

,k4)

8: V ar43
,←PixelProcesSimu(V ar33

,k5)

9: Processed image←Consumer(V ar41
,V ar42

,V ar43
)

10: end for

Algorithm 2: Static pathway of the visual model.

Require: An image r im of size w·l
Ensure: The saliency map
1: r fim←Hanningfilter(r im)

2: cf fim←FFT (r fim)

3: for i←1 to orientations do
4: for j←1 to frequencies do
5: cf maps[i,j]←GaborFilter(cf fim,i,j)

6: c maps[i,j]←IFFT (cf maps[i,j])

7: r maps[i,j]←Interactions(c maps[i,j])

8: r normaps[i,j]←Normalizations(r maps[i,j])

9: end for
10: end for
11: saliency map←Summation(r normaps[i,j])

5.1.1. Synthetic digital signal-processing applications To allow users to easily test our PPMs,
we designed a library of operators for several PE types with a parameterized workload. We use
this library to build test cases with different graph structures, communication, and computation
loads. In this paper, we present the experimentation based on the synthetic application described
in Algorithm 1, and this application simulates a real-word computation-intensive application that
includes different granularities of operators that can be executed on both CPUs and GPUs, and which
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1 void pixPrSimuCuda(float* H_in,float* D_in,
2 float*H_out,float*D_out,k,int size,int dev);{
3 cudaMemcpyAsync(D_in,H_in,size,HtoD,stream_in);
4 Auto_tune(nblocks,threadsB);
5 kernelCuda<<<nblocks,threadsB,stream_exec>>>
6 (D_in,D_out,k,n);
7 cudaMemcpyAsync
8 (H_out,D_out,size,DtoH,stream_out); }
9

10 int main(int argc, char **argv)
11 {
12 int high = 512 ; int with=512;
13 int size_img = high*with;
14 const int size_loop = (int) atoi((argv[1]));
15 const int unfolding = (int) atoi((argv[2]));
16 int rank; int n=0; int dev;
17
18 MPI_Init(&argc,&argv);
19 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
20
21 #pragma omp parallel num_threads(unfolding)
22 { float * H[nb_buf]; float * D[nb_buf];
23
24 Host_alloc(H); Device_alloc(D);
25
26 #pragma omp for private(n) private(dev)
27 if (rank==0) for(n=0; n<size_loop_1; ++n)
28 else for(n=size_loop_1+1; n<size_loop_2; ++n)

1 {
2 dev=load_balance(n,GPUs_number);
3
4 #pragma omp task depend(out:H[0],H[1])
5 producer( H[0], H[1] , size_img );
6
7 #pragma omp task depend(in:H[0]) depend(out:H[2])
8 PPSimuCuda(H[0],D[0],H[2],D[2],7,size,dev);
9

10 #pragma omp task depend(in:H[1]) depend(out:H[3])
11 PPSimuCuda(H[1],D[1],H[3],D[3],3,size,dev);
12
13 #pragma omp task depend(in:H[2],H[3])
14 depend(out:H[4],H[5],H[6])
15 ForkJoin(H[2],H[3],H[4],H[5],H[6],size);
16
17 #pragma omp task depend(in:H[4]) depend(out:H[7])
18 PPSimuCuda(H[4],D[4],H[7],D[7],6,size,dev);
19
20 #pragma omp task depend(in:H[5]) depend(out:H[8])
21 PPSimuCuda(H[5],D[5],H[8],D[8],2,size,dev);
22
23 #pragma omp task depend(in:H[6]) depend(out:H[9])
24 PPSimuCuda(H[6],D[6],H[9],D[9],2,size,dev);
25
26 #pragma omp task depend(in:H[7],H[8],H[9])
27 Consumer(H[7],H[8],BufH[9]);
28 }
29 }

Table II. An MPI+OpenMP+CUDA pseudo code of a synthetic application. Left the table a. Right the table b.

contains multiple dependencies (inherent task parallelism). The k parameters are used to adjust
the workload of each operator. In Figure 6, we show the DFG-XML description of the synthetic
application. This DFG-XML description of the application is the major part of the expression
that the user has to do. The user only has to model the algorithm in the form of a DFG of
operators, by giving information about edges and nodes. The user focuses only on the expression
of the algorithm without manipulating any particular API or Pragma syntax. On the contrary, in
an MPI+OpenMP+CUDA implementation represented in Table II, the user has first to express the
functions in the form of tasks using the omp task directive (Table II-b, lines 4, 7, 10, ...). The user
has to link these using the omp depend directives (Table II-b, lines 4, 7, 10, ...) to data-synchronize
the functions. The user has to unfold the main loop over the parallel region of the threads using the
omp parallel for directive (Table II-a, lines 21, 26). In addition, to target the GPU, the user has to
call the CUDA function (Table II-b, lines 8, 11, 21,...), and has to put allocations out of the loop
to avoid overhead due to allocation and free (Table II-a, line 24). The user has to asynchronously
copy-in and copy-out, and call the CUDA functions to overlap the communication and computation
(Table II-a, lines 3, 5, 7), and has to manually and statically load the balance operators over the GPUs
(Table II-b, line 2). The user also has to tune the CUDA parameters of each operator according to
each GPU (Table II-a, line 4). Finally, to distribute the computation over the nodes, the user has
to use the MPI API to create the main process in each node by specifying which data each MPI
process has to treat (Table II-a, lines 27, 28). Thus, in comparison to the SignalPU implementation,
the user has to handle three PPMs. The user has to take care of the memory allocation, and the
data communication over discrete memory. The user has to manipulate the directive pragma to
create the tasks and to link them. The user has to manage the load balancing and some of the other
functionalities close to the architecture characteristics. Thus, it is easier for the user to use SignalPU
to implement DSP applications on heterogeneous clusters.

.
Figure 6. The DFG-XML model of the synthetic application.

5.1.2. Saliency application We also experiment with our approach on a real-world application
based on the primate retina, with the visual saliency model used to locate the regions of interest; i.e.,
the capability of human vision to focus on particular places in a visual scene. For implementation,
we use Algorithm 2 that was described in the preliminary work of our team [39, 40]. To
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Node CPU GPU
Archi1 Intel-i7 core (4 Cores) 2 NVIDIA Quadro 4000 + NVIDIA Quadro 2000
Archi2 Intel-i7 core (4 Cores) NVIDIA GTX TITAN + NVIDIA GTX 780
Archi3 Intel-i7 core (4 Cores) NVIDIA GTX 680 + NVIDIA GTX 680
Archi4 Intel-i7 core (4 Cores) NVIDIA GTX 480

Table III. Architecture cluster used for experimentation.

implement the application with our programming models, the first step is to model Algorithm 2
with a DFG-XML description using the SignalPU interface. For this, we represent each function
(Hanningfilter(),. . . ) with a node in the graph, which includes their own characteristics (e.g.,
architecture kind, input arguments, output arguments, function identifier). Then, we represent the
data flow between each operator with an edge in the graph, which includes its characteristics (e.g.,
data type, data size, input/ output arguments). In Figure 7, we show the DFG-XML result of this
step. The second step is to include the function code in the program, where each function is in
the form of initialization and execution sub-functions (Init(..), Exec(..)). Thus, we do not have to
use the StarPU API to describe the application tasks. In comparison, PACCO implementation is
the same, regarding what the user has to do. However, the execution model is different. Indeed,
the PACCO execution model is an MPI+Pthread+CUDA implementation based on an iterative BSP
model [32], where the execution of the operators and the transfer of the data are overlapped inside
each synchronized iteration. Thus, in contrast, SignalPU is more adapted to DSP implementations
because it is a data-flow synchronization.

Figure 7. The DFG-XML model of the visual saliency application.

5.2. Experience and results
In this subsection, we describe the experimentation we carried out to evaluate the performance
of our approach, and we present and discuss the results obtained. The architecture used for the
experimentation is a heterogeneous CPU-GPU cluster that includes four nodes, as described in
Table III, connected via an infiniband network. The dataset used for the experimentation is a set of
images with 512x512 pixels.

5.2.1. Global performance The first experiment we present is the processing of a number of images
on hardware configurations. The aim is to measure the scalability of our implementation and how
much it can take advantage of the parallelism levels (e.g., task, data and graph parallelism) and the
capability of the architecture.

Figure 8. Global performance comparison of the SignalPU versus MPI+OpenMP+CUDA implementations of the
synthetic application. Time in minute for processing 1000 images

SignalPU versus MPI+OpenMP+CUDA First, we process 1,000 images with the computation-
intensive synthetic application on several CPU-GPU configurations using these two implemen-
tations: a SignalPU with an unfolding of 10, compared to the MPI+OpenMP+CUDA low-level
implementation presented above in section 5.1.2. The results of the comparison are shown in
Figure 8. For the CPU only configurations, we can note that the speed-up is proportional to the
number of cores in the two implementations, due to the task, data and graph parallelism. Task
parallelism is achieved through the expression of task dependencies. Data and graph parallelism
are exploited by unfolding the graph. On CPUs-only cluster, OpenMP implementation get slightly
better results than SignalPU. That is due to the rutime overhead and the dynamic management of
tasks. For the CPU-GPU configurations over multi-nodes architeture, performances are enhanced
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by exploiting data parallelism on GPUs. So, for SignalPU implementation, we obtain about 61x
speed-up if we use 1 CPU core + 1 Quadro4000 GPU, compared to a 1-core configuration. For
MPI+OpenMP+CUDA, we only reach about 55x. The difference in these results is due to the
model of execution. Indeed, with MPI+OpenMP+CUDA, the execution model is the Fork-Join
model, where threads of unfolding parallel regions concurrently invoke CPU and GPU system
drivers to execute tasks. However, in SignalPU implementation, the model of execution is the
scheduling of DAG of tasks over the CPU and GPU workers, thus the invocation is done only one
time for each device. For one CPU core + 2 Quadro4000, we get 93x speed-up of performance
with SignalPU, and only about 69x with MPI+OpenMP+CUDA. By using 1 CPU core + 2
Quadro4000 + Quadro2000, we get a speed-up of about 125x with SignalPU, and only about
89x with MPI+OpenMP+CUDA. These differences in the result are for the same reasons as the
execution models. In addition, the dynamic scheduler of SignalPU is more efficient because it uses
some optimizations, such as out-of-order and data prefetching, which increase device occupancy.
Finally, the performance still increases with the number of nodes: we obtain a speed-up of 508x
with SignalPU on 4 nodes exploiting a total of 4CPUs+7GPUs. However, we obtain a speed-up of
about 274x with the MPI+OpenMP+CUDA implementation on the same hardware configuration.
We can explain the differences in scalability by the weakness of the static scheduling of the
MPI+OpenMP+CUDA solution compared to the dynamic one used in SignalPU implementation.
Thus, in comparison to an equivalently tuned MPI+OpenMP+CUDA implementation, SignalPU
produces the best performance on the heterogeneous cluster experiments, due to the dynamic run-
time and the DAG of task scheduling model of execution.

Figure 9. Comparison of global performance of the visual saliency application implementations.

SignalPU versus PACCO(MPI+Pthread+CUDA) In the same manner, we process 1,000 images
with the communication bounded saliency application, and we compare our SignalPU with
an unfolding degree of 10 (J=10) to the PACCO optimized BSP implementation based on
MPI+Pthread+CUDA cited in subsection 5.1.2. The comparisons of both of these implementations
are shown on Figure 9. For the first comparison of the results illustrated in the first and the
second groups of bars in Figure 9, we use a Quadro 4000 + 1 CPU core, and we obtain a
better performance for the SignalPU implementation (32 s) compared to the performance of the
PACCO implementation (38 s). This is due to the synchronization of the task. Indeed, in the
PACCO implementation, the synchronizations between iterations (graphs) are carried out using
a global synchronization barrier, which leads to an imbalanced load. However, in our SignalPU
implementation, we use only data dependencies to synchronize the processing. So, as soon as the
data is available, new tasks are launched. The second hardware configuration (2 Quadro 4000 +
1 CPU core) enhances the performance of both of the implementations: it reduces the processing
time for the SignalPU implementation, and reaches a speed-up of 1.7x, due to the graph and data
parallelism performed by unfolding the DFG. However, for the PACCO implementation, we only
reach 1.2x speed-up compared to the previous implementation, by only exploiting data parallelism
over the pipelining of the tasks. This difference is explained by the scheduling of the tasks.
Indeed, the PACCO implementation does not scale well because the scheduling is static, while
the DFG of the application has few imbalanced execution-time coarse-grained operators. Thus, the
most loaded device delays the iteration. In contrast, in the SignalPU implementation, the dynamic
scheduling of several unfolded graphs (iterations) allows the optimal balance of the load between
the GPUs (as discussed for the next experiment; section 5.2.2). For the multi-nodes configurations,
the performance of both implementations is enhanced by balancing the data processing over the
nodes. In the SignaPU implementation it is achieved throught the MPI distribute functionality. For
the PACCO implementation, we manually unfold the application graph of and map each actors
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on the architecture. Thus, we reduce the global processing time of each implementation on scalable
cluster. Finally, we get about 4.2x speed-up on 4CPUs+7GPUs compared to the first implementation
executed on 1 CPU Core+1 Quadro 4000. However, for the PACCO implementation, we get only
an about 2.1x speed-up with the same experimental setups. The differences can be explained by the
previously mentioned reasons: synchronization and load balancing over processing elements and
nodes. Indeed, with SignalPU, we balance the load in a SIMD way over the MPI nodes using the
MPI data schedule function described in 4.2. whereas in the PACCO implementation, the iteration is
manually and statically unbalanced over the nodes, which delays its processing time. In addition
the global synchronization of at the end of the super step of BSP model of execution blocks the
scheduling of future iterations.

5.2.2. Unfolding versus scheduling In this second experiment, we are interested in indicating the
performance gain obtained by combining the unfolding techniques and the dynamic scheduling. We
experiment with the processing of 1,000 images on a CPU-GPU hardware configuration, with both
applications using the following SignalPU implementation:

1. Static scheduling: This is an iterative implementation without unfolding (J=1), where we
statically map each operator (node of DFG-XML) to a PE. An exhaustive exploration of all
of the possible static placements was carried out to select the best placement.

2. Dynamic scheduling: In this implementation without unfolding (J=1), we use in addition a
dynamic scheduler of StarPU to balance the load inside the loop.

3. Static scheduling with unfolding: In this implementation we 10x unfold the main loop, but
the scheduling is the same as the first implementation.

4. Dynamic scheduling with unfolding: In this last implementation, the test includes both
functionalities, the dynamic scheduling (work stealing), and the graph unfolding (J=10).

In Figure 10, which is related to the synthetic application, and Figure 11, which is related to
the saliency application, we show the performance of the four processed implementations of each
application on a CPU+GPU hardware configuration. The results are presented in the form of four
groups of bars, where each group of bars represents the global execution time of an implementation.
Each bar composing a group represents the global processing time on each processing element,
and its decomposition is: execution time, labelled as ”Execution”, which represents the effective
processing time on the computing unit; sleeping time, labelled as ”Sleep”, which represents the
time when any computation is done on the device; and the overhead time, which is labelled as
”Overhead” and represents the necessary time to manage the work and the device.

Figure 10. Scheduling versus unfolding of the synthetic application.

The first group bars in Figure 10 (left) illustrates the global processing time of 1,000 images with
the dynamic scheduling implementation. This represents a bad performance for two reasons. First,
the load balancing between the GPUs is done, but it is poor, as shown in the ”Execution” section.
The scheduler cannot optimally share the jobs between the GPUs because of the granularity of the
tasks (coarse grained). Second, the sleeping time of each GPU is high, as shown in the ”Sleep”
section, because of the iterative form of the implementation, which forces available devices to wait
for the slowest one.

In the second group of bars in Figure 10, labelled ”Static scheduling”, the performance is
enhanced in the saliency implementation (Figure 11), because the optimal manual scheduling is
more efficient than the previous dynamic scheduling, so the iteration time is reduced, and thus
the execution times (”Execution” section) and sleeping times (”Sleep” section) on the GPUs
decrease. Note in the saliency application case that only 1 GPU (Quadro400) is used to process
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all of the operators. The task parallelism is not exploited because the application design does not
contain inherent parallelism. However, for the synthetic application, the performances decrease in
comparison to the first implementation. This is due to the imbalance of the load inside the iteration
obtained by statically mapping the operators on GPUs.

The third group of bars in Figure 10, labeled ”Static scheduling with unfolding”, shows more
performance improvement compared to the second one. Indeed, even if the execution times (”Exec”
section) do not change, the operators are processed with the same placement, and the sleeping
times are consequently reduced due to the unfolding techniques, which allow the overlapping of the
processing of several iterations. Thus, the devices do not wait for the last task of the iteration before
processing their next tasks.

The last group of bars in Figure 10, labeled ”Dynamic scheduling with unfolding” represents the
best performance compared to the other implementations. The execution time is enhanced due to
the load balancing that is done by the dynamic scheduler, dealing with enough numbers of tasks
made available by the unfolding techniques allowing it to more efficiently distribute jobs between
processing elements. Thus, as proposed in our PPM, it is interesting to combine the use of unfolding
techniques and dynamic scheduling to efficiently take advantage of the device availability.

Figure 11. Scheduling versus unfolding of the saliency application.

5.2.3. Overhead In that experiment, we focused on the estimation of the overhead due to the
run-time management (e.g., management of device, task, memory, dependencies) and the impact
of using the proposed functionalities (e.g., pipelining of the task, buffer reusing) described in
sub-section 4.2. So, for that, we use the SignalPU implementation of the synthetic and saliency
applications to process an increasing dataset of images (from 1,000 to 10,000), and we measure
the percentage of overhead on the global execution time. In Figure 12, we show the evolution of
this percentage for three implementations: a PACCO implementation of saliency application shown
in the blue line marked with diamonds, which converges to 2% of the overhead rate because it
uses static scheduling and does not manage data synchronization (static run-time). A SignalPU
implementation of the synthetic and saliency applications, which is illustrated in red and green
lines in Figure 12, indicated with squares and triangles, respectively, which stabilizes to 7% of
the overhead rate. It should be noted that even if the overhead of the SignalPU implementation is
greater than the overhead of the PACCO implementation, the SignalPU implementation exploits the
hardware better and leads to better performance.

Figure 12. Percentage of overhead in the global processing time of the SignalPU implementation.

5.2.4. Task performance The last experiment we present is the evolution of the processing time
of the tasks during the iterations. The goal is to show the impact of the proposed functionality
(e.g., initialization saving, operator auto-tuning). For each application, we measure the processing
time of two operators: PixelProcesingSimu() for the synthetic application, and Interaction() for the
saliency application, during the first 15 iterations on two GPUs. The results are shown in Figure
13 for the saliency and the saliency applications. First, we note that the initialization part of each
operator that is represented with a dashed line at the first iteration of each line is done only once
for each device, due to the proposed initialization saving optimization. Second, we show that the
computation times can vary from single up to double, according to the threads per block parameter,
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and that the exploration converges to an optimum which depends on the GPU architecture. The
tuning is carried out iteratively, and the best parameters are saved. So, we finally obtain (128,1,1)
and (256,1,1) for the PixelProcessingSimu operator on the GTX780 and Quadro4000 and (32,8,1) and
(32,16,1) for the Interaction operator on the GTX780 and Quadro4000. Thus, due to the proposed
execution model functionality of initialization saving and task auto-tuning, we take advantage of the
hardware capability to enhance the execution time of the tasks, while the designer does not have to
worry about this work.

Figure 13. Evolution of the execution time of the task according to the thread per block parameter: PixelProcessigtime

of synthetic application (top), and Interaction of Saliency application (bottom).

6. CONCLUSION

In this paper, we have presented SignalPU, a DSP-domain specific PPM based on a DFG model of
computation and a dynamic run-time (StarPU) that allows programmers to easily and efficiently
implement their DSP applications on parallel and heterogeneous architecture. Thus, we have
shown that it is possible to construct a domain-specific PPM to achieve both productivity and
performance using a dynamic task-based run-time. In this study, we have presented PPMs and
have classified them according to the abstraction level. After that, we presented related studies on
the implementation of DSP applications on parallel and heterogeneous clusters, and we classified
and discussed these. Thus, according to the extracted characteristics of the DSP implementation,
we have proposed a novel high-level abstraction approach of PPM, named as SignalPU, which is
structured at the following three levels: (1) DFG-XML interface: The application is easily modeled
in the form of a DFG model using an XML interface. The user does not need to deal with the
StarPU library to express an application. (2) Implementation: Using some functionalities (e.g.,
graph unfolding, buffer reuse, task pipelining, MPI multi-node distribution), the implementation of
the application is optimized to optimally exploit all of the levels of parallelism, while overcoming
run-time overhead. The user does not need to worry about architecture specificity to implement an
application. (3) Run-time: The execution is effectively managed to take advantage of the availability
and the capability of the devices. The user gets an efficient sequence of execution due to the StarPU
scheduler, and each task is enhanced on each device due to the proposed functionalities of task auto-
tunning and initialization saving. Finally, the implementations of two applications were presented.
We have shown how easy it is to implement these in comparison to an MPI+OpenMP+CUDA
expression, while getting enhanced performances. We have shown that this approach offers better
performance than PACCO, a BSP tool based on MPI+Pthread+CUDA that we previously developed.
In future work, we would like to generalize our approach on more complex DSP applications,
like dynamic ones represented with Boolean data flow, and on a data-dependent application. Also,
we would like to study how to offer to the user the choice of the unfolding degree, taking into
account the targeted clusters. We also want to adapt the proposed auto-tunning technique for
other parameters and other kinds of operators. Finally, we will work on automatic multi-node load
balancing based on the unfolding.
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