F. Marseille, C. , and R. De, France. 6 Molecular Wood Biotechnology and Technical Mycology, Büsgen-Instit ute, Georg-August-University, 37077 Göttingen, Germany. 7 Department of Molecular Microbiology and Biotechnology The Netherlands. 10 The Weizmann Institute of Science, Centro de Investigaciones Biológicas (CIB) Architecture et Fonction des Macromolécules Biologiques, pp.12-13288, 13397.
URL : https://hal.archives-ouvertes.fr/hal-00177611

F. Marseille, 13 Centre National de la Recherche Scientifique, CNRS UMR 7257, p.15

C. Sánchez, Lignocellulosic residues: Biodegradation and bioconversion by fungi, Biotechnology Advances, vol.27, issue.2, pp.185-194, 2009.
DOI : 10.1016/j.biotechadv.2008.11.001

D. Martinez, R. Berka, B. Henrissat, M. Saloheimo, M. Arvas et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina), Nature Biotechnology, vol.307, issue.5, pp.553-560, 2008.
DOI : 10.1038/nbt1403

D. Martinez, J. Challacombe, I. Morgenstern, D. Hibbett, M. Schmoll et al., supports unique mechanisms of lignocellulose conversion, Proceedings of the National Academy of Sciences, vol.106, issue.6, pp.1954-1959, 2009.
DOI : 10.1073/pnas.0809575106

T. Kirk and R. Farrell, Enzymatic "Combustion": The Microbial Degradation of Lignin, Annual Review of Microbiology, vol.41, issue.1, pp.465-505, 1987.
DOI : 10.1146/annurev.mi.41.100187.002341

D. Floudas, M. Binder, R. Riley, K. Barry, R. Blanchette et al., The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes, Science, vol.336, issue.6089, pp.1715-1719, 2012.
DOI : 10.1126/science.1221748

URL : https://hal.archives-ouvertes.fr/hal-01268324

A. Martínez, M. Speranza, F. Ruiz-dueñas, P. Ferreira, S. Camarero et al., Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin, Int Microbiol, vol.8, pp.195-204, 2005.

A. Lomascolo, E. Uzan-boukhris, I. Herpoël-gimbert, J. Sigoillot, and L. Lesage-meessen, Peculiarities of Pycnoporus species for applications in biotechnology, Applied Microbiology and Biotechnology, vol.112, issue.103, pp.1129-1149, 2011.
DOI : 10.1007/s00253-011-3596-5

I. Herpoël, S. Moukha, L. Lesage-meessen, J. Sigoillot, and M. Asther, Selection of Pycnoporus cinnabarinus strains for laccase production, FEMS Microbiology Letters, vol.183, issue.2, pp.301-306, 2000.
DOI : 10.1016/S0378-1097(99)00616-3

A. Alves, E. Record, A. Lomascolo, K. Scholtmeijer, M. Asther et al., Highly Efficient Production of Laccase by the Basidiomycete Pycnoporus cinnabarinus, Applied and Environmental Microbiology, vol.70, issue.11, pp.6379-6384, 2004.
DOI : 10.1128/AEM.70.11.6379-6384.2004

S. Moukha, T. Dumonceaux, E. Record, and F. Archibald, Cloning and analysis of Pycnoporus cinnabarinus cellobiose dehydrogenase, Gene, vol.234, issue.1, pp.23-33, 1999.
DOI : 10.1016/S0378-1119(99)00189-4

S. Halaouli, M. Asther, K. Kruus, L. Guo, M. Hamdi et al., Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications, Journal of Applied Microbiology, vol.23, issue.2, pp.332-343, 2005.
DOI : 10.1016/0031-9422(96)00309-3

L. Lesage-meessen, M. Haon, M. Delattre, J. Thibault, B. Colonna-ceccaldi et al., An attempt to channel the transformation of vanillic acid into vanillin by controlling methoxyhydroquinone formation in Pycnoporus cinnabarinus with cellobiose, Applied Microbiology and Biotechnology, vol.47, issue.4, pp.393-397, 1997.
DOI : 10.1007/s002530050946

I. Estrada-alvarado, D. Navarro, E. Record, M. Asther, and M. Asther, Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: an alternative for producing a strong natural antioxidant, World Journal of Microbiology and Biotechnology, vol.19, issue.2, pp.157-160, 2003.
DOI : 10.1023/A:1023264200256

L. Lesage-meessen, M. Delattre, M. Haon, J. Thibault, B. Ceccaldi et al., A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus, Journal of Biotechnology, vol.50, issue.2-3, pp.107-113, 1996.
DOI : 10.1016/0168-1656(96)01552-0

C. Eggert, U. Temp, and K. Eriksson, The lignolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase, Appl Environ Microbiol, vol.62, pp.1151-1158, 1996.

A. Lomascolo, E. Record, I. Herpoël-gimbert, M. Delattre, J. Robert et al., Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer, Journal of Applied Microbiology, vol.133, issue.4, pp.618-624, 2003.
DOI : 10.1007/s002530051408

I. Herpoël, H. Jeller, G. Fang, M. Petit-conil, R. Bourbonnais et al., Efficient enzymatic delignification of wheat straw pulp by a sequential xylanase-laccase treatment, J Pulp Paper Sci, vol.28, pp.67-71, 2002.

S. Camarero, O. Garcia, T. Vidal, J. Colom, J. Del-rio et al., Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system, Enzyme and Microbial Technology, vol.35, issue.2-3, pp.113-120, 2004.
DOI : 10.1016/j.enzmictec.2003.10.019

C. Sigoillot, E. Record, V. Belle, J. Robert, A. Levasseur et al., Natural and recombinant fungal laccases for paper pulp bleaching, Applied Microbiology and Biotechnology, vol.64, issue.3, pp.346-352, 2004.
DOI : 10.1007/s00253-003-1468-3

H. Ravalason, I. Herpoel-gimbert, E. Record, F. Bertaud, S. Grisel et al., Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching, Journal of Biotechnology, vol.142, issue.3-4, pp.220-226, 2009.
DOI : 10.1016/j.jbiotec.2009.04.013

M. Eugenio, S. Santos, J. Carbajo, J. Martin, R. Martin-sampedro et al., Kraft pulp biobleaching using an extracellular enzymatic fluid produced by Pycnoporus sanguineus, Bioresource Technology, vol.101, issue.6, pp.1866-1870, 2010.
DOI : 10.1016/j.biortech.2009.09.084

S. Camarero, D. Ibarra, M. Martínez, and A. Martínez, Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes, Applied and Environmental Microbiology, vol.71, issue.4, pp.1775-1784, 2005.
DOI : 10.1128/AEM.71.4.1775-1784.2005

L. Lu, M. Zhao, B. Zhang, S. Yu, X. Bian et al., Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme, Applied Microbiology and Biotechnology, vol.69, issue.6, pp.1232-1239, 2007.
DOI : 10.1007/s00253-006-0767-x

E. Uzan, P. Nousiainen, V. Balland, J. Sipila, F. Piumi et al., High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications, J Appl Microbiol, vol.108, pp.2199-2213, 2010.

A. Jaouani, F. Guillén, M. Penninckx, A. Martínez, and M. Martínez, Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater, Enzyme and Microbial Technology, vol.36, issue.4, pp.478-486, 2005.
DOI : 10.1016/j.enzmictec.2004.11.011

J. Berrio, F. Plou, A. Ballesteros, A. Martínez, and M. Martínez, laccase on Eupergit C: Stabilization and treatment of olive oil mill wastewaters, Biocatalysis and Biotransformation, vol.66, issue.2-4, pp.130-134, 2007.
DOI : 10.1080/10242420701379122

Y. Yahaya, M. Mashitah, and S. Bhatia, Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies, Journal of Hazardous Materials, vol.161, issue.1, pp.189-195, 2009.
DOI : 10.1016/j.jhazmat.2008.03.104

J. Osma, J. Toca-herrera, and S. Rodríguez-couto, Uses of Laccases in the Food Industry, Enzyme Research, vol.221, issue.4607, p.918761, 2010.
DOI : 10.1007/s11274-009-0079-2

E. Gil, L. Muller, M. Santiago, and T. Garcia, Biosensor Based on Brut Extract from Laccase (Pycnoporus sanguineus) for Environmental Analysis of Phenolic Compounds, Portugaliae Electrochimica Acta, vol.27, issue.3, pp.215-225, 2009.
DOI : 10.4152/pea.200903215

T. Kudanga, G. Nyanhongo, G. Guebitz, and S. Burton, Potential applications of laccase-mediated coupling and grafting reactions: A review, Enzyme and Microbial Technology, vol.48, issue.3, pp.195-208, 2011.
DOI : 10.1016/j.enzmictec.2010.11.007

A. Lomascolo, J. Cayol, M. Roche, L. Guo, J. Robert et al., Molecular clustering of Pycnoporus strains from various geographic origins and isolation of monokaryotic strains for laccase hyperproduction, Mycological Research, vol.106, issue.10, pp.1193-1203, 2002.
DOI : 10.1017/S0953756202006494

J. Wessels, G. Mulder, and J. Springer, Expression of dikaryon-specific and non-specific mRNAs of Schizopyllum commune in relation to environmental conditions and fruiting, J Gen Microbiol, vol.13, pp.2557-2561, 1987.

J. Meza, A. Lomascolo, L. Casalot, J. Sigoillot, and A. R. , Laccase production by Pycnoporus cinnabarinus grown on sugar-cane bagasse: Influence of ethanol vapours as inducer, Process Biochemistry, vol.40, issue.10, pp.3365-3371, 2005.
DOI : 10.1016/j.procbio.2005.03.004

J. Meza, R. Auria, A. Lomascolo, J. Sigoillot, and L. Casalot, Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3, Enzyme and Microbial Technology, vol.41, issue.1-2, pp.162-163, 2007.
DOI : 10.1016/j.enzmictec.2006.12.018

E. Espagne, O. Lespinet, F. Malagnac, D. Silva, C. Jaillon et al., The genome sequence of the model ascomycete fungus Podospora anserina, Genome Biology, vol.9, issue.5, p.77, 2008.
DOI : 10.1186/gb-2008-9-5-r77

URL : https://hal.archives-ouvertes.fr/hal-00286300

J. Mariette, F. Escudié, N. Allias, G. Salin, C. Noirot et al., NG6: Integrated next generation sequencing storage and processing environment, BMC Genomics, vol.13, issue.1, p.462, 2012.
DOI : 10.1128/AEM.01541-09

URL : https://hal.archives-ouvertes.fr/inserm-00733481

J. Mariette, C. Noirot, and C. Klopp, Assessment of replicate bias in 454 pyrosequencing and a multi-purpose read-filtering tool, BMC Res Notes, p.149, 2011.

M. Stanke, A. Tzvetkova, and B. Morgenstern, AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome, Genome Biol, vol.7, issue.S11, pp.1-8, 2006.

L. Li, C. Stoeckert, . Jr, and D. Roos, OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes, Genome Research, vol.13, issue.9, pp.2178-2189, 2003.
DOI : 10.1101/gr.1224503

M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler et al., Gene Ontology: tool for the unification of biology, Nature Genetics, vol.9, issue.1, pp.25-29, 2000.
DOI : 10.1038/75556

A. Price, N. Jones, and P. Pevzner, De novo identification of repeat families in large genomes, Bioinformatics, vol.21, issue.Suppl 1, pp.351-358, 2005.
DOI : 10.1093/bioinformatics/bti1018

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

J. Jurka, V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany et al., Repbase Update, a database of eukaryotic repetitive elements, Cytogenetic and Genome Research, vol.110, issue.1-4, pp.462-467, 2005.
DOI : 10.1159/000084979

M. Carthy, E. , M. Donald, and J. , LTR_STRUC: a novel search and identification program for LTR retrotransposons, Bioinformatics, vol.19, pp.362-367, 2003.

A. Smit, R. Hubley, and P. Green, RepeatMasker Open-3.0, 1996.

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Research, vol.27, issue.2, pp.573-580, 1999.
DOI : 10.1093/nar/27.2.573

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, vol.42, issue.D1, pp.490-495, 2014.
DOI : 10.1093/nar/gkt1178

A. Levasseur, E. Drula, V. Lombard, P. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnology for Biofuels, vol.6, issue.1, p.41, 2013.
DOI : 10.1186/1471-2148-12-186

URL : https://hal.archives-ouvertes.fr/hal-01268121

R. Finn, J. Clements, and S. Eddy, HMMER web server: interactive sequence similarity searching, Nucleic Acids Research, vol.39, issue.suppl, pp.29-37, 2011.
DOI : 10.1093/nar/gkr367

R. Breathnach, C. Benoist, O. Hara, K. Chambon, and P. , Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries., Proceedings of the National Academy of Sciences, vol.75, issue.10, pp.4853-4857, 1978.
DOI : 10.1073/pnas.75.10.4853

M. Couturier, D. Navarro, C. Olivé, D. Chevret, M. Haon et al., Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis, BMC Genomics, vol.13, issue.1, p.57, 2012.
DOI : 10.1351/pac198759020257

URL : https://hal.archives-ouvertes.fr/hal-01001052

Y. Arfi, D. Chevret, B. Henrissat, J. Berrin, A. Levasseur et al., Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp., Nature Communications, vol.13, pp.1471-2164486, 2013.
DOI : 10.1038/ncomms2850

URL : https://hal.archives-ouvertes.fr/hal-01000933

H. Pel, J. De-winde, D. Archer, P. Dyer, G. Hofmann et al., Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513, Nat Biotechnol, vol.88, issue.25, pp.221-231, 2007.

E. Fernandez-fueyo, F. Ruiz-dueñas, P. Ferreira, D. Floudas, D. Hibbett et al., Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.5458-5463
DOI : 10.1073/pnas.1119912109

D. Martínez, L. Larrondo, N. Putnam, M. Gelpke, K. Huang et al., Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78, Nature Biotechnology, vol.148, issue.6, pp.695-700, 2004.
DOI : 10.1101/gr.122800

A. Levasseur, P. Pontarotti, O. Poch, and J. Thompson, Strategies for reliable exploitation of evolutionary concepts in high throughput biology, Evol Bioinform Online, vol.4, pp.121-137, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00368022

A. Levasseur, L. Orlando, X. Bailly, M. Milinkovitch, E. Danchin et al., Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution, Biological Reviews, vol.162, issue.4, pp.551-572, 2007.
DOI : 10.1038/ng1812

A. Levasseur and P. Pontarotti, The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics, Biology Direct, vol.6, issue.1, p.11, 2011.
DOI : 10.1186/gb-2008-9-3-r54

C. Murat, T. Payen, D. Petitpierre, and J. Labbé, Repeated elements in filamentous fungi and comparative genomic of wood-decay fungi. In The Ecological Genomics of Fungi, 2013.

R. Ohm, J. De-jong, L. Lugones, A. Aerts, E. Kothe et al., Genome sequence of the model mushroom Schizophyllum commune, Genome sequence of the model mushroom Schizophyllum commune, pp.957-963, 2010.
DOI : 10.1038/nbt.1643

D. Eastwood, D. Floudas, M. Binder, A. Majcherczyk, P. Schneider et al., The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi, Science, vol.333, issue.6043, pp.762-765, 2011.
DOI : 10.1126/science.1205411

F. Guillén, V. Gómez-toribio, M. Martínez, and A. Martínez, Production of Hydroxyl Radical by the Synergistic Action of Fungal Laccase and Aryl Alcohol Oxidase, Archives of Biochemistry and Biophysics, vol.383, issue.1, pp.142-147, 2000.
DOI : 10.1006/abbi.2000.2053

C. Sigoillot, A. Lomascolo, E. Record, J. Robert, M. Asther et al., Lignocellulolytic and hemicellulolytic system of Pycnoporus cinnabarinus: isolation and characterization of a cellobiose dehydrogenase and a new xylanase, Enzyme and Microbial Technology, vol.31, issue.6, pp.876-883, 2002.
DOI : 10.1016/S0141-0229(02)00208-9

M. Bey, J. Berrin, L. Poidevin, and J. Sigoillot, Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes, Microbial Cell Factories, vol.10, issue.1, p.113, 2011.
DOI : 10.1186/1475-2859-9-58

K. Caffall and D. Mohnen, The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Carbohydrate Research, vol.344, issue.14, pp.1879-1900, 2009.
DOI : 10.1016/j.carres.2009.05.021

C. Eggert, P. Lafayette, U. Temp, K. Eriksson, and J. Dean, Molecular analysis of a laccase gene from the white-rot fungus Pycnoporus cinnabarinus

L. Otterbein, E. Record, D. Chereau, I. Herpoël, M. Asther et al., Isolation of a new laccase isoform from the white-rot fungi <i>Pycnoporus cinnabarinus</i> strain ss3, Canadian Journal of Microbiology, vol.46, issue.8, pp.759-763, 2000.
DOI : 10.1139/cjm-46-8-759

D. Yaver and E. Golightly, Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family, Gene, vol.181, issue.1-2, pp.95-102, 1996.
DOI : 10.1016/S0378-1119(96)00480-5

H. Hoshida, M. Nakao, H. Kanazawa, K. Kubo, T. Hakukawa et al., Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts, Journal of Bioscience and Bioengineering, vol.92, issue.4, pp.372-380, 2001.
DOI : 10.1016/S1389-1723(01)80242-5

J. Wahleithner, F. Xu, K. Brown, S. Brown, E. Golightly et al., The identification and characterization of four laccases from the plant pathogenic fungusRhizoctonia solani, Current Genetics, vol.81, issue.4, pp.395-403, 1996.
DOI : 10.1007/BF02208621

A. Litvintseva and J. Henson, Cloning, Characterization, and Transcription of Three Laccase Genes from Gaeumannomyces graminis var. tritici, the Take-All Fungus, Applied and Environmental Microbiology, vol.68, issue.3, pp.1305-1311, 2002.
DOI : 10.1128/AEM.68.3.1305-1311.2002

Y. Xiao, Y. Hong, J. Li, T. Hang, P. Tong et al., Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression, Applied Microbiology and Biotechnology, vol.181, issue.4, pp.493-501, 2006.
DOI : 10.1007/s00253-005-0188-2

D. Soden and A. Dobson, Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, pp.1755-1763, 2001.

E. Rodriguez, F. Ruiz-duenas, R. Kooistra, A. Ramb, A. Martínez et al., Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein, Journal of Biotechnology, vol.134, issue.1-2, pp.9-19, 2008.
DOI : 10.1016/j.jbiotec.2007.12.008

C. Pezzella, F. Autore, P. Giardina, A. Piscitelli, G. Sannia et al., The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members, Current Genetics, vol.117, issue.1, pp.45-57, 2009.
DOI : 10.1007/s00294-008-0221-y

S. Kilaru, P. Hoegger, and U. Kües, The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies, Current Genetics, vol.65, issue.1, pp.45-60, 2006.
DOI : 10.1007/s00294-006-0074-1

P. Hoegger, S. Kilaru, T. James, J. Thacker, and U. Kües, Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences, FEBS Journal, vol.154, issue.10, pp.2308-2326, 2006.
DOI : 10.1007/s002940050061

C. Perry, S. Matcham, D. Wood, and C. Thurston, The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus, Journal of General Microbiology, vol.139, issue.1, pp.171-178, 1993.
DOI : 10.1099/00221287-139-1-171

P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle et al., Laccases: a never-ending story, Cellular and Molecular Life Sciences, vol.62, issue.3, pp.369-385, 2010.
DOI : 10.1007/s00018-009-0169-1

F. Ruiz-dueñas, E. Fernández, M. Martínez, and A. Martínez, Pleurotus ostreatus heme peroxidases: An in silico analysis from the genome sequence to the enzyme molecular structure, Comptes Rendus Biologies, vol.334, issue.11, pp.795-805, 2011.
DOI : 10.1016/j.crvi.2011.06.004

F. Ruiz-dueñas, M. Morales, E. García, Y. Miki, M. Martínez et al., Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases, Journal of Experimental Botany, vol.60, issue.2, pp.441-452, 2009.
DOI : 10.1093/jxb/ern261

L. Bordoli, F. Kiefer, K. Arnold, P. Benkert, J. Battey et al., Protein structure homology modeling using SWISS-MODEL workspace, Nature Protocols, vol.372, issue.1, pp.1-13, 2009.
DOI : 10.1038/nprot.2008.197

F. Ruiz-dueñas, T. Lundell, D. Floudas, L. Nagy, J. Barrasa et al., Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes, Mycologia, vol.245, issue.6, pp.1428-1444, 2013.
DOI : 10.1002/prot.21673

M. Hofrichter, R. Ullrich, M. Pecyna, C. Liers, and T. Lundell, New and classic families of secreted fungal heme peroxidases, Applied Microbiology and Biotechnology, vol.69, issue.Pt3, pp.871-897, 2010.
DOI : 10.1007/s00253-010-2633-0

F. Ruiz-dueñas, A. Martínez, M. Ayala, and . Berlin, Structural and Functional Features of Peroxidases with a Potential as Industrial Biocatalysts, Biocatalysts based on heme peroxidases, pp.37-59
DOI : 10.1007/978-3-642-12627-7_3

E. Morin, A. Kohler, A. Baker, M. Foulongne-oriol, V. Lombard et al., Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche, Proceedings of the National Academy of Sciences, vol.109, issue.43, pp.17501-17506
DOI : 10.1073/pnas.1206847109

URL : https://hal.archives-ouvertes.fr/hal-01267851

M. Hofrichter and R. Ullrich, Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance, Applied Microbiology and Biotechnology, vol.117, issue.22, pp.276-288, 2006.
DOI : 10.1007/s00253-006-0417-3

T. Johansson and P. Nyman, A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor, Gene, vol.170, issue.1, pp.31-38, 1996.
DOI : 10.1016/0378-1119(95)00846-2

S. Pointing, A. Pelling, G. Smith, K. Hyde, and C. Reddy, Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences, Mycological Research, vol.109, issue.1, pp.115-124, 2005.
DOI : 10.1017/S0953756204001376

I. Morgenstern, D. Robertson, and D. Hibbett, Characterization of Three mnp Genes of Fomitiporia mediterranea and Report of Additional Class II Peroxidases in the Order Hymenochaetales, Applied and Environmental Microbiology, vol.76, issue.19, pp.6431-6440, 2010.
DOI : 10.1128/AEM.00547-10

S. Rajakumar, S. Gaskell, D. Cullen, S. Lobos, E. Karahanian et al., Lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity, Appl Environ Microbiol, vol.62, pp.2660-2663, 1996.

E. Fernández-fueyo, F. Ruiz-dueñas, P. Ferreira, D. Floudas, D. Hibbett et al., Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.5458-5463
DOI : 10.1073/pnas.1119912109

C. Evans, M. Dutton, F. Guillén, and R. Veness, Enzymes and small molecular mass agents involved with lignocellulose degradation, FEMS Microbiology Reviews, vol.13, issue.2-3, pp.235-240, 1994.
DOI : 10.1111/j.1574-6976.1994.tb00044.x

V. Wymelenberg, A. Sabat, G. Mozuch, M. Kersten, P. Cullen et al., Structure, Organization, and Transcriptional Regulation of a Family of Copper Radical Oxidase Genes in the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium, Applied and Environmental Microbiology, vol.72, issue.7, pp.4871-4877, 2006.
DOI : 10.1128/AEM.00375-06

M. Whittaker, P. Kersten, D. Cullen, and J. Whittaker, Identification of Catalytic Residues in Glyoxal Oxidase by Targeted Mutagenesis, Journal of Biological Chemistry, vol.274, issue.51, pp.36226-36232, 1999.
DOI : 10.1074/jbc.274.51.36226

G. Songulashvili, V. Elisashvili, S. Wasser, E. Nevo, and Y. Hadar, Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes, Enzyme and Microbial Technology, vol.41, issue.1-2, pp.57-61, 2007.
DOI : 10.1016/j.enzmictec.2006.11.024

V. Elisashvili, E. Kachlishvili, and M. Penninckx, Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes, Journal of Industrial Microbiology & Biotechnology, vol.41, issue.11, pp.1531-1538, 2008.
DOI : 10.1007/s10295-008-0454-2

V. Elisashvili, E. Kachlishvili, N. Tsiklauri, E. Metreveli, T. Khardziani et al., Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia, World Journal of Microbiology and Biotechnology, vol.44, issue.2, pp.331-339, 2009.
DOI : 10.1007/s11274-008-9897-x

P. Sathishkumar, K. Murugesan, and T. Palvannan, Production of laccase from Pleurotus florida using agro-wastes and efficient decolorization of Reactive blue 198, Journal of Basic Microbiology, vol.25, issue.4, pp.360-367, 2010.
DOI : 10.1002/jobm.200900407

J. Osma, U. Moilanen, J. Toca-herrera, and S. Rodriguez-couto, Morphology and laccase production of white-rot fungi grown on wheat bran flakes under semi-solid-state fermentation conditions, FEMS Microbiology Letters, vol.318, issue.1, pp.27-34, 2011.
DOI : 10.1111/j.1574-6968.2011.02234.x

L. Poidevin, J. Berrin, C. Bennati-granier, A. Levasseur, I. Herpoël-gimbert et al., Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes, Applied Microbiology and Biotechnology, vol.16, issue.17, 2014.
DOI : 10.1007/s00253-014-5698-3

URL : https://hal.archives-ouvertes.fr/hal-01070025

G. Janusz, K. Kucharzyk, A. Pawlik, M. Staszczak, and A. Paszczynski, Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation, Enzyme and Microbial Technology, vol.52, issue.1, pp.1-12, 2013.
DOI : 10.1016/j.enzmictec.2012.10.003

T. Koseki, S. Fushinobu, . Ardiansyah, H. Shirakawa, and M. Komai, Occurrence, properties, and applications of feruloyl esterases, Applied Microbiology and Biotechnology, vol.144, issue.5760, pp.803-810, 2009.
DOI : 10.1007/s00253-009-2148-8

B. Saha, Hemicellulose bioconversion, Journal of Industrial Microbiology and Biotechnology, vol.30, issue.5, pp.279-291, 2003.
DOI : 10.1007/s10295-003-0049-x

URL : https://naldc.nal.usda.gov/naldc/download.xhtml?id=25929&content=PDF

K. Kohno, Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals, Journal of Biochemistry, vol.147, issue.1, pp.27-33, 2010.
DOI : 10.1093/jb/mvp196

E. Berends, R. Ohm, J. De-jong, G. Rouwendal, H. W. Lugones et al., Genomic and Biochemical Analysis of N Glycosylation in the Mushroom-Forming Basidiomycete Schizophyllum commune, Applied and Environmental Microbiology, vol.75, issue.13, pp.4648-4652, 2009.
DOI : 10.1128/AEM.00352-09

B. Tefsen, A. Ram, I. Van-die, and F. Routier, Galactofuranose in eukaryotes: aspects of biosynthesis and functional impact, Glycobiology, vol.22, issue.4, pp.456-469, 2012.
DOI : 10.1093/glycob/cwr144

M. Nobles and B. Frew, STUDIES IN WOOD-INHABITING HYMENOMYCETES: V. THE GENUS PYCNOPORUS KARST., Botany, vol.40, issue.7, pp.987-1016, 1962.
DOI : 10.1139/b62-092

L. Casselton and . Olesnicky, Molecular genetics of mating type recognition in basidiomycete fungi, Microbiolo Mol Biol Rev, vol.62, pp.55-70, 1998.

U. Kües, T. James, and J. Heitman, Mating type in basidiomycetes: Unipolar, bipolar, and tetrapolar patterns of sexuality Heidelberg: Evolution of fungi and fungal-like organisms, The mycota, pp.97-160

U. Kües and L. Casselton, Homeodomains and regulation of sexual development in basidiomycetes, Trends in Genetics, vol.8, issue.5, pp.154-155, 1992.
DOI : 10.1016/0168-9525(92)90207-K

R. Asante-owusu, A. Banham, H. Böhnert, E. Mellor, and L. Casselton, Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains, Gene, vol.172, issue.1, pp.25-31, 1996.
DOI : 10.1016/0378-1119(96)00177-1

H. Niculita-hirzel, J. Labbé, A. Kohler, L. Tacon, F. Martin et al., reveals distinct evolution between the two mating type loci, New Phytologist, vol.10, issue.103, pp.329-342, 2008.
DOI : 10.1111/j.1469-8137.2008.02525.x

T. James, U. Kües, S. Rehner, and R. Vilgalys, Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi, Fungal Genetics and Biology, vol.41, issue.3, pp.381-390, 2004.
DOI : 10.1016/j.fgb.2003.11.008

T. James, M. Lee, and L. Van-diepen, A Single Mating-Type Locus Composed of Homeodomain Genes Promotes Nuclear Migration and Heterokaryosis in the White-Rot Fungus Phanerochaete chrysosporium, Eukaryotic Cell, vol.10, issue.2, pp.249-262, 2011.
DOI : 10.1128/EC.00212-10

T. James, S. Sun, W. Li, J. Heitman, H. Kuo et al., Polyporales genomes reveal the genetic architecture underlying tetrapolar and bipolar mating systems, Mycologia, vol.69, issue.6, pp.1374-1390, 2013.
DOI : 10.2307/3760455

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2739, 2011.
DOI : 10.1093/molbev/msr121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203626

U. Kües and M. Navarro-gonzález, Mating-type orthologous genes in the primarily homothallic Moniliophthora perniciosa, the causal agent of Witches' Broom Disease in cacao, Journal of Basic Microbiology, vol.434, issue.5, pp.442-451, 2010.
DOI : 10.1002/jobm.201000013

. Levasseur, The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown, BMC Genomics, vol.15, issue.1, p.486, 2014.
DOI : 10.1186/1471-2164-15-486

URL : https://hal.archives-ouvertes.fr/hal-01204353