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A Versatile and Efficient Pattern Generator
for Generalized Legged Locomotion

Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse, Nicolas Mansard

Abstract— This paper presents a generic and efficient
approach to generate dynamically consistent motions for
under-actuated systems like humanoid or quadruped robots.
The main contribution is a walking pattern generator, able to
compute a stable trajectory of the center of mass of the robot
along with the angular momentum, for any given configuration
of contacts (e.g. on uneven, sloppy or slippery terrain, or
with closed-gripper). Unlike existing methods, our solver is fast
enough to be applied as a model-predictive controller. We then
integrate this pattern generator in a complete framework: an
acyclic contact planner is first used to automatically compute
the contact sequence from a 3D model of the environment
and a desired final posture; a stable walking pattern is
then computed by the proposed solver; a dynamically-stable
whole-body trajectory is finally obtained using a second-order
hierarchical inverse kinematics. The implementation of the
whole pipeline is fast enough to plan a step while the previous
one is executed. The interest of the method is demonstrated by
real experiments on the HRP-2 robot, by performing long-step
walking and climbing a staircase with handrail support.

I. INTRODUCTION

To use humanoid robots in factories or in disaster
scenarios, a key practical issue is locomotion. For instance,
in the aircraft industry, factories include a lot of stairs with
steps of height between 20 to 30 cm, with a slope above
27 degrees. The large height implies the natural strategy
to use the handrail on the side of the stairs. Despite its
apparent simplicity, multi-contact locomotion in a generic
way remains an open problem. This paper proposes a
complete pipeline to automatically compute and execute such
movements on a real robot, using as only inputs the 3D
representation of the environment and a desired final posture.

The first versatile methods able to demonstrate effective
multi-contact locomotion on a human-size humanoid robot
were optimizing over the whole robot actuation on a
relatively small time window [1]. Since then, multiple contact
locomotion and manipulation have been demonstrated many
times on such robots [2], [3], [4]. The major difficulty lies in
the time to compute a feasible solution. Similarly to what was
done for bipedal locomotion on flat floor [5], a natural way to
simplify this problem is to only consider the dynamics of the
robot through its momenta, namely its center of mass (COM)
and angular momentum. Given a sequence of contacts and
their timings, the problem is to compute the trajectory of the
COM along with the angular momentum that would result
in a dynamically stable whole body trajectory of the robot.
Following some recent contributions to the problem [6],
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[7], [8], [9], we first propose an efficient way to compute
such a trajectory. Our computation time are sufficiently low
to enable online computation and model-predictive control
(MPC). We also show how this solver can be connected
to an efficient contact planner to automatically generate
a feasible whole-body trajectory without any help from a
human operator.

Section II recalls the fundamental basis to model the
problem and introduces our notations. Both are used in
Section III to cast a tailored optimal control problem which
can be efficiently solved using a multiple shooting approach.
We postpone the presentation of the state of the art to this
section, so that we have the technical background to discuss
it in detail. Section IV describes a planner that computes the
contact sequence. The computed contacts are then used in
Section V to bring the real humanoid robot HRP-2 atop of
a staircase using the handrail, and various other movements
demonstrate the interest of our approach.

II. DYNAMIC MODEL

A. Model of the whole body

We consider a free-floating based system composed
of 6 + n degrees of freedom (DOF). Its configuration
vector q ∈ Q def

= SE(3)× Rn can be split in two parts:
M = (R,p) ∈ SE(3) characterizes the placement of a given
link of the robot relatively to the inertial frame (e.g. the
center of the robot pelvis); and qa ∈ Rn is the configuration
vector of the joints. The first and second time derivatives of
q are denoted by q̇ = (v,ω, q̇a) and q̈ = (v̇, ω̇, q̈a) where
v and ω are respectively the linear and angular velocity of
the arbitrary free-floating base.

Given a set of K contacts I ⊂ SE(3)K , the Lagrangian
dynamics of the polyarticulated system reads:

Hq(q) q̈+bq(q, q̇) = gq(q)+ST τq+

K∑
k=1

JTk (q)

[
fi
τi

]
, (1)

where Hq is the mass matrix, bq is the centrifugal
and Coriolis effects, gq is generalized gravity vector,
S =

[
0n×6 In×n

]
distributes the joint-torque vector τq on

the articulation, Jk is the Jacobian of contact k and fk and
τk are the force and torque applied at the contact k.

B. Contact model

We assume that each contact k corresponds to a rigid
interface (i.e. no relative motion, only forces) between one
body of the robot and the environment. Each contact is
associated to a placement Mk = (Rk,pk) ∈ SE(3) ie. the



position pk of an arbitrary reference point of the contacting
body in the world and the orientation Rk of this body.

The interface is defined by a finite set of contact points
where only forces (no torques) are exerted. For instance, the
contact of a rectangular foot with the ground is represented
by the four corner contact points of the foot. Each force
is typically constrained to stay within a friction (quadratic
“ice-cream”) cone defined by the friction coefficient µ.

Rather than considering for contact k the collection of
all these forces, we only consider the resulting wrench:
the linear force fk and the torque τk about pk. The
wrench (fk, τk) is constrained to be in a 6D conic set Kk,
obtained as the Minkowski sum of the cones of the contact
points [10]. Considering (fk, τk) ∈ Kk is equivalent to
considering all the forces of the interface in their 3D cones.
φ = (f1, τ1, ...,fK , τK) is the concatenation of all contact
wrenches, K is the Cartesian product of the 6D contact cones.

C. The under-actuated dynamics

The contact forces and torques influence the variations
of linear and angular momenta. We denote by h the linear
momentum and L the angular momentum around the COM
of the robot (once more expressed in F0). Denoting by c
the COM, the linear momentum is simply h = mċ with m
the total mass of the robot. The contact forces and torques
modify the momentum according to the Newton-Euler law:

ḣ =

K∑
k=0

fk +mg (2a)

L̇ =
∑
k

(pk − c)× fk + τk, (2b)

with pk the “center” of contact k around which τk is
expressed and g = (0, 0,−9.81) is the gravity vector.

These two equations simply correspond to the first six
rows of (1), but expressed around the COM instead of the
robot root. Let the dynamics of the free-floating base (first
six rows) be denoted by index b and the dynamics of the
actuated segment (n last rows) be denoted by index a.[

Hb

Ha

]
q̈ +

[
bb
ba

]
=

[
gb
ga

]
+

[
06

τq

]
+

K∑
k=1

[
JTk,b
JTk,a

] [
fk
τk

]
(3)

The b rows corresponds to the total wrench applied on the
robot, but expressed around the robot reference base instead
of the COM. Following this observation, Jk,b has a particular

shape Jk,b =

[
I (pk − b)×
0 I

]
= bXk with b the position of

the base and v× corresponding to the skew matrix operator.
The total momentum of the system expressed around c is

obtained by multiplying the first six rows of (3) by cX∗b :[
h
L

]
= cX∗b Hb q̇ ,

cX∗b =

[
I 0

(b− c)× I

]
(4)

D. Sequence of contacts and phases

In the following, we consider a sequence of contact
configurations, i.e. an ordered collection of S contact sets
{I1, ...IS}. Each contact set Is corresponds to the phase s

of the movement. Inside a phase, all the contacts of Is are
constants (according to the contact model). We denote the
phase by exponent s: Ks is the number of active contacts
during phase s; Ksk is the 6D friction cone of contact k during
phase s; etc. For instance a walking sequence may be first
both feet on the ground, then only one foot on the floor, etc.

The duration of the phase is typically specified by a time
interval [∆ts,∆t̄s] of the minimum to maximum duration.

The number of contacts typically varies at each change of
phase, thus the dimension of φ varies too. In practice, two
solutions might be considered. It is possible to consider that
the wrenches of all possible contact bodies are contained in
φ while a binary variable αsk specifies if the contact k is
active during phase s: αsk is added in the dynamic equations
as a factor of every instance of fk and τk to nullify the
effect of inactive contacts [8]. The interest of this solution
is that the dynamics keep a constant dimension during all
the movement, which simplifies the implementation of any
control method. Alternatively, it is possible to specifically
handle the variation of dimension of φ in the implementation.
The advantage is that there is no artificial “zeros” in the
dynamics and the implementation is more efficient [9]. In the
implementation of our method, we have chosen the second
solution. In the following, we will abusively neglect the
change of dimension to keep the presentation simple.

III. THE OPTIMAL CONTROL PROBLEM

The dynamics (2) corresponds to the difficult part to
control on a humanoid robot. It is not directly controllable
by the joint torques τq but only indirectly by the contact
wrenches φ. It is also the part of the dynamics that is
unstable (because of the cross-product with c on the second
line, that will grow exponentially if something goes wrong).
On the other hand, if the robot has enough torque (which
current high-performance humanoid robots usually have) it
will always be possible to find τq to satisfy the actuated part
of the dynamics if (2) is satisfied.

Walking pattern generators (WPG) therefore focus on (2)
(or on a reformulation of it) to find a valid trajectory of c
and L satisfying the contact constraints K. In this direction,
a very classical hypothesis to keep the problem simple is
to assume that all the contacts are on a flat ground where
slippage is impossible (µ = +∞), but recent contributions
have been proposed to get rid of this hypothesis in a
satisfactory manner [9], [8], [7]. In this section, we propose
an original formulation of a WPG that is able to handle
any distribution of contacts with interactive capabilities (ie.
computing one step is faster than executing one).

In a first time, we present an optimal control problem
(OCP) under a generic form that represents the problem of
computing walking patterns. This form is not suitable for
efficient resolution but can be seen as a generic template
that covers several previous WPG. We then propose a new
formulation that makes an interesting trade off between
efficiency and generality. The last part of the section shows
how the solution to this problem can be efficiently computed
using a particular direct approach.



A. The generic optimal control problem

We consider the central dynamics (2) along a finite-time
trajectory. The state of the problem is composed of the COM
position and the momentum. We denote it by x = (c,h,L).
The control of this dynamic system is u = φ the contact
wrench. Eq. (2) can be easily reformulated as

ẋ = f(x,u) = Fxx+ Fu(x)u (5)

where Fx and Fu(x) are two matrices easily deduced from
(2). We denote by x and u the state and control trajectories.

Starting with a sequence of contacts, we are interested
in computing a feasible trajectory for the under-actuated
dynamics, satisfying the Newton-Euler equations, path and
terminal constraints. This can be achieved by setting the
following OCP over all the sequence:

min
x=(c,h,L),
u=φ

S∑
s=1

∫ ts+∆ts

ts

`s(x,u) dt (6a)

s.t. ∀t ẋ = f(x,u) (6b)
∀t φ ∈ K (6c)
∀t L ∈ BL (6d)

x(0) = x0 (6e)
x(T ) ∈ X∗ (6f)

where ts+1 = ts + ∆ts is the start time of the phase s
with t0 = 0. Constraints (6b) and (6c) enforce consistent
dynamics with respect to the contact model. Constraint
(6d) imposes some bounds on the angular momentum (or
its variations). Constraint (6e) constrains the trajectory to
start with a given state (typically estimated by the sensor
of the real robot) while (6f) typically enforces a viable
terminal state [11]. The cost (6a) is typically decoupled in
`x(x) + `u(u) whose parameters may vary according to the
phase. `x is generally used to smooth the state trajectory
while `u tends to equally distribute the forces, producing
a more dynamic movement. The resulting control is stable
as soon as `x involves the L-2 norm of one time derivative
of c [11].

B. Previous formulations

Problem (6) is a difficult problem to solve in its generic
form. In particular, it seems hard to find a closed-form
expression of the viable states X∗, or an equivalent form
suitable for numerical resolution. Similarly, there is no
evidence of what could be some realistic bounds BL (that
would very likely depends on the configuration of the joints
qa). In the following we list some of the main WPG methods
and show how they correspond to some specific choices of
the generic template (6).

1) Walking patterns in 2D: In addition to the previous
remarks, another difficulty is the bilinear form of the
dynamics (5). When the contacts are all taken on a same
plane, a clever reformulation of the dynamics makes it linear
[5], by neglecting the dynamics of both the COM altitude
and the angular momentum. In that case, K boils down to

the constraint of the zero-momentum point (ZMP) to lie in
the support polygon.

Kajita et al. [5] did not explicitly check the constraint
(6c); in exchange, `u is used to keep the control trajectory
close to a reference trajectory provided a priori. Similarly,
(6f) is not checked; in exchange, `x tends to stabilize the
robot at the end of the trajectory by minimizing the jerk of
the COM. These three simplifications turns (6) into a simple
unconstrained problem of linear-quadratic regulation that is
implicitly solved by integrating the corresponding Riccati
equation.

The LQR was reformulated into an explicit OCP [12],
directly solved as quadratic program. The OCP formulation
makes it possible to explicitly handle inequality constraints:
(6c) is then explicitly checked under its ZMP form. A
modification of this OCP is proposed in [13] where (6f) is
nicely approximated by the capturability constraint, which
constrains the COM position and its first time derivative in
case of planar contacts.

2) Walking patterns in 3D: An iterative scheme is
proposed in [14] that can be written as an implicit
optimization scheme whose cost function is the distance to
a given COM trajectory and given forces distributions. The
resulting forces satisfies (6c) by construction of the solution.
There is no condition on the angular momentum (6d) neither
on the viability of the final state (6f), however the reference
trajectory enforced by the cost function is very likely to play
the same role.

In [6], (6c) is explicitly handled (using the classic linear
approximation of the quadratic cones). As in [7], (6f) is
indirectly handled by minimizing the jerk. No condition
(6d) on the angular momentum is considered. Additionally,
the proposed cost function maximizes the robustness of
the computed forces φ and minimizes the execution time.
Finally, constraints are added to represent the limitation of
the robot kinematics.

In [7], L̇ is null by construction of the solution. Moreover,
(6c) is supposed to always hold by hypothesis and is not
checked, while (6f) is not considered but tends to be enforced
by minimizing the norm of the jerk of the COM, like in
[5]. These assumptions result in an (bilinear)-constrained
quadratic program that is solved by a dedicated numerical
method.

In [8], (6c) is handled under a simple closed form solution,
while (6f) is not considered. To stabilize the resolution, the
cost function tends to stay close to an initial trajectory of both
the COM and the angular momentum, computed beforehand
from a kinematic path. Consequently, (6d) is not considered
either (as it will simply stay close to the initial guess).

In [9], the conic constraint is directly handled. The angular
momentum is treated through the orientation of the system
(L ≈ Ĩω + τL, with Ĩ the compound (rigid) inertia of the
robot and τL = Haq̇a the angular momentum due to the
internal gesticulation). Ĩω is kept low by penalizing the
large rotation ω but τL is unlimited, resulting in (6d) not
being checked. The viability (6f) is not checked neither, but
like previously, it is approximately handled by minimizing



the derivatives of the state in the cost function (however
the first derivatives instead of the third), while a reference
trajectory of the COM is provided to keep a nice behavior
of the numerical scheme. Additionally, constraints are added
to represent the kinematic limits of the whole body.

3) Computing the contact placements: When considering
an explicit OCP formulation, additional static variables can
be added to the problem. Typically, the contact placements
given as invariant in (6) might be computed at the same time.
This was first proposed in [12] for a 2D WPG, and similarly
used in [13] and other works by the same authors. In both
cases, the contact placements are unlimited or similarly
limited to a convex compact set. The problem becomes much
harder when the contacts might be taken among a discrete
set of placements. In [15], the problem was formulated has
a mixed-integer program (i.e. having both continuous and
discrete variables) in case of flat contacts, and solved using
an interior-point solver to handle the discrete constraints. In
[16], the same problem is handled using a dedicated solver
relying on a continuation heuristic and illustrates with the
animation of virtual avatars.

C. The tailored formulation

As mentioned earlier, template (6) is hard to implement
as such. We propose a new instance of problem (6) able
to compute a walking pattern for arbitrary 3D contacts
without providing any reference state or control trajectory.
Furthermore, we want the resulting trajectory to be smooth
and feasible under the other whole-body constraints, and the
method to be fast enough to deal with interactive capabilities.

1) Formulation: We suggest the following OCP:

min
x=(c,h,L),
u=φ

S∑
s=1

∫ ts+∆ts

ts

`h(x) + `κ(x) + `L(ẋ) + `φ(u) dt(7a)

s.t. ∀t ẋ = f(x,u) (7b)
∀t φ ∈ K (7c)

x(0) = (c0,0,0) (7d)
x(T ) = (c∗,0,0) (7e)
ḣ(0) = L̇(0) = ḣ(T ) = L̇(T ) = 0 (7f)

where `h(x) = λh||h||2, `L(ẋ) = λL||L̇||2, `φ(u) =

||φ||2 and `κ(x) =
∑K
k=1 κ(c,pk) takes care of robot

kinematic limits. It corresponds to an exponential barrier on
the distance between the COM and the contact points:

κ(c,pk) = exp(‖c−pk‖−ub) + exp(−‖c−pk‖+ lb) (8)

where ub, lb are the arbitrary upper and lower bounds.
Additionally, the weight λh is adapted depending on the
phase: for support phases involving large displacement (like
a large movement of the swing foot), the weight is divided
by 10 with respect to its nominal value.

2) Comments: Compared to the template (6), this OCP
literally takes into account the actuation constraint (6c). We
replaced the viability constraint (6f) by an easier formulation
to reach a stable rest state at a given COM position.

While the trajectory of the COM is easy to draw, the
shape of the angular momentum seems really hard to guess.
However, neglecting it [9] or constraining it to zero [7]
or to an a-priori guess [8] are not satisfactory solutions
either. We propose to relax (6d) by penalizing the variations
of the angular momentum quantity. Following [8] we also
tried to penalize the deviation of the angular momentum
from a reference trajectory (or to 0), but it did not improve
the results obtained, thus we did not keep it. Finally,
(7f) are initial and terminal constraints which ensure the
under-actuated dynamics to be at rest at both ends.

We additionally enforced a constraint representing the
kinematic limits, in the spirit of [16], [9]. Like in [9]
and contrary to [16] we used a simple elliptic region to
represent the reachability region. However, contrary to [9],
we integrated this constraint as a smooth exponential barrier.
We indeed noticed in practice that a hard constraint or a more
aggressive log barrier tend to confuse the numerical solver.

On top of this, the proposed cost function manages a
good trade-off between the dynamics of the trajectory and
its smoothness.

3) Additional variables: The phase durations ∆ts are also
treated as variables, to be chosen in a specific interval. In
addition, it would be straightforward to compute the contact
placements in the same OCP for little additional cost.

D. The multiple shooting approach

Problems (6) and (7) consider variables of infinite
dimension and cannot be directly handled by a computer.
Addressing these nominal problems requires the use of
indirect methods like the Pontryagin’s maximum principle
or dynamic programming, to reformulate the optimization
problem as an integration problem of an augmented system.
Unfortunately, these indirect approaches cannot handle (7)
due to the bilinear constraint (7b). Alternatively, “direct”
approaches turn the initial infinite-dimensional problem into
a finite-dimensional one by constraining the control or the
state trajectories to live in an arbitrary basis function.

Various details of implementation should be chosen to
obtain an efficient resolution. The most important in our
opinion is the way the pair (x,u) is handled. We refer to [17]
for more details on the aforementioned methods. Collocation
[6], [16] explicitly represents the state variable while the
control is obtained from the state trajectory by inverting the
system dynamics. On the other hand, single shooting [18],
[7] explicitly represents the control trajectory while the state
is obtained by integration. In between, multiple shooting
makes explicit the control trajectory along with some few
state variables at given shooting nodes.

Focusing on problem (7), the dynamics (2) is numerically
quite stable: collocation, which tends to be robust to unstable
dynamics, becomes unnecessary. On the contrary, it is
relatively easy to build a good initial guess of the state
trajectory, while guessing the control trajectory is a more
complex affair. So, multiple-shooting and collocation are
suitable while single shooting would be difficult to initialize.
By elimination, multiple shooting is the best option.



(a) Initial request (b) Reachability planning (c) Contact sequence

Fig. 1: Contact planner overview. (a) A request between an initial and a final configuration. (b) A path is planned for the root of the robot
with the reachability condition, abstracted with cylinders: the inner one must avoid collision while the outer one must be in collision. (c)
The root path is discretized and extended into a sequence of static equilibrium configurations.

IV. ACYCLIC CONTACT PLANNING

To automatically generate an input contact sequence S for
the pattern generator, we use a contact planner [19]. We recall
its principle and detail modifications brought to it in the
present work. An improved version of our planner, dedicated
to robotics applications, has recently been submitted [20].

A. General principle

Our objective is to describe the motion between initial
and goal postures with a discrete sequence of configurations
in static equilibrium, thus in contact. To tackle this issue
efficiently, we use a decoupled approach: we first compute
a low-dimensional path for the root of the robot, then we
compute a contact sequence along this path (Fig. 1).

When planning a root path, we check efficiently that a root
configuration can lead to a whole-body configuration in static
equilibrium with the “reachability condition”. Informally, it
verifies that a root configuration is “close, but not too close”:
close to allow contact creation (obstacles are in the reachable
workspace – outer cylinders in Fig. 1), not too close to
avoid collisions (a scaling of the root is collision-free – inner
cylinders in Fig. 1). Any sampling-based planner can be used
to compute a path of such configurations. Instead of the PRM
[21] used in our previous work, we use a bi-RRT [22], which
allows efficient online requests, compatible with the MPC
capabilities of our pattern generator.

Once a root path has been computed, the whole-body
static equilibrium configurations are generated along the
discretized path. Between two successive configurations, they
verify that one contact is created or broken at most. The
generation can be biased with user-defined heuristics [23].
In this work we implement two heuristics to account for the
limitations of the torque capabilities of the HRP-2 robot:
• The orientations of the feet are constrained to be parallel

to the direction of motion;
• Contact generation is biased towards high

manipulability limb configurations [24].

B. Kinematic interpolation of the contact sequence

The contact planner generates a collision free root path,
but it does not provide a continuous path for the limbs. We
thus introduce limb-RRT, a local interpolation method that
computes a collision-free limb path between two successive

configurations of the sequence, given the root path. The
limb-RRT considers the following inputs:
• A kinematic chain l composed of n joints (here, n = 6).

The origin of l is the geometrical root of the robot.
• ql0 Initial configuration of limb l
• ql1 Goal configuration of limb l
• qr(t) : [0, 1] −→ SE(3) a normalized interpolation

path for the root of the robot.
It outputs ql(t) = [0, 1] −→ R6, a collision-free path.
To take into account the root trajectory during the

planning, we use a bi-RRT where configurations have an
extra dimension t ∈ [0, 1], used to randomly sample root
configurations in qr(t). The graph is ordered according to t
to ensure continuity of the root positions (an edge from a to
b only exists if ta < tb).

The distance between two configurations is computed
based on the n joint values, weighted by the length of the
sub-kinematic chain they support. For instance for the robot
arm, the three joints of the shoulder have a weight of 1,
the two joints of the elbow a weight of larm−(lforearm+lhand)

larm
and

so on. The limb-RRT can directly consider bounds on joint
velocities, and return the total time necessary to perform the
motion. Optionally, it can also be bounded to find a solution
respecting a time window.

V. EXPERIMENTAL RESULTS

Two main experiments carried out on the HRP-2 robot are
presented. The first experiment concerns the generation of a
classic walking motion: it is a unitary test but it is important
to properly understand the behaviour of our solver compared
to classic WPG. The second experiment is the climbing stairs
scenario depicted in Fig. 2, where the robot has to make
use of the handrail to help its ascension of the stairs. We
additionally show a standing motion not yet executed on the
robot but demonstrating the versatility of our approach.

A. Experimental setup

All the computations were performed offline on a Intel
Xeon(R) CPU E3-1240 v3 @ 3.40GHz. The contact
planner is open-source and available at https://github.
com/humanoid-path-planner. The OCP is solved using
the proprietary software MUSCOD-II provided by the
Interdisciplinary Center for Scientific Computing (IWR) of
Heidelberg University. This software offers an OCP toolkit



Fig. 2: Exp. 1: Walking in straight line with large stride of 100cm.

Fig. 3: Exp. 1 - Evolution of the cost function.

(e.g. integration and numerical-differentiation routines) along
with an efficient sparse sequential-quadratic-program solver.
The whole-body trajectory is obtained from the contact
sequence and the COM and angular-momentum trajectory
using a second-order inverse kinematics. The typical tasks
where the tracking of the contact placements, the tracking of
the COM position and an additional posture task to keep the
configuration close to the planned postures. The computed
trajectories are then executed by the real robot. For the
walking experiments, we used a closed-loop control provided
with the robot to stabilise the movements of the rubber bush
inside each foot [25]. The stabiliser was not used for the
climbing scenario as it is not able to handle hand contacts.

B. Experiment 1: large stride on a flat ground

In this first experiment, a sequence of cyclic contacts is
manually generated with 100 cm long stride (a very large
step compared to the 1.60 m height of the HRP-2 robot).
The timings are fixed (single support: 1.0 s; double support:
0.1 s) with a total duration of 8.2 s. We then compute
a feasible COM trajectory using the proposed OCP. The
foot trajectories are a collection of splines connecting the
desired contact placements and ensuring a zero velocity and
acceleration during take-off and landing of the foot. The
experiment is summarized by Fig. 2 to 4.

Fig. 3 reports the numerical behaviour of the OCP solver.
A near optimal solution (i.e. KKT tolerance below 10−6) is
obtained in 4 s after 50 iterations of the multiple shooting
algorithm. The objective value decreases rapidly in the
beginning, and slows down its progression as the algorithm
tries to fulfil the path constraints. After a feasible solution
is found, every new iteration (i.e. what is computed during
one iteration of a MPC) lasts 40 ms. The overall movement
is depicted in Fig. 2 and in the accompanying video.

Fig. 4 shows the ZMP trajectory on the Y axis resulting
from the OCP, compared to the estimation coming from
force sensors measurement. The ZMP is very similar to what
could be obtained by a classic WPG with assumption of flat
contact. The proper tracking on the real robot shows the
dynamic consistency of the output of the OCP.

Fig. 4: Exp. 1 - ZMP trajectories obtained from the OCP, the
multi-body dynamics and the measurements.

C. Experiment 2 : climbing stairs equipped with a handrail

In the climbing scenario, the contact sequence given by
the planner is no more cyclic and takes around 1s to be
computed. The computation of a feasible trajectory to climb
one stair is done in less than 5.5s after 85 iterations.

Fig. 6 illustrates both the forces computed by the solver
and the forces exerted on the real robot. The simulated and
measured forces do not match exactly but they have similar
variations. In both cases, we observe that the robot makes use
of its right hand either for pulling or pushing. The oscillations
in the forces response are mainly due to the presence of a
flexibility part in the robot’s feet and to the compliance of the
handrail. These two external disturbances are not considered
in our framework.

D. Simulated motion

A standing-up motion was also planned, where the robot
exploits the proximal environment in order to stand up. For
this movement, the sequence of contact configurations is
nontrivial and would have been difficult to build manually.
Fig. 7 and the companion video illustrate the motion.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an original formulation
to efficiently generate walking pattern for any multi-contact
scenarios. The walking pattern generator is written as a
nonlinear optimal control problem, which can be solved very
efficiently, leading to interactive capabilities. While building
an efficient problem, we kept the formulation as generic as
possible, by comparing and justifying every technical choice
with respect to several other formulations proposed in the
state of the art. The few arbitrary modelling choices that were
taken are clearly exhibited and might be the topic of future
research. For example, a future direction may be to express
more clever bounds on the angular momentum variations.

We have also shown how to integrate this WPG in a
complete application, by using a contact planner to compute
the reference contact sequence. The dynamically-consistent



Fig. 5: Exp.2 - Climbing the stairs of 15cm height by using the handrail.

Fig. 6: Exp. 2 - Reference (solid line) and measured (dotted line)
forces acting on the right foot (on top) and hand (on bottom) during
one contact phase.

Fig. 7: Exp.3 - The robot is standing up thanks to wall contacts.

whole-body trajectory is finally obtained by performing a
second-order inverse kinematics using the COM and angular
momentum reference of the pattern generator. The complete
pipeline is interactive on the demonstrated examples and in
most of the classic scenarios that a robot could meet in
a factory. The maturity of the approach was demonstrated
with two real executions with the HRP-2 robot and another
example in simulation.
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