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Abstract

Background: Studying how individual cells spatially and temporally organize within the embryo is a fundamental

issue in modern developmental biology to better understand the first stages of embryogenesis. In order to perform
high-throughput analyses in three-dimensional microscopic images, it is essential to be able to automatically segment,
classify and track cell nuclei. Many 3D/4D segmentation and tracking algorithms have been reported in the literature.
Most of them are specific to particular models or acquisition systems and often require the fine tuning of parameters.

Results: We present a new automatic algorithm to segment and simultaneously classify cell nuclei in 3D/4D images.
Segmentation relies on training samples that are interactively provided by the user and on an iterative thresholding

process. This algorithm can correctly segment nuclei even when they are touching, and remains effective under
temporal and spatial intensity variations. The segmentation is coupled to a classification of nuclei according to cell
cycle phases, allowing biologists to quantify the effect of genetic perturbations and drug treatments. Robust 3D
geometrical shape descriptors are used as training features for classification. Segmentation and classification results of
three complete datasets are presented. In our working dataset of the Caenorhabditis elegans embryo, only 21 nuclei
out of 3,585 were not detected, the overall F-score for segmentation reached 0.99, and more than 95% of the nuclei
were classified in the correct cell cycle phase. No merging of nuclei was found.

Conclusion: We developed a novel generic algorithm for segmentation and classification in 3D images. The method,
referred to as Adaptive Generic Iterative Thresholding Algorithm (AGITA), is freely available as an ImageJ plug-in.

Keywords: Image segmentation, Classification, Cell cycle, 3D, 4D, C. elegans, Drosophila, Development

Background

Studying how individual cells spatially and temporally
organize within the embryo is a fundamental issue
in modern developmental biology to better understand
the first stages of embryogenesis. Cell dynamics can
be analyzed from three-dimensional (3D) images of
labeled nuclei. To perform systematic studies and high-
throughput analyses, automated methods that quantify
nuclei over time and reconstruct cell lineages are required.
For tracking purposes, detecting the centers of nuclei can
be sufficient. However, for accurate geometrical and mor-
phological analyses, a complete segmentation of nuclei is
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required. In addition, in cell-cycle studies, accurate clas-
sification of nuclei according to their cell-cycle stage is
necessary.

For these reasons, many segmentation and/or tracking
methods have been developed. Bao et al. [1] proposed
local maxima detection followed by 3D spherical approxi-
mation for nuclei segmentation in Caenorhabditis elegans.
Melani et al. [2] proposed the identification of nuclei
using a spherical Hough transformation, and Soubies et al.
[3] extended the procedure to the detection of ellipsoids.
Segmentation of nuclei by 2D detections using difference
of Gaussians and 3D reconstruction based on Bayesian
features was used by Santella [4]. Another algorithm
based on a Bayesian estimation framework for tracking
was proposed by Carranza et al., where the nuclei were
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detected using an h-dome transform [5]. Multiple level
sets and background/foreground detection was proposed
by Chinta et al. [6]. Most of these algorithms require fine-
tuning of many parameters and are often only successful
for dedicated applications and using specific acquisition
systems or labeling protocols.

For the purpose of automation, a key issue is the
objective determination of a correct intensity thresh-
old for image segmentation. Due to imperfect imag-
ing conditions and variations of fluorescence intensity
with respect to time and depth, a unique global thresh-
old generally fails to correctly detect nuclei. Therefore,
the use of adaptive local thresholding is necessary to
detect nuclei regardless of fluctuations in their inten-
sity. The idea of testing multiple thresholds for each
object and then deciding which threshold is the best is
not new (see for example, [7]). Matas ef al. presented
MSER (Maximally Stable Extremal Regions), a method
where the best threshold is the one that yields to min-
imal variations of the object surface. Keller et al. devel-
oped an algorithm based on this same idea to detect
nuclei in developing zebrafish embryos imaged with digi-
tal scanned light sheet microscopy [8]. However, identify-
ing and specifying a priori a suitable threshold selection
criterion (i.e., yielding robust segmentation results) is a
real challenge and may require the fine-tuning of several
parameters.

Machine learning can be used to eliminate the need
for an explicit threshold selection criterion. In supervised
machine learning, samples of known categories are pro-
vided as input and the algorithm automatically finds a
decision rule that most effectively separates the differ-
ent classes. Arteta [9] uses a support vector machine to
detect extremal non-overlapping regions in 2D images.
Lin [10] proposed to use Bayesian models on 2D inten-
sity and geometrical features. In this approach, a first
segmentation is suggested and the user validates the
correctly segmented objects that will be used for the train-
ing. Objects are then segmented using a classical water-
shed approach and the training is used to fuse separated
regions.

In the present paper, we introduce a learning-based
method to segment nuclei in 3D/4D images of early
embryos. This work was developed to compensate for
the lack of robust alternatives to segment our working
dataset of the C. elegans embryo imaged with a spinning
disk confocal microscope. Our method distinguishes itself
from previous works in three ways. Firstly, we propose a
segmentation technique that can be applied to different
image acquisition conditions and various embryo models.
Secondly, the number of parameters has been minimized
to include just a few biological parameters. Lastly, our
algorithm segments and classifies nuclei simultaneously,
while other approaches first segment and then classify
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nuclei. Specifically, we chose the threshold leading to the
object that is most similar to one in a set of training
samples.

In this paper, we present the results of applying our
novel algorithm to three different datasets containing
embryo nuclei from C. elegans, Drosophila and 3D sim-
ulated data [11]. The algorithm has been implemented
as an open-source plug-in for Image]J [12] and is publicly
available for download along with a tutorial and sample
data [13].

Methods

The procedure is composed of three steps: filtering to
reduce noise, supervised learning of user-selected train-
ing samples and, finally, classification-based segmentation
of nuclei (Figure 1). The only biological parameters that
must be supplied by the user are the approximate volumes
of the nuclei for each cell cycle phase at the start and end
time points of the dataset.

Sample preparation of working dataset

The C. elegans early embryo dataset was acquired with a
spinning-disk confocal microscope. The dataset is com-
posed of a developing embryo from the 4-cell stage to
the 90-cell stage with 160 time points. The signal consists
in Histone-GFP expressed in the ovary and transmitted
to the future embryo at the time of oocyte formation.
At each cell division during embryo development, this
maternal load is incorporated into the chromatin of an
increasing number of cells, thus leading to a dilution of the
fluorescence signal over time.

Overview of the method

The main idea of the algorithm is to use machine learn-
ing to improve the segmentation results of cell nuclei.
The learning step is an interactive process. The user
first selects representative nucleus samples of each cell
cycle by clicking on their locations inside the 3D or 4D
dataset. The objects at the clicked positions are then
segmented through an iterative thresholding procedure
using the user-supplied volume estimates as a reference.
After that, the user has to validate the proposed seg-
mented nuclei, and 3D descriptors are computed from
this set of validated nuclei. A predefined classifier is then
trained to assign cell cycle phases to nuclei based on
that set and those descriptors. The main joint segmenta-
tion/classification procedure is subsequently applied to all
time points.

Choosing and setting up the classifier

Before setting up the segmentation procedure based on
classification, it was necessary to choose and set up a clas-
sifier. A first training set of manually-validated nuclei were
extracted from the image using the procedure presented
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Figure 1 Flowchart of the overall procedure. The first step consists in training the program by learning sample nuclei. The user clicks on the
approximate position of the nuclei in the image. Using an iterative thresholding algorithm, nuclei are automatically extracted around each clicked
position. The user has to validate the segmented nuclei that will serve as training samples for the classifier. The second step is completely automatic

in the Supervised learning section below. Each object was
represented by a feature vector of 3D descriptors cal-
culated as described in the following section, and was
assigned its corresponding cell cycle phase or class by
the user. To find the most suitable learning algorithm,
we made experiments across our datasets after divid-
ing our samples into a training and a test set (66%
and 33% of the data, respectively). For this purpose, we
used the experimenter of the Waikato Environment for
Knowledge Analysis (WEKA) suite [14] and the BIO-
CAT program [15]. We empirically found that a ran-
dom forest classifier provided the best separation of our
samples between the different cell-cycle phases. A ran-
dom forest is an ensemble learning method based on
the decisions of an arbitrary number of random decision
trees [16]. 200 trees were used in our case. The deci-
sion trees are simple binary trees in which each node
divides the set of samples based on the most differ-
entiating feature at the given tree level. This way, the
deeper we go down the tree, the better the samples
are differentiated.

Pre-processing

Filtering is a common pre-processing step to improve
the results of subsequent segmentation by increasing the
signal-to-noise ratio in the image. For this purpose, a clas-
sical 3D median-filter is used with a variable radius, which
is proportional to the radius of the equivalent sphere for

a given volume R = (%)%. This classical filter proved
useful for noise reduction while preserving edges. Inter-
mediate time point volumes are linearly interpolated from
the minimum and maximum volumes supplied by the user
at the learning step. Nuclei are large at early stages, so a
large radius can be used to reduce noise and homogenize
intensity signals inside the nuclei. Adapting the filter size
ensures that late stage nuclei, which are smaller, are not

removed.
In addition, in order to avoid unnecessarily long com-

puting times when filtering with too large a radius, a
limit of R = 12 is proposed by the plug-in (12 pixels in
the XY-plane; the radius used in Z takes the calibration of
the image into account) and performs well in practice. The
filtering step is optional and data can be pre-processed
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with another filtering sequence before segmentation, if
appropriate.

Supervised learning

In this preliminary step, classes are created in an interac-
tive manner, and features of nuclei for each class are com-
puted. For this purpose the user manually selects some
samples of each class at different time points by clicking
on the approximate position of the nucleus sample cen-
ters in the 3D or 4D image. A fixed-size box centered
on the selected voxel is then cropped, and the extracted
sub-volume goes through an iterative thresholding pro-
cedure similar to MSER. Briefly, for each threshold, the
volume of the segmented object (closest to center of box)
is computed and compared to the range of volumes given
by the user. Once the object falls inside the interval of
volumes, it is extracted. The same applies to all selected
positions; each sample is therefore thresholded with a
different threshold. The user then has to validate cor-
rectly segmented nuclei from the set of segmented nucleus
samples.

3D shape descriptors

Finding a good set of features for machine-learning classi-
fiers is an important task to obtain accurate classification.
We tried to optimize the choice of descriptors so that they
can be robustly used in different contexts of acquisition
and species. Among the 3D descriptors available, we first
eliminated intensity-based descriptors since intensity may
vary between nuclei and between acquisitions. Secondly,
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phase (e.g., interphase) may have variable sizes, ranging
from very large at the first time points to very small at
the subsequent time points. We therefore focused on ten
shape descriptors that are described below.

Compactness and sphericity

These factors describe how far the object is from a per-
fect sphere. These two descriptors are related and can
be estimated from a normalized surface-to-volume ratio.
Their values vary between 0 and 1 for a perfect sphere.
These parameters are popular for evaluating morphologi-
cal changes in biological entities [17].

367 V2 o 1
Compactness = T,Sphenctty =Cs3 (1)

where

V is the volume of the object (using calibrated voxel sizes
inX, Y,and Z2).

S is the surface of the object (using calibrated voxel sizes
inX, Y,and Z).

Ellipsoid fitting

In order to reduce the sensitivity to surface irregulari-
ties that could arbitrarily increase the surface area and
decrease the accuracy of the above descriptors, a 3D ellip-
soid can be fitted to the object. The fitting of the ellipsoid
is performed using the classical moment-based proce-
dure. Elongation and flatness are the ratios between the
different radii of the fitted 3D ellipsoid.

we discarded descriptors that are size-dependent such as . Ry Ry
. . Elongation = —, Flatness = — (2)
volumes or surfaces, since nuclei in the same cell-cycle R, Rs
Compute | ¢ Filtering ‘ y Image stack
Threshold Min Max ) Time-point i

Threshold >

Stop
Threshold max?, oF

Thresholding and
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Object i
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Figure 2 Flowchart for building the hierarchy of objects used by the segmentation and classification procedure. \When an object is well
classified its information is saved and the object is inserted into the hierarchy structure.
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Figure 3 Hierarchy structure of classified objects. Starting with a low threshold value, the whole embryo is segmented but cannot be classified
as a valid object. When the threshold value increases, objects can be classified as valid and put in the hierarchy with the saved information. In the
case of object separation, the associated object at the previous threshold, if any, is computed in order to put the objects in their right place in the
hierarchy. The best object inside each branch is computed by maximizing the classification, and the segmented object is reconstructed.

where Rj, Ry and R3 are three radii of the fitted ellipsoid,
in decreasing order.

The ratio between the best fitted 3D ellipsoid volume
and the actual volume of the object can also give a good
idea of how far the object is from an ellipsoid.

4
3T R1RIR3
Ratio = 37T (3)
|4
3D geometric moments

These six shape descriptors are invariant with respect to
change of scale, translation and rotation. They are based
on central moments up to the fourth order, and describe
the variations of the object from the ellipsoid. They are
described in detail in [18].

Classification-based segmentation

After the training, features are extracted from the nuclei
that are validated by the user, the main classification-
based segmentation is applied. As mentioned above, the
procedure is based on an iterative thresholding method.
For a given time point, the 3D filtered image is first seg-
mented using a low threshold and all detected objects are
extracted. For each detected object, we first check if the

Table 1 Origin and characteristics of the three datasets

volume falls into the interval of volumes for all classes. If
the volume of the object is valid, each descriptor value is
compared against the minimum and maximum descriptor
values for all classes. Finally, if and only if the object has
a valid volume and descriptor values, it is classified using
the trained classifier and the corresponding object infor-
mation (current threshold, classification results, volume,
coordinates, etc.) is saved (Figure 2). Since the procedure
starts with a low threshold, the whole embryo would be
considered as one object, but as a result of this value
checking, it will not fall into the interval of accepted vol-
umes and will therefore not be classified, and the next
threshold will be used. As the threshold increases, nuclei
start to emerge from the embryo. They can be merged
as one object for a low threshold, but they will be sepa-
rated with higher thresholds (Figure 3). With increasing
threshold values, objects change in shape and may there-
fore be classified into different classes. Once the thresh-
olding terminates, we obtain a hierarchy of objects that
shows the separation of nuclei with increasing thresholds
(Figure 3).

In order to find the best threshold in each branch of
this hierarchy (i.e., for each object), we search for the
threshold values that stabilize the shape of the object

Model Acquisition Size (XYZT) Calibration (xy-z) Stage Time interval Reference
C. elegans Spinning disk 512 x 512 x 31 x 160 125 x 350 nm 90 1 min This paper
Drosophila Confocal 1024 x 1024 x 68 x 30 130 x 440 nm 330 2 min [6]
Simulated Video' 512 x 512 x 59 x 76 125 x 200 nm 30 2 min [11]

Stage refers to the number of nuclei at the end time point.
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Table 2 Classification results for the set-up and validation of the classifier

C. elegans Drosophila Synthetic
| P M A T | P M A T | P M A T
Inter 13 2 0 0 0 Inter 1 0 0 0 0 Inter 17 0 0 0
Pro 4 20 0 0 0 Pro 0 8 0 0 0 Pro 1 4 1 1 0
Meta 0 1 12 0 0 Meta 0 1 9 0 0 Meta 0 0 3 0 0
Ana 0 0 0 17 0 Ana 0 1 0 5 2 Ana 1 1 0 4 0
Telo 0 0 0 1 11 Telo 0 0 0 1 6 Telo 0 1 0 2 0

The number of samples used were 243, 128 and 106 samples for C. elegans, Drosophila, and synthetic data, respectively. The classification accuracies were 90%, 89%

and 78%, respectively.

and, therefore, the associated class. More precisely, for
each branch, starting from the right (i.e., high thresholds),
we look for the largest interval with consecutive classi-
fication in the same class. The threshold that provides
the highest probability for this class is kept. The object
in the branch is then reconstructed using the associated
threshold.

Using a priori biological knowledge

In our procedure, branches with higher thresholds are
favored. This provides good separation of nuclei, even
when they are close (as in anaphase).

In some cases, like in our C.elegans dataset, some
prophase nuclei display very condensed chromosomes
that look similar to metaphase nuclei. Due to our strat-
egy, whole nuclei will be segmented using low thresholds
and classified as prophase. However, for higher thresh-
olds, condensed chromosomes inside may be segmented
and classified as either prophase or metaphase. Therefore,
we implemented a generic inclusion model that does not
allow particular classes (prophase, in this case) to include
other classes (prophase and metaphase).

Results
All figures were done with Figure] [19].

Table 3 Segmentation results

Datasets

The algorithm was applied to three different datasets:
the first two were acquired from two different biolog-
ical models and the third one was a synthetic dataset
that simulated dividing cells (Table 1). Our original moti-
vation was to automate the segmentation of nuclei in
the C. elegans dataset where none of the available meth-
ods had provided satisfactory results. The Drosophila
dataset was obtained from an existing reference and
hence represents an additional validation dataset [6]. In
their study, the authors used a Histone-GFP labeling
method with confocal microscopy. For our C. elegans
dataset, a slightly different labeling procedure was used,
with Histone-GFP expressed in the ovary and transmit-
ted to the future embryo. The fluorescence signal was
thus gradually diluted with mitosis, leading to an over-
all decay in fluorescence intensity and, consequently, of
image quality over time. Another difference between the
two datasets was that Drosophila embryos were imaged
with a conventional confocal microscope [6], whereas
C. elegans embryos were imaged with a spinning disk
microscope. The third dataset was a synthetic dataset
generated using CytoPack [20], a program that models
dividing cells and creates synthetic datasets that simulate
4D video-microscopy acquisition. Although the aspect of
nuclei was realistic, it was not completely natural, and

Model Time TP FN FP Recall Precision F-measure
C. elegans T86 43 1 0 0977 1 0.988

C. elegans T122 63 3 0 0.95 1 0.979

C. elegans Total (1-128) 3585 21 2 0.9923 0.9997 0.9960
Drosophila T5 98 0 3 1 0.97 0.985
Drosophila T9 172 0 3 1 0.983 0.99
Drosophila T25 254 3 3 0.988 0.988 0.988
Drosophila Total (1-30) 4820 15 77 0.9969 0.9843 0.9905
Synthetic Total (1-76) 1974 0 0 1 1 1

TP =True Positive (ground truth number of objects). FN = False Negative (non detected). FP = False Positive (noisy detected). Recall = TP/(TP + FN).

Precision = TP/(TP + FP). F = 2*precision*recall/(precision + recall).
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could present high intensity variation, thus providing a
difficult test case for our algorithm.

Supervised learning

Before using the classifier in the main classification-
based segmentationtion algorithm, we had to validate
it. For this purpose a first test was performed using
objects segmented by the procedure presented in the
Supervised learning section. This procedure is based on
a MSER algorithm and uses the volumes given by the
user as inputs. For each dataset, between 100 and 200
sample nuclei, with approximately equal number for each
class, were chosen from different time points accord-
ing to shape variability, and then assigned a class by
a human expert. For all of the datasets, the confusion
matrix for the classifier showed satisfactory results, with
a classification rate of approximately 90% for the two
real embryo datasets and 80% for the synthetic dataset
(Table 2).

Segmentation

The efficiency and accuracy of the proposed algorithm
was tested on the three complete datasets (see Table 3).
The segmentation results were visually compared with
original data for all time points and taking the 3D infor-
mation into account. We used a classification based on
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five classes (interphase, prophase, metaphase, anaphase
and telophase) for all three datasets. Between 10 and
30 sample nuclei per class were chosen for the initial-
ization (supervised training of the classifier). The values
used as volume limits for the C. elegans dataset were
(in pm3): 9.8-24.3 (interphase), 14-36.6 (prophase),
5.9-19 (metaphase), 3.6-7.3 (anaphase) and 6.3-9.9
(telophase). For the Drosophila dataset, the minimum
and maximum volumes were set to (in um?): 45-100,
120-150, 36—40, 25-39 and 20-28.

For the C. elegans dataset, there was a decay of inten-
sity with time due to the particular labeling technique and
acquisition system, and the image quality was therefore
not as high as in the Drosophila dataset. Furthermore, due
to the embryo depth and imaging conditions, the slices
farthest away from the objective lens were quite noisy. The
selected thresholds corresponding to segmented nuclei
varied between time points as well as within each time
point image. The threshold values varied between 883
and 1,757 (with an average of 1,180) for time point 40,
between 754 and 1,200 (with an average of 900) for time
point 86, and between 652 and 1,064 (with an average of
781) for time point 122. However almost all of the nuclei
could be correctly detected (correct position) for all time
points (Additional file 1). Nevertheless, after time point
128, the image quality was too low to accurately delineate

Figure 4 Results of segmentation and classification on the C. elegans dataset. Top row: 3D view of segmented data for two different time
points (T = 86,122). Bottom row: 3D view of classified data for the same time points. Note that all objects are well separated.
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the actual shape of the nuclei. Figure 4 shows the results
obtained for some of the time points. At an advanced time
point (122), all nuclei were correctly segmented despite
the low quality of the image (Figure 5). For the time points
to 128, only 21 out of 3,585 (0.3%) were not detected, with
zero false negatives.

In the Drosophila dataset, which has a higher signal
quality, nuclei were generally present in a 2D layer. All
nuclei were correctly segmented, only 15 out of 4,820
(0.3%) were not detected, and an additional 77 spurious
noisy objects were incorrectly identified as nuclei (1.6%)
(Figure 6) (Additional file 2). The selected threshold values
did not vary much, which was coherent with the homo-
geneous intensity throughout the entire 4D dataset. The
difference between the lowest and highest threshold value
used was 28 for time point 5, 34 for time point 9, and 36
for time point 25.

For the simulated dataset, all synthetic nuclei were cor-
rectly segmented despite high intensity variance within
nuclei (Additional file 3).

The results obtained with our method on C. elegans data
(our target dataset) were compared with the Hierarchical
K-Means method (HK-Means) [21] of ICY [22]. This
method implements a slightly modified version of the
MSER technique and is therefore probably one the best
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available methods to compare to. With the same volume
parameters as for our algorithm, HK-Means was glob-
ally less accurate. Several detected objects were actually
noise, some nuclei were not detected, and several others
were merged. For example, at time point 86, there was
one noisy object, three nuclei were missing, and there was
one fusion of two nuclei; for time point 122, there were
six noisy objects, two nuclei were missing, and two were
merged (Figure 7). Since HK-Means method favors low
threshold values, the objects tended to be larger, and the
delineation of nuclei was globally not as accurate as with
our algorithm.

The time to segment and classify 128 time points for
the C. elegans dataset (160 frames, 512 x 512 x 31 voxels)
on a Xeon bi-processor with 12 cores/24 threads (Xeon
X5660@2.80 Ghz), running Ubuntu Linux 12.04 with 24
Gb of RAM and using Java 1.7, was between 4 and 6
hours, corresponding to approximately 3 minutes per time
point.

Classification

Although the purpose of the classification procedure
in our method is related to the selection of the best
threshold value for segmentation, it can also be used col-
laterally as a classification algorithm per se to predict

Figure 5 Segmentation contours overlaid on different slices (Z = 8,9,21) of raw data for the C. elegans dataset. Left and right columns
correspond to left and right columns of Figure 4. Note that even hard to distinguish nuclei could be detected.
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telophase stages and are correctly segmented and classified.

Figure 6 Results of segmentation and classification on the Drosophila dataset for different time points (T = 5,9,25). Top row : 3D view of
original raw data. Middle row : 3D view of segmented data. Bottom row : classification results (Red = interphase, Green = prophase, Magenta =
metaphase, Cyan = anaphase, Yellow = telophase). Note that in bottom middle, almost all of the nuclei have just divided; they are in anaphase or

cell-cycle phases. The information about the cell-cycle
stage given by the algorithm can be used for cell-cycle
analysis and to help further tracking. We visually analyzed
the classification results on a frame-by-frame basis, using
temporal information to determine the actual cell-cycle
stage.

For the C. elegans dataset, 165 out of 3,583 nuclei (for
time points 1-128) were not correctly classified (4.6%),
and classification errors occurred uniformly in all time

points. This error rate was less than the training error
(~10%, see Table 1) because of the high number of inter-
phase nuclei in the entire dataset, and mainly resulted
from shape similarity between classes, especially at the
anaphase and telophase stages.

For the Drosophila dataset, 225 out of 4,820 nuclei were
not correctly classified (4.7%). 186 of these classification
errors occurred in the three last time points. This error
rate was similar to the one previously reported [23].
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Figure 7 Results of segmentation on the C. elegans dataset with the HK-Means method for the same time points and the same z slices as
Figures 5 and 6. Top row: 3D surface view of segmented objects. Next rows: some slices with contours overlaid. (*) indicates merged nuclei; (N)
indicates noisy detected object, (O) indicates missing object; and (S) indicates inaccurate segmentation, especially for metaphase nuclei.

For the synthetic dataset, where all nuclei were correctly
segmented, the classification results were similar, with
96% of correctly classified nuclei. Due to the non-natural
aspect of the simulated nuclei, the distinction between
some stages was not obvious: the prophase and telophase
stages were difficult to discriminate from other stages,
whereas the interphase, metaphase and anaphase stages
were correctly classified (Additional file 3).

Discussion and conclusion

We have presented a machine-learning based approach
for segmenting nuclei in 3D microscopy images. The orig-
inality of the approach is to perform segmentation and
classification simultaneously within an iterative threshold
selection procedure, ensuring that the best threshold for
each object will be found. By comparing our approach
with HK-Means, we evaluated the benefit of using a

machine-learning approach to improve the segmentation
accuracy by detecting objects similar in shape to training
samples. The segmentation provided by our approach is
more accurate because it is the one that leads to the best
classification score. From the point of view of classifica-
tion, we introduced with the paradigm of “jointly segment
and classify” rather than “segment then classify”, a new
idea that could be used as a basis for further algorithms.

The major advantage of our method is its ability
to robustly adapt to different imaging conditions and
different species by reporting the introduction of the
required knowledge on the initial learning stage from
user-specified samples. The only assumption that is made
is that an object can be segmented by one threshold value
and has a class-specific shape.

Our algorithm was successfully tested on two embryo
models, the C. elegans dataset (our work dataset), and
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the Drosophila dataset (our validation dataset). The over-
all segmentation results were comparable or better than
those of existing algorithms, without the necessity of fine-
tuning parameters. The only required parameters are the
volumes of nuclei that can be easily learned from a set of
trials and errors at the supervised learning step, where all
descriptors values are displayed to the user. The user can
take some time in training the system but it only needs to
be done once per embryo model and imaging conditions.
The same set of training descriptors can be re-used in
different experiments. The implemented 3D descriptors
summarize the shape of the object and do not take quan-
titative variable aspects such as object volume, surface or
intensity into account since these values can be extremely
variable over time. In fact, in the first time points of the
series, nuclei are usually very large and very bright, con-
trasting with the numerous darker small nuclei at end time
points.

For the Drosophila validation dataset, only a few nuclei
were not detected (0.3%), and generally corresponded to
very crowded telophase nuclei that displayed very unusual
shapes. However, it seems that we detected more nuclei
than the original paper [6] (4,820 compared to 4,166; it is
possible that some border objects were not counted). We
were also able to achieve an overall acceptable classifica-
tion with an error rate of less than 5%, where classification
errors were mainly present at end time points for very
crowded interphase nuclei.

For our working dataset, C. elegans, the results for seg-
mentation and classification were quite satisfactory, even
in a context of low signal-to-noise ratio. We can then val-
idate the acquisition and labeling procedure for further
studies to improve automated lineage reconstruction.

For the synthetic dataset, we observed significantly bet-
ter classification results in the entire data than in the
training samples because of the over-abundant interphase
nuclei (1,586 out of 1,974), which were easier to classify
than the other ones.

Classification is a very important step in our threshold-
ing procedure. However, in order not to add a threshold
parameter to the classification results, we preferred to add
an interval check of volumes and of all descriptor values
prior to classification, acting as a Boolean pre-classifier.
Nevertheless the classification error rate was quite low,
although it is not an easy task, even for an experienced
biologist, to distinguish between the five cell-cycle stages
we defined. With only three or four classes (merging
anaphase and telophase, for example) we would expect
higher classification results. Furthermore, since interac-
tive selection of samples for the supervised learning phase
is an essential part of the method, we implemented a semi-
automatic procedure to make this task easier. The user
may have a tendency to choose rather non-ambiguous
nuclei in the different cell-cycle stages. However, the

Page 11 of 12

nuclei in the different stages present continuous variations
that lead to small changes in shape, thus inducing mis-
classification. For tracking analysis, this misclassification
could be alleviated by taking the class of the object at the
previous time point into account. Some noisy objects were
also detected, but they can be easily removed by post-
processing procedures, as they appeared for some thresh-
old values only, presented peculiar shapes or intensities,
and had low classification scores. They could be easily fil-
tered out using available tools such as the 3DRoiManager
[24,25]. Since we did not want to add extra parameters, we
chose to keep these noisy objects and just warn the user
about them with a screen message.

The algorithm may be quite time-consuming since
many threshold values are tested, especially in 16-bits.
However, the user can speed it up by increasing the
step between two thresholds or by converting the data
to 8-bits. Furthermore, using multi-threaded algorithms
speeded up the process, leading to less than 3 minutes to
process one time point.

Our results suggest that the segmentation method pro-
posed can also be applied to other images and provides
a promising start for tracking analysis using classification
information.

Additional file

Additional file 1: Movie 1a. 4D view of raw data for the C. elegans
dataset. Movie 1b. 4D view of segmented data with classification for the
C. elegans dataset. Movie 1c. Movie with contours overlaid on raw data for
time point 122 for C. elegans.

Additional file 2: Movie 2a. 4D view of raw data with for the Drosophila
dataset. Movie 2b. 4D view of segmented data with classification for the
Drosophila dataset. Movie 2c. Movie with contours overlaid on raw data
for time point 25 for Drosophila.

Additional file 3: Movie 3a. 4D view of raw data for the simulated
dataset. Movie 3b. 4D view of segmented data with classification for the
simulated dataset.
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