]. C. Ancey, A. C. Davidson, T. Böhm, M. Jodeau, and P. Frey, Entrainment and motion of coarse particles in a shallow water stream down a steep slope, Journal of Fluid Mechanics, vol.69, pp.83-114, 2008.
DOI : 10.1016/S0022-1694(97)00123-6

E. Audusse, C. Berthon, C. Chalons, O. Delestre, N. Goutal et al., Sediment transport modelling : Relaxation schemes for Saint-Venant ??? Exner and three layer models, EDP Sciences ESAIM:Proc, pp.80-94, 2012.
DOI : 10.1051/proc/201238005

URL : https://hal.archives-ouvertes.fr/hal-00796049

E. Audusse, C. Chalons, and P. Ung, A simple well-balanced and positive numerical scheme for the shallow-water system, Communications in Mathematical Sciences, vol.13, issue.5, pp.1317-1332, 2015.
DOI : 10.4310/CMS.2015.v13.n5.a11

URL : https://hal.archives-ouvertes.fr/hal-01083364

E. Audusse, O. Delestre, M. H. Le, M. Masson-fauchier, P. Navaro et al., Parallelization of a relaxation scheme modelling the bedload transport of sediments in shallow water flow, EDP Sciences ESAIM: Proc, pp.80-94, 2013.
DOI : 10.1051/proc/201343005

URL : https://hal.archives-ouvertes.fr/hal-00840200

F. Benkhaldoun, S. Sahmim, and M. Seaid, Solution of the Sediment Transport Equations Using a Finite Volume Method Based on Sign Matrix, SIAM Journal on Scientific Computing, vol.31, issue.4, pp.2866-2889, 2009.
DOI : 10.1137/080727634

F. Benkhaldoun, S. Sahmim, and M. Seaid, Abstract, Advances in Applied Mathematics and Mechanics, vol.473, issue.04, pp.470-492, 2011.
DOI : 10.4208/aamm.10-m1056

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, 2004.

A. Bouharguane and B. Mohammadi, Minimisation principles for the evolution of a soft sea bed interacting with a shallow sea, International Journal of Computational Fluid Dynamics, vol.110, issue.1, pp.163-172, 2012.
DOI : 10.1029/JC094iC01p00951

A. Canestrelli, A. Siviglia, M. Dumbser, and E. F. Toro, Well-balanced high-order centred schemes for non-conservative hyperbolic systems. Applications to shallow water equations with fixed and mobile bed, Advances in Water Resources, vol.32, issue.6, pp.834-844, 2009.
DOI : 10.1016/j.advwatres.2009.02.006

Z. Cao, R. Day, and S. Egashira, Coupled and Decoupled Numerical Modeling of Flow and Morphological Evolution in Alluvial Rivers, Journal of Hydraulic Engineering, vol.128, issue.3, pp.306-321, 2002.
DOI : 10.1061/(ASCE)0733-9429(2002)128:3(306)

M. J. Castro-díaz, E. D. Fernández-nieto, and A. M. Ferreiro, Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods, Computers & Fluids, vol.37, issue.3, pp.299-316, 2008.
DOI : 10.1016/j.compfluid.2007.07.017

S. E. Coleman and V. I. Nikora, Exner equation: A continuum approximation of a discrete granular system, Water Resources Research, vol.23, issue.3, 2009.
DOI : 10.1016/S0301-9322(96)00080-8

S. Cordier, M. H. Le, T. Morales-de, and L. , Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help, Advances in Water Resources, vol.34, issue.8, pp.980-989, 2011.
DOI : 10.1016/j.advwatres.2011.05.002

URL : https://hal.archives-ouvertes.fr/hal-00536267

O. Delestre, Simulation du ruissellement d'eau de pluie sur des surfaces agricoles, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00531377

A. I. Delis and I. Papoglou, Relaxation approximation to bed-load sediment transport, Journal of Computational and Applied Mathematics, vol.213, issue.2, pp.521-546, 2008.
DOI : 10.1016/j.cam.2007.02.003

F. M. Exner, Über die wechselwirkung zwischen wasser und geschiebe in flüssen, Akad. Wiss. Wien Math. Naturwiss . Klasse, vol.134, issue.2a, pp.165-204, 1925.

E. D. Fernández-nieto, M. J. Castro-díaz, and C. Parés, On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System, Journal of Scientific Computing, vol.102, issue.2, pp.117-140, 2011.
DOI : 10.1007/s10915-011-9465-7

E. D. Fernández-nieto, C. Lucas, T. Morales-de-luna, and S. Cordier, On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems, Computers & Fluids, vol.91, pp.87-106, 2014.
DOI : 10.1016/j.compfluid.2013.11.031

E. D. Fernández-nieto, T. Morales-de-luna, G. Narbona-reina, and J. Zabsonré, Formal deduction of the saintvenant-exner model including arbitrarily sloping sediment beds and associated energy, 2016.

G. Gallice, Solveurs simples positifs et entropiques pour les syst??mes hyperboliques avec terme source, Comptes Rendus Mathematique, vol.334, issue.8, pp.713-716, 2002.
DOI : 10.1016/S1631-073X(02)02307-5

G. Gallice, Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates, Numerische Mathematik, vol.94, issue.4, pp.673-713, 2003.
DOI : 10.1007/s00211-002-0430-0

G. Garegnani, G. Rosatti, and L. Bonaventura, Free surface flows over mobile bed: mathematical analysis and numerical modeling of coupled and decoupled approaches, Commun. Appl. Ind. Math, vol.2, issue.1, 2011.

G. Garegnani, G. Rosatti, and L. Bonaventura, On the range of validity of the Exner-based models for mobile-bed river flow simulations, Journal of Hydraulic Research, vol.32, issue.10, 2013.
DOI : 10.1080/00221686.2008.9521846

J. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water, Discrete Cont. Dyn. Syst. Ser. B, vol.1, issue.1, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00691701

A. J. Grass, Sediment transport by waves and currents. SERC London Cent, Mar. Technol, p.29, 1981.

P. H. Gunawan, R. Eymard, and S. R. Pudjaprasetya, Staggered scheme for the Exner???shallow water equations, Computational Geosciences, vol.133, issue.1, 2015.
DOI : 10.1007/s10596-015-9533-4

A. Harten, P. Lax, and B. Van-leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, vol.25, issue.1, pp.53-61, 1983.

J. Hudson, J. Damgaard, N. Dodd, T. Chesher, and A. Cooper, Numerical approaches for 1D morphodynamic modelling, Coastal Engineering, vol.52, issue.8, pp.691-707, 2005.
DOI : 10.1016/j.coastaleng.2005.04.004

J. Hudson and P. K. Sweby, Formulations for numerically approximating hyperbolic systems governing sediment transport, Journal of Scientific Computing, vol.19, issue.1/3, pp.225-252, 2003.
DOI : 10.1023/A:1025304008907

C. Juez, J. Murillo, and P. García-navarro, A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed, Advances in Water Resources, vol.71, pp.93-109, 2014.
DOI : 10.1016/j.advwatres.2014.05.014

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.
DOI : 10.1017/CBO9780511791253

J. Murillo and P. Garcia-navarro, An Exner-based coupled model for two-dimensional transient flow over erodible bed, Journal of Computational Physics, vol.229, issue.23, pp.8704-8732, 2010.
DOI : 10.1016/j.jcp.2010.08.006

C. T. Newton, An experimental investigation of bed degradation in an open channel, Boston Society of Civil Engineers, 1951.

R. W. Nickalls, A new bound for polynomials when all roots are real. The Mathematical Gazette, pp.520-526, 2011.

C. Paola and V. R. Voller, A generalized Exner equation for sediment mass balance, Journal of Geophysical Research: Earth Surface, vol.89, issue.2a, 2005.
DOI : 10.1029/2004JF000274

A. Paquier, Modélisation et simulation de la propagation de l'onde de rupture de barrage, 1995.

C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework., SIAM Journal on Numerical Analysis, vol.44, issue.1, pp.300-321, 2006.
DOI : 10.1137/050628052

G. Parker, 1D Sediment Transport Morphodynamics with applications to Rivers and Turbidity Currents, 2004.

M. Postacchini, M. Brocchini, A. Mancinelli, and M. Landon, A multi-purpose, intra-wave, shallow water hydro-morphodynamic solver, Advances in Water Resources, vol.38, pp.13-26, 2012.
DOI : 10.1016/j.advwatres.2011.12.003

G. Rosatti, J. Murillo, and L. Fraccarollo, Generalized Roe schemes for 1D two-phase, free-surface flows over a mobile bed, Journal of Computational Physics, vol.227, issue.24, pp.10058-10077, 2008.
DOI : 10.1016/j.jcp.2008.08.007

A. Serrano-pacheco, J. Murillo, and P. García-navarro, Finite volumes for 2D shallow-water flow with bed-load transport on unstructured grids, Journal of Hydraulic Research, vol.3, issue.8, pp.154-163, 2012.
DOI : 10.1016/0378-3839(87)90037-8

S. Soares-frazao and Y. Zech, HLLC scheme with novel wave-speed estimators appropriate for two-dimensional shallow-water flow on erodible bed, International Journal for Numerical Methods in Fluids, vol.4, issue.9, pp.1019-1036, 2011.
DOI : 10.1002/fld.2300

J. P. Soni, Laboratory study of aggradation in alluvial channels, Journal of Hydrology, vol.49, issue.1-2, pp.87-106, 1981.
DOI : 10.1016/0022-1694(81)90207-9

L. C. Van-rijn, Sediment Transport, Part I: Bed Load Transport, Journal of Hydraulic Engineering, vol.110, issue.10, pp.1431-1456, 1984.
DOI : 10.1061/(ASCE)0733-9429(1984)110:10(1431)

J. Zabsonré, C. Lucas, and E. D. Fernández-nieto, AN ENERGETICALLY CONSISTENT VISCOUS SEDIMENTATION MODEL, Mathematical Models and Methods in Applied Sciences, vol.19, issue.03, pp.477-499, 2009.
DOI : 10.1142/S0218202509003504