A. Bar-even, A. Flamholz, E. Noor, and R. Milo, Rethinking glycolysis: on the biochemical logic of metabolic pathways, Nat Chem Biol, vol.8, pp.509-517, 2012.

R. Baran, B. P. Bowen, M. N. Price, A. P. Arkin, A. M. Deutschbauer et al., Metabolic footprinting of mutant libraries to map metabolite utilization to genotype, ACS Chem Biol, vol.8, pp.189-199, 2013.

D. Beste, B. Bonde, N. Hawkins, J. L. Ward, M. H. Beale et al., 13 C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation, PLoS Pathog, vol.7, p.1002091, 2011.

D. Birkes and D. Y. Dodge, Alternative Methods of Regression, 1993.

B. Bodenmiller, S. Wanka, C. Kraft, J. Urban, D. Campbell et al., Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast, Sci Signal, vol.3, p.4, 2010.

J. Brink, . Van-den, A. B. Canelas, W. M. Gulik, . Van et al., Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism, Appl Environ Microbiol, vol.74, pp.5710-5723, 2008.

J. M. Bü-scher, W. Liebermeister, J. M. Uhr, M. Muntel, J. Botella et al., Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism, Science, vol.335, pp.1099-1103, 2012.

J. M. Bü-scher, S. Moco, U. Sauer, and N. Zamboni, Ultrahigh performance liquid chromatography À tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites, Anal Chem, vol.82, pp.4403-4412, 2010.

V. Chubukov, I. A. Zuleta, and H. Li, Regulatory architecture determines optimal regulation of gene expression in metabolic pathways, Proc Natl Acad Sci, vol.109, pp.5127-5132, 2012.

P. Daran-lapujade, S. Rossell, W. M. Gulik, . Van, M. Luttik et al., The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels, Proc Natl Acad Sci, vol.104, pp.15753-15758, 2007.

M. Dauner, T. Storni, and U. Sauer, Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture, J Bacteriol, vol.183, pp.7308-7317, 2001.

T. Doan and S. Aymerich, Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate, Mol Microbiol, vol.47, pp.1709-1721, 2003.

S. Even, N. D. Lindley, and M. Cocaign-bousquet, Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures, Microbiology, vol.149, pp.1935-1944, 2003.

C. Eymann, G. Homuth, C. Scharf, and M. Hecker, Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis, J Bacteriol, vol.184, pp.2500-2520, 2002.

D. A. Fell and S. Thomas, Physiological control of metabolic flux: the requirement for multisite modulation, Biochem J, vol.311, pp.35-39, 1995.

S. Fendt, A. P. Oliveira, S. Christen, P. Picotti, R. C. Dechant et al., Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast, Mol Syst Biol, vol.6, p.432, 2010.

E. Fischer and U. Sauer, Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS, Eur J Biochem, vol.270, pp.880-891, 2003.

A. Flamholz, E. Noor, A. Bar-even, W. Liebermeister, and R. Milo, Glycolytic strategy as a tradeoff between energy yield and protein cost, Proc Natl Acad Sci, vol.110, pp.10039-10044, 2013.

, Transcription regulation of central carbon metabolism V Chubukov et al

L. L. Fonseca, C. Sánchez, H. Santos, and E. O. Voit, Complex coordination of multi-scale cellular responses to environmental stress, Mol BioSyst, vol.7, pp.731-741, 2011.

T. Fuhrer, D. Heer, B. Begemann, and N. Zamboni, High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry, Anal Chem, vol.83, pp.7074-7080, 2011.

Y. Fujita and E. Freese, Purification and properties of fructose-1,6-bisphosphatase of Bacillus subtilis, J Biol Chem, vol.254, pp.5340-5349, 1979.

Y. Fujita, K. Yoshida, Y. Miwa, N. Yanai, E. Nagakawa et al., Identification and expression of the Bacillus subtilis fructose-1,6-bisphosphatase gene (fbp), J Bacteriol, vol.180, pp.4309-4313, 1998.

O. Gallego, M. J. Betts, J. Gvozdenovic-jeremic, K. Maeda, C. Matetzki et al., A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae, Mol Syst Biol, vol.6, p.430, 2010.

L. Gerosa and U. Sauer, Regulation and control of metabolic fluxes in microbes, Curr Opin Biotechnol, vol.22, pp.566-575, 2011.

S. Goyal, J. Yuan, T. Chen, J. D. Rabinowitz, and N. S. Wingreen, Achieving optimal growth through product feedback inhibition in metabolism, PLoS Comput Biol, vol.6, p.1000802, 2010.

J. Hauf, F. K. Zimmermann, and . Mü, Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae, Enzyme Microb Technol, vol.26, pp.688-698, 2000.

B. Haverkorn-van-rijsewijk, A. Nanchen, S. Nallet, R. J. Kleijn, and U. Sauer, Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli, Mol Syst Biol, vol.7, p.477, 2011.

F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J Mol Biol, vol.3, pp.318-356, 1961.

L. A. Jaeckel, Estimating regression coefficients by minimizing the dispersion of the residuals, Ann Math Stat, vol.43, pp.1449-1458, 1972.

S. Jin and A. L. Sonenshein, Identification of two distinct Bacillus subtilis citrate synthase genes, J Bacteriol, vol.176, pp.4669-4679, 1994.

H. Kacser and L. Acerenza, A universal method for achieving increases in metabolite production, Eur J Biochem, vol.216, pp.361-367, 1993.

R. J. Kleijn, J. M. Buescher, L. L. Chat, J. M. Aymerich, S. Sauer et al., Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis, J Biol Chem, vol.285, pp.1587-1596, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663413

S. Klumpp, Z. Zhang, and T. Hwa, Growth rate-dependent global effects on gene expression in bacteria, Cell, vol.139, pp.1366-1375, 2009.

K. Kochanowski, U. Sauer, and V. Chubukov, Somewhat in controlthe role of transcription in regulating metabolic fluxes, Curr Opin Biotechnol, vol.24, pp.987-993, 2013.

K. Kochanowski, B. Volkmer, L. Gerosa, B. Haverkorn-van-rijsewijk, A. Schmidt et al., Functioning of a metabolic flux sensor in Escherichia coli, Proc Natl Acad Sci, vol.110, pp.1130-1135, 2013.

X. Li, T. A. Gianoulis, K. Y. Yip, M. Gerstein, and M. Snyder, Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses, Cell, vol.143, pp.639-650, 2010.

B. Macek, I. Mijakovic, J. V. Olsen, F. Gnad, C. Kumar et al., The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis, Mol Cell Proteomics, vol.6, pp.697-707, 2007.

D. Molenaar, R. Van-berlo, D. De-ridder, and B. Teusink, Shifts in growth strategies reflect tradeoffs in cellular economics, Mol Syst Biol, vol.5, p.323, 2009.

P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc et al., Conditiondependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis, Science, vol.335, pp.1103-1106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000245

Y. Oh, B. O. Palsson, S. M. Park, C. H. Schilling, and R. Mahadevan, Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data, J Biol Chem, vol.282, pp.28791-28799, 2007.

J. Postmus, A. B. Canelas, J. Bouwman, B. M. Bakker, W. Van-gulik et al., Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation, J Biol Chem, vol.283, pp.23524-23532, 2008.

M. N. Price, A. M. Deutschbauer, J. M. Skerker, K. M. Wetmore, T. Ruths et al., Indirect and suboptimal control of gene expression is widespread in bacteria, Mol Syst Biol, vol.9, p.660, 2013.

J. D. Rabinowitz, J. J. Hsiao, K. R. Gryncel, E. R. Kantrowitz, X. Feng et al., Dissecting enzyme regulation by multiple allosteric effectors: nucleotide regulation of aspartate transcarbamoylase, Biochemistry, vol.47, pp.5881-5888, 2008.

A. Raj and A. Van-oudenaarden, Stochastic gene expression and its consequences, Cell, vol.135, pp.216-226, 2008.

M. Ralser, M. Wamelink, S. Latkolik, E. Jansen, H. Lehrach et al., Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response, Nat Biotechnol, vol.27, pp.604-605, 2009.

S. Rossell, A. Lindenbergh, C. C. Van-der-weijden, A. L. Kruckeberg, K. Van-eunen et al., Mixed and diverse metabolic and gene-expression regulation of the glycolytic and fermentative pathways in response to a HXK2 deletion in Saccharomyces cerevisiae, FEMS Yeast Res, vol.8, pp.155-164, 2008.

S. Rossell, C. C. Van-der-weijden, A. L. Kruckeberg, B. M. Bakker, and H. V. Westerhoff, Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae, FEMS Yeast Res, vol.5, pp.611-619, 2005.

S. Rossell, C. C. Weijden, . Van-der, A. Lindenbergh, A. Tuijl et al., Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae, Proc Natl Acad Sci, vol.103, pp.2166-2171, 2006.

M. A. Savageau and E. O. Voit, Recasting nonlinear differential equations as S-systems: a canonical nonlinear form, Math Biosci, vol.87, pp.83-115, 1987.

O. Schilling, O. Frick, C. Herzberg, A. Ehrenreich, E. Heinzle et al., Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: Transcription regulation is important but not sufficient to account for metabolic adaptation, Appl Environ Microbiol, vol.73, pp.499-507, 2007.

M. Scott, C. W. Gunderson, E. M. Mateescu, Z. Zhang, and T. Hwa, Interdependence of cell growth and gene expression: origins and consequences, Science, vol.330, pp.1099-1102, 2010.

P. Servant, L. Coq, D. Aymerich, and S. , CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes, Mol Microbiol, vol.55, pp.1435-1451, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683556

A. Seshasayee, G. M. Fraser, M. M. Babu, and N. M. Luscombe, Principles of transcriptional regulation and evolution of the metabolic system in E. coli, Genome Res, vol.19, pp.79-91, 2009.

D. K. Slonim and I. Yanai, Getting started in gene expression microarray analysis, PLoS Comput Biol, vol.5, p.1000543, 2009.

B. H. Ter-kuile and H. V. Westerhoff, Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway, FEBS Lett, vol.500, pp.169-171, 2001.

S. Tännler, S. Decasper, and U. Sauer, Maintenance metabolism and carbon fluxes in Bacillus species, Microb Cell Fact, vol.7, p.19, 2008.

S. Tännler, E. Fischer, D. L. Coq, T. Doan, E. Jamet et al., CcpN controls central carbon fluxes in Bacillus subtilis, J Bacteriol, vol.190, pp.6178-6187, 2008.

K. Van-eunen, J. Bouwman, A. Lindenbergh, H. V. Westerhoff, and B. M. Bakker, Time-dependent regulation analysis dissects shifts between metabolic and gene-expression regulation during nitrogen starvation in baker's yeast, FEBS J, vol.276, pp.5521-5536, 2009.

K. Van-eunen, S. Rossell, J. Bouwman, H. V. Westerhoff, and B. M. Bakker, Chapter twenty-seven-quantitative analysis of flux regulation through hierarchical regulation analysis, pp.571-595, 2011.

W. A. Van-winden, J. C. Van-dam, C. Ras, R. J. Kleijn, J. L. Vinke et al., Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites, FEMS Yeast Res, vol.5, pp.559-568, 2005.

A. Varma and B. O. Palsson, Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors, J Theor Biol, vol.165, pp.477-502, 1993.

M. E. Wall, W. S. Hlavacek, and M. A. Savageau, Design of gene circuits: lessons from bacteria, Nat Rev Genet, vol.5, pp.34-42, 2004.

Q. Wang, Y. Zhang, C. Yang, H. Xiong, Y. Lin et al., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux, Science, vol.327, pp.1004-1007, 2010.

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet, vol.10, pp.57-63, 2009.

W. Wiechert, M. Möllney, N. Isermann, M. Wurzel, and A. A. De-graaf, Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems, Biotechnol Bioeng, vol.66, pp.69-85, 1999.

Y. Xu, D. Amador-noguez, M. L. Reaves, X. Feng, and J. D. Rabinowitz, Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase, Nat Chem Biol, vol.8, pp.562-568, 2012.

N. Zamboni, S. Fendt, M. Rü-hl, and U. Sauer, )C-based metabolic flux analysis, Nat Protoc, vol.4, issue.13, pp.878-892, 2009.

S. Zorrilla, T. Doan, C. Alfonso, E. Margeat, A. Ortega et al., Inducer-modulated cooperative binding of the tetrameric CggR repressor to operator DNA, Biophys J, vol.92, pp.3215-3227, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164236

A. Zaslaver, A. E. Mayo, R. Rosenberg, P. Bashkin, H. Sberro et al., Just-in-time transcription program in metabolic pathways, Nat Genet, vol.36, pp.486-491, 2004.

, Molecular Systems Biology is an open-access journal published by the European Molecular Biology Organization and

U. Licence,