Overview on the Cardiac ElectroPhysiology Simulator (CEPS)
Nejib Zemzemi, Yves Coudière, Florian Caro, Marc Fuentes

To cite this version:
Nejib Zemzemi, Yves Coudière, Florian Caro, Marc Fuentes. Overview on the Cardiac ElectroPhysiology Simulator (CEPS). Meeting at the Lyric, Jun 2015, Bordeaux, France. hal-01204600

HAL Id: hal-01204600
https://hal.archives-ouvertes.fr/hal-01204600
Submitted on 24 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Overview on the Cardiac ElectroPhysiology Simulator (CEPS)

Nejib Zemzemi, Yves Coudière, Florian Caro, Marc Fuentes,
INRIA Bordeaux Sud-Ouest, Institut Mathématiques Bordeaux, Institut de RYthmologie et
Modélisation Cardiaque
nejib.zemzemi, yves.coudiere@inria.fr, florian.caro@inria.fr,
marc.fuentes@inria.fr

Goals
• Develop a modular code called CEPS (Cardiac ElectroPhysiology Simulator) useful for
doctors and for applied mathematician researchers.
• Develop a parallel code in order to take account multiple scales (from the macroscopic
scale to the microscopic scale).
• Develop a parallel code in order to be efficient with clusters like Plafrim, Curie, or personal
computer...
• Develop useful tools for installation of the code and validation test cases.

Actors
A lot of persons work in the CEPS code, see the not exhaustive list below
• Juhoor Mehdi (old ADT), the foundation of CEPS with a lot of contribution of Nejib Zemzemi
who contributes on the framework of CEPS.
• Marc Fuentes (SED), to help us on everything on the code (compilation, development,...).
• Pierre Elliot Bécue works with CEPS for simulation at the microscopic scale
• Gerard Antoine, works with CEPS on the implementation of the bilayer atria model in
CEPS.
• Florian Caro works on numerical methods and on microscopic scale with PE Bécue.
• Charlie Douanla-lontsi works on high order time numerical schemes with Charles Pierre.
Those schemes are devoted to be implemented in CEPS.
• Students and PhD thesis for the future.

What is done currently in CEPS
• Mono domain model developed in CEPS

\[\begin{align*}
 & (C_a \partial_t v + I_{Na}(u,v)) - div(\sigma \nabla v) = 0 \text{ dans } \Omega_H, \\
 & (C_m \partial_t u - g_m u + C_f v) - div(\sigma \nabla u) = 0 \text{ dans } \Omega_H, \\
 & u \cdot \nu = 0 \text{ sur } \partial \Omega_H, \\
 & \sigma v_n = 0 \text{ sur } \partial \Omega_H,
\end{align*} \]

where \(v \) and \(u \) denote the unknown vector for the ionic variables and the electric poten-
tial. Parameters \(\gamma \) and \(C_m \) are physical data and \(\sigma \) denotes the conductivity tensor of the
medium.

About 11 000 lines of C++ (white header files but without test files)

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>blank</th>
<th>comment</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/ C++ Header</td>
<td>98</td>
<td>2915</td>
<td>7357</td>
<td>1134</td>
</tr>
<tr>
<td>Cr++</td>
<td>55</td>
<td>1602</td>
<td>3000</td>
<td>7610</td>
</tr>
<tr>
<td>CMake</td>
<td>16</td>
<td>74</td>
<td>96</td>
<td>311</td>
</tr>
<tr>
<td>SMT</td>
<td>169</td>
<td>4591</td>
<td>10453</td>
<td>19264</td>
</tr>
</tbody>
</table>

Validation

– Unit test case.

– Validation test case (comparison between exact solution and numerical solution).

1/16 Test #1: utility.numeric	0.19 sec
2/16 Test #2: linearAlgebra.distributedVector	0.39 sec
3/16 Test #3: linearAlgebra.distributedHaloVector	1.12 sec
4/16 Test #4: linearAlgebra.distributedMatrix	1.24 sec
5/16 Test #5: linearAlgebra.linearSystem	1.17 sec
6/16 Test #6: geometry.geometry	1.18 sec
7/16 Test #7: ode.ionicModels	8.58 sec
8/16 Test #8: pde.common	0.12 sec
9/16 Test #9: pde.boundaryConditions	1.14 sec
10/16 Test #10: pde.assemblers	10.00 sec

Perspectives

– Use Scotch instead of ParMetis due to the non reactivity of ParMetis team. Scotch is an
equivalent of ParMetis developed at INRIA to operate matrix decomposition.

– Run these tests on the clusters at bigger scales to identify scaling issues.

– Use CEPS to test high order Finite Volume scheme (Y. Coudière) and high order numerical
scheme in time (C. Pierre and C. Douanla-lontsi).

– Use CEPS for numerical simulation at the microscopic scale (P. E. Bécue and M. Potse).

– Use CEPS for the development of future research with students.

– Compare macroscopic bi-domain and monodomain model to homogenization-based meth-
ods achieved in CARMEN with the microscopic mode developed with P.E. Bécue and M.
Potse.

– Integrate Bilayer Atria model in CEPS with A. Gérard and compare obtained results with
those obtained by classical models.