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Abstract

We model trip-timing decisions of rail transit users who trade off crowding costs and disutility from

traveling early or late. With no fare or a uniform fare, ridership is too concentrated on timely

trains. Marginal-cost-pricing calls for time-dependent fares that smooth train loads and generate

more revenue than an optimal uniform fare. The welfare gains from time-dependent fares are

unlikely to increase as ridership grows. However, imposing time-dependent fares raises the benefits

of expanding capacity by either adding trains or increasing train capacity. We illustrate these

results by calibrating the model to the Paris RER A transit system.
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1. Introduction

Since the pioneering work of Pigou (1920) and Knight (1924), economists have made major

strides in studying automobile traffic congestion. They have developed models that describe indi-

viduals’ trip-making decisions and that capture the evolution of congestion over space and time.

They have analyzed first-best and second-best congestion pricing, characterized optimal road ca-

pacity, and examined the linkages between optimal capacity and the way in which usage is priced.1

By comparison, economists have devoted much less attention to congestion delays and crowding in

public transportation, and they have not explored the time dimension of transit usage in as much

depth. Yet, as described below, peak-period travel delays and crowding on urban transit systems

are becoming major problems.

The goal of this paper is to analyze transit crowding congestion using an approach that broadly

parallels what has been done for automobile traffic congestion. We develop a simple but general

model of trip-timing decisions on a crowded rail transit line with a dedicated right-of-way. We derive

equilibrium usage patterns with no fare, an optimal flat fare, and an optimal time-of-day-varying

(henceforth TOD) fare, and optimal transit capacity for each fare regime. To focus the analysis we

address two specific questions: one concerning optimal fares and the other optimal capacity. First,

how does the welfare gain from optimal TOD fares depend on the severity of crowding? Is it the

case that, as in road traffic congestion models, the gains from congestion pricing increase more than

proportionally with traffic volume? Second, how does congestion pricing using TOD fares affect

optimal system capacity? Is it true that, as is widely believed, congestion pricing is a substitute

for investment?

These questions are important because of the large and growing costs of travel delays and

crowding in transit systems around the world. A recent roundtable report (OECD, 2014) identifies

crowding as a major component of the cost of travel. Transit crowding imposes disutility on riders

in several ways.2 It increases waiting time and in-vehicle travel time, and reduces travel time

reliability. It causes stress and feelings of exhaustion (Mohd Mahudin et al., 2012). Disutility from

in-vehicle time increases with the number of users (Wardman and Whelan, 2011; Haywood and

Koning, 2015). In a comprehensive analysis, Wardman and Whelan (2011) find that the monetary

1See Small and Verhoef (2007) for a review.
2See Tirachini et al. (2013).
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valuation of the disutility from public transport travel time is, on average, multiplied by a factor

of 2.32 if a rider has to stand. Discomfort also occurs while entering and exiting transit vehicles,

accessing stations on walkways and escalators, and so on.

Several recent studies have documented the aggregate cost of crowding. For example, Prud’homme

et al. (2012) estimate that the eight percent increase in passenger densities in the Paris subway be-

tween 2002 and 2007 imposed a welfare loss in 2007 of at least e75 million. Veitch et al. (2013)

estimate the annual cost of crowding in Melbourne’s metropolitan trains in 2011 at e208 million.

The costs of crowding are likely to increase as transit usage grows faster than capacity. As

urbanization proceeds in both developed and developing countries, the number of city residents

who rely on transit is rising. Younger people are delaying acquisition of a driver’s license, and

choosing to live in areas where transit service provides most of their travel needs. Though the

automobile still dominates in the US and Canada, transit ridership is rising there too.3 Cities,

meanwhile, struggle to obtain adequate funding for capacity expansion and operations.

City planners are now recognizing that crowding should be considered in cost-benefit analysis

of transit projects as well as travel-demand management policies (Parry and Small, 2009). For

example, bus service was improved in London prior to introduction of the Congestion Charge in

2003. Similarly, bus, metro, and rail service were expanded in Stockholm before the Congestion

Tax trial in 2006. Nevertheless, crowding and other dimensions of transit quality are still often

undervalued in project evaluation relative to more easily measured metrics such as in-vehicle speed

(OECD, 2014).

Expanding capacity is a natural way to alleviate transit crowding, but it is expensive and time-

consuming, and residents and businesses located near transit routes often oppose it. An alternative

is to use transit fares as a rationing mechanism. More than sixty years ago, Vickrey (1955) undertook

a thorough study of New York City’s subway fare structure. He remarked on the severe crowding at

peak times, and the high cost and time lags incurred to expand capacity. He advocated a fare system

based on marginal-cost-pricing principles with due regard for collection costs and revenue generation

constraints, and pointed out the disadvantages of uniform fares and fares strictly proportional to

3Transit ridership in the US has been growing since 1995 (www.apta.com/mediacenter/pressreleases/2015/Pages/
150309 Ridership.aspx). In Canada, the share of morning commute trips taken by public transit in each of the ten
largest cities increased from 2006 to 2011 (http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-012-x/2011003/tbl/
tbl1b-eng.cfm; http://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-012-x/2011003/tbl/tbl1a-eng.cfm).

Information from the 2016 Canadian census is scheduled to be released in November 2017.
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distance. In Vickrey (1963) he also argued for peak-load fares, and noted the common economic

principles underlying congestion pricing of transit systems and congestion pricing of roads.

A number of transit agencies do vary fares by time-of-day,4 but uniform fares are still levied in

many large urban areas including Paris, Tokyo, and Toronto. Opinions differ as to whether peak-

period pricing is cost-effective. One argument against it is that travelers such as morning commuters

lack the flexibility to reschedule their trips. Retiming morning arrival times may also be inhibited by

departure time constraints in the evening (Daniels and Mulley, 2013). However, several studies have

concluded that congestion can be reduced appreciably by a suitable combination of fare surcharges

and discounts. Using a simulation model, Whelan and Johnson (2004) determine that combining

a fare increase in the peak with a fare reduction in the off-peak generates significant reductions in

overcrowding with only marginal changes to total demand and operator revenue. Douglas et al.

(2011) examine the potential of TOD fare variation to spread morning peak train usage. They find

that surcharges have a bigger effect than discounts of the same magnitude, and that discounts are

more effective at peak spreading on early trains than late trains.

Several surveys (e.g., of London and Melbourne) have found that many travelers are willing to

change travel time by 15 minutes, and in some cases more, if they are compensated in some way

(e.g., by fare reductions, faster trains, or less crowding). Off-peak discounts have been implemented

in some cities, and they are popular with travelers.5

Beginning with Mohring (1972), most economic studies of transit pricing, investment, and sub-

sidy policy have employed static models that do not account for travelers’ time-of-use decisions

and the large daily variations in ridership and crowding typical of major transit systems. Dynamic

models have been used to study traffic congestion for many years, but they are not applicable to

public transport because of differences in the nature of supply as well as the form that congestion

4These include the London subway (http://content.tfl.gov.uk/tube-dlr-lo-adult-fares.pdf), the Long Island
Rail Road (http://web.mta.info/lirr/about/TicketInfo/), the Washington, D.C. metro (www.wmata.com/fares/),
Seattle (http://kingcounty.gov/depts/transportation/metro/fares-orca/what-to-pay.aspx), Sydney (http://www.
transportnsw.info/en/tickets/tickets-opal-fares/train.page#opaltrainfares), and Melbourne (https://www.ptv.vic.
gov.au/tickets/fares/regional-fares/).

5In Singapore, commuting to the downtown core is free before 7:45 am, and a discount of up to 50 cents applies
when arriving between 7:45 am and 8:00 am (www.lta.gov.sg/apps/news/page.aspx?c=2&id=c3983784-2949-4f8d-
9be7-d095e6663632). See Lovrić et al. (2016) for a recent assessment. Similarly, in Melbourne, weekday trips on the
electrified train network before 7am are free for users with the myki travel card (http://ptv.vic.gov.au/tickets/myki/
myki-money/). In 2014, Hong Kong’s Mass Transit Railway system introduced an Early Bird Discount Promotion
to encourage users to travel before the peak. The effects are described in Halvorsen et al. (2016).
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takes.6 Transit service is provided in batch form according to a timetable so that travelers have

to choose among a discrete set of departure-time alternatives rather than being able to depart

whenever they want. Moreover, transit congestion often involves crowding rather than travel delay.

Users pay fares that may or may not depend on time of day and distance traveled. Transit capacity

also has several dimensions whereas the capacity of a road can usually be described by a single

variable denoting its flow capacity in vehicles per hour.

Kraus and Yoshida (2002) take a major step toward overcoming these limitations by using a

variant of the Vickrey (1969) bottleneck model to study transit congestion. Kraus and Yoshida

consider a rail service between a single origin and destination. Service capacity is defined by the

number of train runs, the number of trains, the capacity of each train, and the time headway

between trains. The number of people who board a train is limited by its capacity, and congestion

takes the form of queuing delay. Service discipline is first-come-first-served, and if the fare does not

depend on time of day, in equilibrium users traveling at the peak have to wait for several trains to

pass before they can board. The social optimum with no queuing can be decentralized by levying

a time-varying (i.e., train-dependent) fare. Kraus and Yoshida assume that travelers cannot arrive

late. Yoshida (2008) extends their model to allow late arrivals, and also considers random-access

boarding discipline.

Train capacity in the Kraus and Yoshida (2002) and Yoshida (2008) model is “hard” in the

sense that it has no effect on users’ costs until the capacity constraint is reached, but the number of

passengers who board a train cannot exceed capacity at any cost. In practice, congestion on most

transit systems does not develop as abruptly as this, but rather increases steadily with passenger

loads as crowding develops on walkways, escalators, and platforms, as well as in transit vehicles

themselves.

A few studies have taken steps towards modeling crowding on transit systems. Huang et al.

(2005) assume that all travelers waiting for a train can get on, but the discomfort incurred while

aboard increases with the passenger load. Tian et al. (2007) consider a many-to-one network in

which riders board trains at multiple stations and derive the equilibrium departure pattern from

each originating station. Tian et al. (2009) show that the socially optimal usage pattern can be

6Gonzales and Daganzo (2012) study the car vs public transit competition for a single bottleneck. They assume
a generalized cost of a transit trip constant, which does not depend on the number of transit users or on the road
congestion.
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supported using time-dependent fares. These studies do not consider the welfare gains from TOD

fares or optimal service capacity, and Tian et al. (2009) assume that the number of trains is large

enough that not all of them are used. de Palma et al. (2015) focus on the functional form of the

crowding cost function for seated and standing passengers. Their work is complementary to our

paper. They propose some parameterization of in-vehicle congestion function. They provide a

continuous description of congestion under three regimes: all users have a seat; some passengers sit

and others are standing; and finally very high in-vehicle congestion.

Our analysis builds on previous work in two main ways. First, we explore in depth the welfare

gain from TOD transit fares, and how it depends on the functional form of the crowding cost function

and capacity parameters. Second, we derive the optimal number of trains and train capacity for

three fare regimes: no-fare, optimal uniform-fare, and optimal TOD fares, and compare optimal

service supply across regimes. Our analysis parallels much of that in Kraus and Yoshida (2002).

We highlight the distinction between crowding and queuing congestion, and note the similarities

and differences between our results and those of Kraus and Yoshida (2002). Our analysis ventures

beyond theirs in considering general trip-timing preferences, a regime with zero fare in which transit

usage is underpriced, the excess burden of public funds, and the welfare gain from TOD fares. We

also develop a numerical example based on the Paris RER A transit line.

To preview results, the answers to the two questions posed in the second paragraph are as

follows. First, when capacity is fixed the welfare gain from implementing optimal TOD fares may

not increase with the total number of users or, therefore, with the severity of crowding. Indeed, if

the cost of crowding aboard a train grows at an increasing rate with the passenger load, the welfare

gain actually decreases with the total number of users. As we elaborate later in the paper, this

contrasts with intuition as well as results of automobile traffic congestion models. Second, even if

the total number of users is fixed, the optimal number of trains and train capacity can be higher

with optimal TOD fares than when fares are uniform for all trains. Thus, while congestion pricing

improves utilization of a given transit service, it can actually increase the benefits of expanding

capacity.

Section 2 describes the model. Section 3 derives the equilibrium trip-timing decisions of users

with a zero fare, and Section 4 derives the optimal uniform fare. Section 5 analyzes the socially

optimal distribution of users across trains, the TOD fare schedule that supports the optimum,

and the welfare gain from the TOD fare. Section 6 considers the long run in which the number of
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trains and train capacity are endogenous, and compares optimal capacities in the three fare regimes.

Section 7 examines how the results are affected by two market distortions: the excess burden in

raising public funds, and unpriced traffic congestion when users can choose between transit and

driving. A numerical example based on the Paris RER A line is presented in Section 8. Section 9

concludes. Major proofs are relegated to appendixes.

2. A model of crowding on a rail transit line

In this section we introduce a general model of rail transit crowding which we call the “PTC”

model. A rail line with a dedicated right-of-way connects two stations without intermediate stops.7

There are m trains, indexed in order of departure, which run on a timetable.8 Trains have the same

capacity which is determined by the number of cars, the number of seats per car, and the amount

of standing area. Service is perfectly reliable.9 Train k leaves the origin station on schedule at

time tk, k = 1, ...,m. Travel time aboard a train is independent of both departure time and train

occupancy, and without loss of generality it is normalized to zero.

Each morning a fixed number, N , of identical users take the line to work. They know the

timetable and the crowding level on each train, and choose which train to take. By assumption,

they cannot increase their chances of securing a good seat by arriving at the origin station early.

Users therefore arrive just before a train comes in, and never have to wait.10 When a train arrives at

the station, all users on the platform board it. Such behavior is observed in many public transport

networks around the world. See, for example Huang et al. (2005) for Beijing.11

Users of a train incur an expected crowding disutility, g (n), where n is the number of users taking

the same train.12 Crowding disutility is zero on an empty train (i.e., g (0) = 0), strictly increasing

7Given the separate right-of-way, the model is not applicable to regular bus service that shares the road with
other vehicles. With some modifications, the model could be applied to a Bus Rapid Transit (BRT) service with
dedicated traffic lanes.

8A notational glossary is provided in Appendix D.
9Some implications of unreliable service are discussed in the conclusion.

10Similar results would obtain if users do not know the timetable. Each user would then incur an expected waiting
time equal to half the headway.

11The model therefore excludes congestion in the form of either waiting time or longer in-vehicle travel time. In
reality, any train has a finite capacity to accommodate passengers. However, as long as users anticipate the crowding
cost they will incur, in equilibrium the number of passengers who attempt to board a train will never exceed its
capacity. It is therefore unnecessary to include absolute train capacity constraints in the model.

12Function g (n) is an average over possible states: securing a good seat, getting a bad seat, having to stand in the
middle of the corridor, standing close to the door, etc.. The function can include disutility that is correlated with
the number of people who ride a train such as the time required to buy tickets, crowding on platforms, jostling to
board and alight from trains, fear of pickpockets and so on.

7



with n (i.e., g′ (.) > 0), and twice continuously differentiable. Several of the results we derive

depend on the shape of g (n). Most empirical studies find that crowding costs are approximately

linear. Whelan and Crockett (2009) conduct a stated-preference study of crowding in the UK.

They find that crowding costs are approximately linear above a threshold load factor or passenger

density. Linearity is also supported by Wardman and Whelan (2011) in a comprehensive analysis of

crowding cost estimates for the UK, and Haywood and Koning (2015) who estimate time multiplier

coefficients in the Paris subway.13 In light of this evidence, for much of the paper we assume that

g (n) is linear. With linearity, the model can be readily extended to allow elastic demand, and

the optimal number of trains and train capacity can be characterized as well. Nevertheless, it is

clear that g (n) becomes steep at very high passenger densities, and approaches a vertical line when

physical limits to crowding are reached. For the short-run analysis we begin by considering general

functional forms for g (n), and measure its curvature by the elasticity of g′ (n) with respect to n:

ε (n) ≡ g′′ (n)n/g′ (n) .

Because trains are costly to procure and operate, it is natural to assume that all m trains are used.

Letting nk denote the number of users on train k we thus assume that for all k = 1, ...,m, nk > 0

which implies that g (nk) > 0: users incur a crowding disutility on every train.

Since travel time is normalized to zero, an individual is either at home or at work. Following

Vickrey (1969) and Small (1982), time at home yields an instantaneous time-varying utility uh (t),

and time at work an instantaneous time-varying utility uw (t). Let (tB , tE) denote the time interval

(beginning to end) during which all travel takes place. It is assumed that during this interval,

uh (t) is weakly decreasing, uw (t) is weakly increasing, and the functions intersect at time t∗ which

is the desired arrival time (i.e., uh (t∗) = uw (t∗)). A user taking train k gains a total utility of

U (tk) =
∫ tk
tB
uh (t) dt+

∫ tE
tk
uw (t) dt− g (nk). If a train with unlimited capacity left at t∗, the user

could travel from home to work at t∗ without suffering crowding disutility. As a consequence, his

utility would be maximal and equal to Umax =
∫ t∗
tB
uh (t) dt +

∫ tE
t∗
uw (t) dt. We define the user

travel cost, ck, as the difference between this hypothetical maximal utility and the actual utility of

taking train k:

c (tk) ≡ Umax − U (tk) = g (nk) + δ (tk) ,

13In a recent empirical study of transit crowding costs, Tirachini et al. (2016) take linearity of the crowding cost
function as given.
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where δ (tk) is the schedule delay cost such that δ (tk) =
∫ t∗
tk

(uh (t)− uw (t)) dt. Note that maximiz-

ing U (tk) is equivalent to minimizing c (tk). The schedule delay cost is the disutility an individual

accumulates from not being where their utility is the highest (i.e., at home until t∗, and at work

after t∗). Function δ (t) is weakly decreasing for t < t∗ and weakly increasing for t > t∗. Trains that

arrive close to t∗ have small values of δ (t), and will sometimes be called timely trains. As shown

in the next section, timely trains are more heavily used than other trains.

For much of the analysis it is assumed that δ (t) has a piecewise linear form: δ (t) = β (t∗ − t)

if t < t∗, and δ (t) = γ (t− t∗) if t ≥ t∗, where β and γ are marginal disutilites from arriving early

and late, respectively. This specification, called “step preferences”, is used in most studies of road

traffic congestion.

In the general case, a user taking train k with nk users incurs a combined schedule delay and

crowding disutility c (tk) = δ (tk) + g (nk) , k = 1, ...,m. To economize on writing, δ (tk) is written

δk, and c (tk) is written ck, unless time dependence is required for clarity.

3. Equilibrium departure times with a zero fare

In this section we characterize user equilibrium when there is a uniform fare (i.e., independent

of k). This regime serves as a benchmark against which to compare TOD fares. With the total

number of users, N , fixed, a uniform and positive fare would not affect either the division of users

between trains or crowding costs. We first describe user equilibrium given the general crowding

cost function, and then consider the linear version.

3.1. General crowding costs

Let superscript “e” denote the no-fare or user equilibrium (UE), and ce the equilibrium trip

cost which is to be determined. In UE, users distribute themselves between trains so that the

user cost on every train is ce. The equilibrium is a pure-strategy Nash equilibrium with departure

times as the strategy variables. Hence, δk + g (nek) = ce, k = 1, ...,m. Given g′ (.) > 0, the inverse

function g−1 (.) exists, with g−1 (0) = 0 and
(
g−1

)′
(.) > 0. The UE can therefore be solved for the

equilibrium number of users on each train, nek, as a function of ce:

nek = g−1 (ce − δk) , k = 1, ...,m. (1)

Since every user has to take some train,
∑m
k=1 n

e
k = N , or

∑m
k=1 g

−1 (ce − δk) − N = 0. This

equation implicitly determines a unique value of ce. Figure 1 depicts a UE for seven trains (m = 7).
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δ (tk)

g (nk)

Figure 1: Schedule delay δ (tk), crowding cost g (nk) and equilibrium cost ce for seven trains, t5 = t∗

Train k = 5 arrives on time and carries the most users.

Comparative statics properties of UE with respect to N are described in:14

Proposition 1. In equilibrium with no fare, user cost is an increasing function of N . It is convex,

linear, or concave if g (.) is convex, linear, or concave, respectively.

As expected, user cost is an increasing function of total patronage, N . Less obvious is that

the curvature of ce (N) depends on the crowding cost function rather than the schedule delay cost

function. This is because the train timetable is fixed in the short run, and the period of usage

cannot be extended earlier or later in response to growing demand. Furthermore, since each train’s

arrival time is fixed, the schedule delay cost incurred when taking a given train does not depend on

N . The only way to accommodate additional demand is to carry more passengers on each train.

Equilibrium user cost therefore increases at an increasing (resp. decreasing) rate with N if the

marginal cost of crowding aboard a train increases (resp. decreases) with ridership. This property

of the model implies that, using estimates of the crowding cost function, a rail transit operator

can predict the effects of rising patronage on user cost without knowing the schedule delay cost

14Proof: ∂ce/∂N = 1/
∑m

k=1 (g′ (uk))−1 > 0, where uk ≡ g−1 (ce (N)− δk). The second derivative, ∂2ce/∂N2,

has the same sign as
∑m

k=1 g
′′ (uk) (g′ (uk))−3 which in turn has the same sign as g′′(.).
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function.

3.2. Linear crowding costs

Given the empirical evidence, noted above, supporting linearity of crowding costs we examine

further the solution when the crowding cost function g (n) is linear. Assume that g (n) = λn/s,

where s > 0 is a measure of train capacity, and λ > 0. The private cost of taking train k is then

ck = δk +λnk/s, k = 1, ...,m. Define δ ≡ 1
m

∑m
k=1 δk as the unweighted average scheduling cost for

trains. Eq. (1) can be solved explicitly to obtain:

nek =
N

m
+
s

λ

(
δ − δk

)
, (2)

ce = δ +
λN

ms
. (3)

For given values of m and s, equilibrium usage of each train and equilibrium trip cost are lin-

ear increasing functions of ridership, N . The difference in loads between two successive trains is

proportional to parameter s, and inversely proportional to λ.15

4. The optimal uniform fare

User equilibrium in the PTC model is inefficient because users impose external crowding costs

on each other. To assess the role of fares in internalizing the externality we briefly consider the

general crowding cost function, and then turn to the linear variant.

4.1. General crowding costs

The marginal social cost of a trip, MSC, is derived by differentiating the equilibrium total

cost function, TCe = ce × N , with respect to N : MSCe ≡ ∂TCe/∂N = ce + (∂ce/∂N)N . The

average marginal external cost of a trip is therefore MECe ≡ MSCe − ce = (∂ce/∂N)N . With

elastic demand (introduced in Section 5), transit is overused with a zero fare.16 If the fare system

is restricted to uniform fares, the fare should be set equal to the average marginal external cost:

τu =
∂ce

∂N
N , (4)

where superscript “u” denotes the optimal uniform fare.

15All trains are used provided N is sufficiently large; see on-line Appendix E.
16In Section 7.2 we show that this is not necessarily true if transit is an alternative to driving and traffic congestion

is severe.
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4.2. Linear crowding costs

With linear crowding costs, the user cost function is given in (3) and the marginal social cost

of a trip is

MSCe = δ + 2
λN

ms
. (5)

The optimal uniform fare in (4) works out to:

τu =
λN

ms
,

and fare revenue is

Ru = τuN =
λN2

ms
. (6)

Total schedule delay costs, SDC, total crowding costs, TCC, and total travel costs net of the fare,

TC, are given by

SDCe = δN − 4RV o, TCCe =
λN2

ms
+ 4RV o, TCe = δN +

λN2

ms
, (7)

where

RV o ≡ s

4λ

 m∑
k=1

δ2
k −

1

m

[
m∑
k=1

δk

]2
 . (8)

By the Cauchy-Schwarz inequality, RV o > 0. As shown in Section 5, RV o corresponds to the

welfare gain from the socially-optimal time-varying fare. Equation (7) reveals that total schedule

delay costs are lower than if users were equally distributed across trains (in which case SDCe = δN).

Total crowding costs are higher by the same amount. This is because users crowd onto timely trains

that arrive closer to t∗.

The optimal uniform fare does not support the social optimum because the marginal external

cost of crowding varies with train occupancy which is larger on timely trains. As explained in the

next section, the social optimum can be achieved by levying time-dependent (i.e., train-specific)

fares.

5. Socially optimal departure time pattern

In this section we derive the socially optimal departure time pattern and TOD fare structure

that supports it. We then characterize the welfare gain from the TOD fare. Finally, we rank usage,

private costs, consumers’ surplus, and social surplus for the no-fare, uniform-fare, and socially

optimal fare regimes.
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5.1. General crowding costs

In the social optimum (SO), users are distributed between trains to equalize the marginal social

costs of trips, rather than user’s private costs as in the UE. The marginal social cost of using train

k is MSCk = ∂ (cknk) /∂nk = δk + v (nk) , k = 1, ...,m, where v (nk) ≡ g (nk) + g′ (nk)nk is the

marginal social crowding cost on train k. Let superscript “o” denote the SO. Total costs in the

SO are TCo =
∑m
k=1 cknk, and the marginal social cost of a trip is MSCo = ∂TCo/∂N . At the

optimum, users are distributed across trains so that MSCk = MSCo for every train:

δk + v (nok) = MSCo, k = 1, ...,m. (9)

Since g′ (.) > 0 for n > 0, the marginal social crowding cost is always positive. In practice, it may

not increase monotonically at all levels of ridership.17 To facilitate analysis, however, we assume

that v′(.) > 0:

Assumption 1. The marginal social crowding cost, v (n), is an increasing function of n.

Assumption 1 is equivalent to assuming that ε (n) > −2. It is satisfied for all increasing and

convex g (.) functions and in particular for all power functions g (n) ∝ nr, r > 0. Given Assumption

1, the inverse function v−1 (.) exists and it is increasing. Eq. (9) yields

nok = v−1 (MSCo − δk) . (10)

Since all users must take some train in the SO,
∑m
k=1 n

o
k = N . Given Eq. (10),

∑m
k=1 v

−1

(MSCo − δk) − N = 0, which implicitly determines a unique value of MSCo. A counterpart

to Prop. 1 then follows:

Proposition 2. In the social optimum, the marginal social cost of a trip is an increasing function

of N . It is convex, linear, or concave if v (.) is convex, linear, or concave respectively.

Comparing Prop. 2 with Prop. 1 it is clear that v(.) plays the same role in shaping the SO as

g (.) does for the UE.18

17For example, v(.) may increase as seats fill up, and then flatten out once all seats are occupied because standing
passengers impose little inconvenience on others as long as the corridor and doors of rail cars remain clear. For
details see de Palma et al. (2015).

18Note that v′′ (n) = 3g′′ (n) + ng′′′ (n). The marginal social cost of a trip can therefore be a convex function of
N even if the user cost function is concave in N , and vice versa.
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We now examine how riders are distributed over trains. Intuition suggests that, as discussed

in de Palma et al. (2015), passenger loads are spread more evenly in the SO than the UE because

smoother loads should reduce the total costs of crowding. In fact, this is not invariably true but

depends on how the marginal external crowding cost varies with usage. For any train, the derivative

of the marginal external crowding cost is d (g′ (n)n) /dn = g′ (n) (1 + ε (n)). The marginal external

crowding cost increases with usage if ε (n) > −1, and decreases with usage if ε (n) < −1. The load

patterns in the SO and UE are compared in:

Proposition 3. If ε (n) > −1 (respectively, ε (n) < −1) the socially optimal distribution of users

across trains is a mean-preserving spread (respectively contraction) of the user equilibrium distri-

bution of users across trains.

The SO load pattern is a mean-preserving spread of the UE load pattern if the SO load pattern

has more weight in the tails than the UE load pattern.19 If the marginal external crowding cost

increases monotonically with passenger load, then ε (n) > −1.20 If so, the marginal social costs

of trips on two trains with unequal loads differ by more than their user costs. Consequently, the

SO balance between crowding costs and schedule delay costs calls for a smaller range of train loads

than in the UE. Conversely, if ε (n) < −1, which is possible only if g(.) is sufficiently concave,21

then passenger loads are more peaked in the SO than the UE.

In summary, the difference between the SO and UE train loads depends on the curvature of

the crowding cost function. If g(.) is linear or convex, ε (n) ≥ 0 and ridership in the UE is too

concentrated on timely trains and should be spread out.

Regardless of whether the SO is more or less peaked than the UE, the SO usage pattern can be

decentralized by charging a fare on train k equal to the marginal external cost of usage.22 We will

call the fare pattern the SO-fare. Given MSCk − ck = g′ (nk)nk, the SO-fare is

τok = g′ (nok)nok, k = 1, ...,m. (11)

19The relevant definition of MPS for discrete distributions is found in Rothschild and Stiglitz (1970).
20Similar to Assumption 1, which is weaker, ε (n) > −1 is satisfied for all convex crowding cost functions, and

crowding cost functions that belong to the class of power functions: g (n) ∝ nr, r > 0.
21For example, inequality ε (n) < −1 holds for the function g (n) = c0 + c1 ln (n) − kn for c0 > k and over the

range n ∈ [1, c1/k) .
22The fare is set according to Pigouvian principles. Revenue generation incentives are considered in Section 7. Tian

et al. (2009) show that the SO usage pattern can be supported using train-dependent fares under the assumption
that the number of trains is large enough that not all of them are used.
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With this fare structure in place, users of train k incur a private cost equal to the social cost of a

trip: pok = cok + τok = MSCo, k = 1, ...,m. The SO is more efficient than the UE because users are

better distributed between trains. However, inclusive of the SO-fare users incur a higher private

cost in the SO. To see this, note that at least one train is more crowded in the SO than the UE.

Compared to the UE, in the SO a rider of that train incurs the same schedule delay cost but a

higher crowding cost and a positive fare. Since all users incur the same private cost in the UE, and

all users incur the same private cost in the SO, private costs are higher in the SO.

Unless fare revenues are used to improve service in some way, charging fares to price crowding

costs in the PTC model leaves users worse off. We prove in on-line Appendix F that ∂Ri/∂N =

∂MSCi/∂N ·N, i = u, o. Thus, in both fare regimes fare revenue increases with total usage (N)

as long as the marginal social cost of a trip increases with N .

Next, we examine how the welfare gain from implementing the SO-fare varies with usage. Let

Geo denote the welfare gain in shifting from the UE to the SO:

Geo ≡ TCe − TCo.

We have seen that the rate at which the cost of crowding increases with load depends on the

curvature of the crowding cost function, g (·). It turns out that properties of the crowding cost

function also govern how Geo depends on N .

Proposition 4. (a) If the crowding cost is linear, then the welfare gain Geo is independent of N .

(b) If dε(n)
dn ≥ 0, ε (n) > −1, and v′′ (n) < 0, then the welfare gain Geo increases with N . (c) If

dε(n)
dn ≤ 0, ε (n) > −1, and v′′ (n) > 0, then the welfare gain Geo decreases with N .

Note that v′′ (n) > 0 if the marginal social cost of crowding is a strictly convex function of load,

and v′′ (n) < 0 if it is a strictly concave function. Proposition 4 identifies conditions under which Geo

increases, decreases, or is independent of total ridership. Since the conditions are not collectively

exhaustive, Prop. 4 does not establish the direction of change for all cases. Nevertheless, the

conditions span a broad set of functions. For example, suppose the crowding cost function satisfies

g (n) ∝ nr. Then part (a) of Prop. 4 holds if r = 1, part (b) holds if 0 < r < 1, and part (c) holds

if r > 1.

According to Prop. 4, if g (·) is convex the welfare gain from TOD fares actually decreases

as ridership increases. Intuition might suggest otherwise. If the severity of crowding increases

15



with ridership, one would expect the welfare gain from congestion pricing to increase per user. In

addition, more users would benefit from congestion relief. Such is the case in the Vickrey (1969)

bottleneck model of queuing congestion used by Kraus and Yoshida (2002). In the bottleneck

model the variable cost of a trip with no toll, a uniform toll, or a fine (i.e., queue-eliminating) toll

is proportional to N . The total cost of N trips is therefore proportional to N2, and the welfare

gain from implementing the fine toll is proportional to N2 (Arnott et al., 1993). The welfare gain

Geo thus increases with the square of ridership.

To understand why the result is so different with transit crowding congestion, note that the

welfare gain derives from reallocating users between trains as in Prop. 3. If g (.) is convex, users

are reallocated more evenly, but the UE and SO train loads become more similar as N rises. The

amount of user reallocation decreases, and the total welfare gain therefore falls. As g (n) becomes

increasingly convex, it approaches an inverse-L curve in shape. The cost of crowding remains very

low until trains are nearly full, and then rises rapidly. Reallocating users between trains then

provides little benefit.23

To obtain further insights, we now turn to the linear crowding cost function. As indicated

in Prop. 4, the linear function is a knife-edge case in which the welfare gain from TOD fares is

independent of total ridership.

5.2. Linear crowding costs

With the linear crowding cost function, the marginal social cost of crowding is v (n) = 2λn/s

and the social cost of taking train k is MSCk = δk + 2λnk/s, k = 1, ...,m.

Eqs. (10) and (11) give:

nok =
N

m
+

s

2λ

(
δ − δk

)
, (12)

τok =
λ

s
nok. (13)

23Another way to view Prop. 4 is in terms of the marginal social cost of usage, which is MSCe in the UE and
MSCo in the SO. If MSCo < MSCe, an additional user raises total costs by less in the SO than the UE, and
Geo rises. Conversely, if MSCo > MSCe, total costs rise more in the SO and Geo falls. Thus, if g(.) is convex
an additional user is, paradoxically, more costly to accommodate in the SO than in the UE even though users are
distributed optimally between trains in the SO. If g(.) is linear, MSCo = MSCe and the difference in total costs
between UE and SO is independent of N . In effect, the benefits of internalizing the crowding cost externality are
exhausted once total usage is large enough for all trains to be used. We illustrate this case diagrammatically in the
next subsection.
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The marginal social cost of a trip is the same for all trains and equal to

MSCo = δ + 2
λN

ms

which is the same as Eq. (5) for the MSCe in UE. Since MSCo is an increasing function of N ,

by Prop. 3 train loads are more evenly distributed in the social optimum than the uniform-fare

equilibrium. Indeed, given (2) and (12) the difference in loads between successive trains is only half

as large.24 Compared to the optimal uniform fare in Eq. (4), the SO-fare is lower on the earliest

and latest trains with δk > δ, and higher on timely trains with δk < δ.

Given Eqs. (12) and (13), total revenue from the SO-fare is

Ro =
λ

ms
N2 +RV o, (14)

where RV o is given in Eq. (8), and repeated here for ease of reference:

RV o ≡ s

4λ

(
m∑
k=1

δ2
k −mδ

2

)
. (15)

The first term in (14) matches revenue from the optimal uniform fare, Ru, in Eq. (6). The second

term, RV o, is extra revenue (when m > 1) due to variation of the fare, and it will be called variable

revenue. Total schedule delay costs, total crowding costs, and total travel costs net of the fare are

given by

SDCo = SDCe + 2RV o, TCCo = TCCe − 3RV o, TCo = TCe −RV o. (16)

Total schedule delay costs are higher in the SO than the UE, but crowding costs are smaller and

total costs are lower by an amount equal to variable revenue. With linear crowding costs, the welfare

gain from imposing the SO-fare is therefore equal to variable revenue: Geo = RV o. This means that

welfare gains can be estimated by comparing total crowding costs in the no-fare equilibrium with

the costs that would accrue if users were equally distributed over trains. Information on scheduling

costs is not needed.25

Consistent with Prop. 4, Geo is independent of total usage, N . To see why, consider a simple

case with two trains. The cost of using train k is ck = δk + gnk where g ≡ λ/s measures the rate

24Again, all trains are used provided N is sufficiently large. As explained in on-line Appendix E, this is assured if
all trains are used in the no-fare or uniform-fare equilibrium.

25Likewise, in the bottleneck model used by Kraus and Yoshida (2002) the welfare gains from the optimal fare equal
fare revenues. However, TOD pricing is more effective because it eliminates queuing congestion without increasing
schedule delay costs.
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at which crowding costs increase with train load. Figure 2 depicts the UE and SO using a diagram

with two vertical axes separated by N . Usage of train 1 is measured to the right from the left-hand

axis, and usage of train 2 to the left from the right-hand axis. By assumption, δ2 > δ1 so that

train 1 is overused in the UE. The welfare gained in shifting users from train 1 to train 2 is shown

by the triangular shaded area. The height of the triangle is δ2 − δ1, and the width of the triangle

is (δ2 − δ1) / (2g). The area of the triangle is therefore (δ2 − δ1)
2
/ (4g). It does not depend on

N because neither dimension of the triangle depends on N . The height of the triangle equals the

difference in marginal external costs of using the two trains in the UE. This is determined by the

difference in their attractiveness, δ2 − δ1, not N . The width of the triangle is the optimal number

of users to redistribute between trains, which is proportional to δ2 − δ1 and inversely proportional

to g. This, too, is independent of N . With multiple trains, the welfare gain from redistributing

users between trains is the sum of analogous triangular areas.

The numerical example in Section 8 features linear schedule delay costs and a constant headway,

h, between trains. Given these assumptions, and Geo = RV o, it is straightforward to show that for

large values of m,

Geo ' s

48λ

(
βγ

β + γ

)2

h2m
(
m2 − 1

)
. (17)

Eq. (17) reveals how the welfare gain from the SO-fare varies with parameters. First, Geo varies

with the square of the unit costs of schedule delay β and γ together. This is consistent with the

quadratic dependence of Geo on the schedule delay costs, δ1 and δ2, in the example with m = 2. For

the same reason, Geo varies with the square of the headway, h. Geo varies inversely with the ratio

g = λ/s because the scope to alleviate crowding by redistributing riders between trains decreases

if trains become crowded more quickly.

Finally, Geo varies approximately with the cube of the number of trains, m. This highly nonlinear

dependence is due to two multiplicative factors. First, with h given, the average schedule delay

cost of trains is proportional to m. The average difference in schedule delay costs is therefore

proportional to m, and the welfare gain from redistributing passengers between two trains varies

with m2. Second, the number of trains between which passenger loads can gainfully be redistributed

is approximately proportional to m. Hence, the overall welfare gain varies approximately with m3.

In the introduction to the paper we noted that the distribution of passengers between trains is

governed by the trade-off users face between scheduling costs and crowding costs. It is therefore

surprising that the parameters measuring the strength of these two costs affect the welfare gain
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Figure 2: User equilibrium (UE), social optimum (SO) and welfare gain (Geo) with two trains

from congestion pricing in very different ways. According to Eq. (17), doubling the unit costs of

schedule delay, β and γ, increases the welfare gain four-fold. By contrast, doubling the crowding

cost parameter, λ, reduces the gain by half. In assessing the potential benefits from implementing

congestion pricing, it is therefore important to predict how the parameter values will evolve over

time. If parameters β, γ, and λ all grow at a rate r, Geo grows at rate r too. By contrast, if work

hours become more flexible in the future, β and γ could stagnate while λ continues to rise. Other

things equal, Geo would then decline.

To enhance tractability and to obtain more definitive results, for the rest of the paper it is

assumed that the crowding cost function is linear.

5.3. Elastic demand

So far it has been assumed that transit ridership is exogenous. In practice, travelers can often

use other transport modes and they may choose to forego travel if it is too costly. To admit these

possibilities we now assume that transit demand is a smooth and decreasing function of the private

cost:

N = N (p) ,
∂N

∂p
< 0. (18)

Consumers’ surplus from trips is CS (p) =
∫∞
p
N (u) du, and social surplus (gross of capacity costs)

is the sum of consumers’ surplus and fare revenue: SS (p, τ) = CS (p) + R. Any market failures
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arising other than in transit usage are ignored.

Let superscript n denote the no-fare regime and a hat (ˆ) denote an equilibrium value with

elastic demand. Define Ĝij ≡ ŜS
j
− ŜS

i
as the welfare gain in shifting from regime i to regime j

when demand is elastic. The equilibrium values in the no-fare, optimal uniform-fare, and SO-fare

regimes are compared in:

Proposition 5. With linear crowding costs, elastic demand, and given values of m and s, equilib-

rium private costs are the same in the SO-fare (o) and optimal uniform-fare (u) regimes, and lower

in the no-fare regime (n): p̂o = p̂u > p̂n.

Equilibrium usage satisfies N̂o = N̂u < N̂n, consumers’ surplus satisfies ĈS
o

= ĈS
u
< ĈS

n
,

and social surplus satisfies ŜS
o
> ŜS

u
> ŜS

n
. Consequently, Ĝno > Ĝnu > 0, and Ĝno > Ĝuo > 0.

Proposition 5 is proved in on-line Appendix G. The rankings of social surplus and welfare gains

across the three regimes are intuitive. As noted in Section 5.2, the marginal social cost of a trip is

the same in the uniform-fare and SO-fare regimes. Optimal usage and consumers’ surplus in the

two regimes are therefore the same too. Thus, introducing differentiated fares creates a welfare gain

without making users worse off. Looked at another way, it allows the operator to boost farebox

revenues without reducing ridership.

6. Optimal transit service

We now turn attention to the long run when the transit authority can choose the number of

trains, m, train capacity, s, and the train timetable. For tractability, we assume that schedule delay

costs are linear. We also assume that the headway between trains is a given constant, h. This is

reasonable if the headway is set to the safe headway : the shortest technologically feasible interval

consistent with safe operations.26 The optimal timetable is derived for given values of m and s

in on-line Appendix H. In this section we begin by deriving properties of the optimal m and s for

a general capacity cost function. Then we adopt a specific function and derive formulas for the

optimal m and s.

26Since all users wish to arrive at the same time, t∗, it is optimal to choose the shortest headway possible. In
practice it may not be possible to maintain a minimum headway throughout the travel period. As Kraus and Yoshida
(2002) and Kraus (2003) show, if the number of train sets is small compared to the time required for a train to make
a round trip, train sets may be run in a series of clusters. Trains in the same cluster are separated by the minimum
headway, but there is a longer gap between the last train in one cluster and the first train in the next one.
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6.1. General capacity cost function

Let K (m, s) denote the cost of providing service,27 where m is treated as a continuous variable.

Function K (m, s) is assumed to be a strictly increasing and differentiable function of m and s. Let

superscript i denote the pricing regime, i = n, u, o. Social surplus net of capacity costs is

SSi =

∫ N

0

p (n) dn−
(
δ̄N +

λN2

ms
−RV i (m, s) +K (m, s)

)
,

where RV n = RV u = 0, and RV o is a function of m and s, but does not depend on usage. The

transit authority chooses m and s to maximize SSi. To economize on notation, let Km and Ks

denote the derivatives of K (m, s) with respect to m and s respectively.

Proposition 6. Let i = n, u, o index the pricing regime. Then, first-order conditions for a maxi-

mum of SSi are

For s :
λN2

ms2
·Di = Ks −RV is , (19a)

For m :

(
λN

m2s
− ∂δ̄

∂m

)
N ·Di = Km −RV im, (19b)

where Dn = pNN
pNN−λNms

< 1 and Du = Do = 1.

Proposition 6 is proved in on-line Appendix I. The LHS of (19a) is the marginal benefit of

expanding train capacity. The first term of the product is the marginal benefit from expanding

train capacity if usage remained fixed. The cost of crowding would decrease by λN/
(
ms2

)
for each

of the N users. In the no-fare regime, Dn < 1, and the actual reduction in crowding cost is smaller

than this because improved service attracts new users who value trips less than the marginal social

cost they impose. This is the induced demand effect that has been well studied in the road traffic

congestion literature (e.g., Duranton and Turner, 2011). Indeed, in the limit of perfectly elastic

demand (i.e., pN →∞), the potential benefit from expanding m or s is completely dissipated. The

RHS of (19a) is the marginal cost of expanding train capacity. Since RV os > 0, in regime o the

marginal financial cost of expanding capacity is effectively reduced by the generation of additional

variable revenue. For the other two regimes there is no such benefit.

Equation (19b) has a similar interpretation to Eq. (19a). The LHS of (19b) is the marginal

benefit of adding a train, and the RHS is the marginal cost. Term λN/
(
m2s

)
is the marginal

27Service cost includes capital, operations, and maintenance. It is assumed to be independent of usage. Adding N
as an argument of the service cost function would not affect results of interest.
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benefit per user from less crowding, and term ∂δ̄/∂m is the marginal disbenefit from greater average

schedule delay costs. In the no-fare regime, the marginal net benefit is diluted by the same factor,

Dn, as in Eq. (19a).

In contrast to the no-fare regime, the marginal benefit from expanding capacity in the optimal

uniform-fare regime is not diluted by additional usage because usage is priced efficiently. This

might suggest that the optimal values of s and m, su∗ and mu
∗ , are larger than their counterparts

with a zero fare, sn∗ and mn
∗ . However, at least for given values of s and m, usage is higher in the

no-fare regime as per Prop. 5. This leaves the rankings of su∗ and sn∗ , and mu
∗ and mn

∗ , ambiguous

in general.

As just noted, the generation of variable revenue from the SO-fare, RV o, effectively reduces

the financial cost of expanding either s or m. Hence, conditional on the values of N and m,

optimal train capacity is larger in the social optimum than in the optimal uniform-fare regime:

so∗ (m,N) > su∗ (m,N). Similarly, conditional on N and s, the optimal number of trains is larger

in the social optimum than in the optimal uniform-fare regime: mo
∗ (s,N) > mu

∗ (s,N). These

rankings may seem surprising given that total system costs are lower in the social optimum than

the uniform-fare regime. Inequality mo
∗ (s,N) > mu

∗ (s,N) is explained by the fact that ridership is

distributed more evenly across trains in the social optimum. More users take the earliest and latest

trains in the social optimum, which makes adding extra trains more beneficial. To understand

the inequality so∗ (m,N) > su∗ (m,N), recall from Eq. (17) that in the uniform-fare regime the

deadweight loss from imbalanced ridership between trains increases with s. Expanding capacity is

therefore more valuable in the SO.

Despite the inequalities so∗ (m,N) > su∗ (m,N) and mo
∗ (s,N) > mu

∗ (s,N), there is no guarantee

that the unconditionally optimal values (so∗,m
o
∗) in the social optimum are both larger than their

counterparts (su∗ ,m
u
∗) in the uniform-fare regime. One reason is that su∗ (m,N) is a decreasing

function of m, and mu
∗ (s,N) is a decreasing function of s, and one function can shift much more

than the other. The other reason is that usage generally differs in the two regimes; i.e., No
∗ 6= Nu

∗ .

6.2. A specific capacity function

As we do here, Kraus and Yoshida (2002) derive optimal capacity for a rail service. They

distinguish in their model between the number of train runs and the number of train sets (a train

set can make more than one run). They also account for the time required for a train set to make

a round trip. Our model excludes these variables, and we adopt a simpler service cost function of
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the form

K (m, s) = (ν0 + ν1s)m+ ν2s, (20)

where ν0, ν1, and ν2 are all non-negative parameters. The term ν0 + ν1s in (20) is the incremental

capital, operating, and maintenance costs of running an additional train. It increases linearly with

the train capacity. If ν0 > 0, there are scale economies with respect to train size. The second term

in (20), ν2s, accounts for costs that depend on train capacity but not the number of trains. Kraus

and Yoshida (2002) interpret this term as capital costs for terminals.28 In this subsection we focus

on the optimal uniform fare and SO-fare regimes because the slope of the demand function does

not affect the optimal values of m or s, and properties of the solution can be derived while treating

N parametrically.

Given the service cost function (20), first-order conditions (19a) and (19b) for s and m in the

uniform fare and SO-fare regimes are

For s :
λN2

ms2
= ν1m+ ν2 −RV is , i = u, o, (21a)

For m :

(
λN

m2s
− ∂δ̄

∂m

)
N = ν0 + ν1s−RV im, i = u, o. (21b)

As noted above, there is no guarantee that capacity is larger in the social optimum than the

uniform-fare regime in the sense that so∗ (N) > su∗ (N) and mo
∗ (N) > mu

∗ (N). Nevertheless, with

capacity function (20) it is possible to establish some results on how capacity depends on the fare

regime. These results apply not only to the optimal uniform-fare and social optimum regimes,

but also to fare regimes with intermediate efficiencies. To formalize this idea, let f ∈ [0, 1] be an

index of fare-regime efficiency, with regime f yielding variable revenue of f ·RV o. For the optimal

uniform-fare regime, f = 0, and for the social optimum regime, f = 1. Regimes with intermediate

values of f ∈ (0, 1) impose an optimal average level of fare, and fare variations by time of day that

partly internalize differences between trains in external crowding costs. Given two regimes with

indexes f1 and f2 > f1, we will say that the second regime is more efficient than the first.

As formalized in the following proposition, definitive capacity rankings can be derived when

transit demand is inelastic:29

28They note that the linear specification is applicable if terminal cost is proportional to terminal area, and terminal
area is proportional to train capacity.

29The rankings of m, s, and ms in Proposition 7 hold under ceratin conditions on the general capacity function
K (m, s) that include the specific capacity function (20) as a special case. The more general conditions do not have
a ready interpretation, and since the derivations are tedious the more general results are not stated here.
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Proposition 7. Assume that transit demand is price inelastic. Then a more efficient fare regime

has a larger number of trains (m), a smaller train capacity (s), and a larger fleet capacity (ms).

For the optimal uniform-fare and social optimum regimes, Proposition 7 implies that, for any

value of N , mo
∗ > mu

∗ , s
o
∗ < su∗ , and mo

∗s
o
∗ > mu

∗s
u
∗ . As noted in subsection 6.1, inequality mo

∗ > mu
∗

is consistent with the fact that additional trains (which are less convenient than existing trains) are

more valuable in the social optimum than the uniform-fare equilibrium because the additional trains

are more heavily used. However, the intuitive argument that train capacity is also larger in the

social optimum does not go through. This highlights the importance of treating separately different

dimensions of transit service capacity, rather than only considering some aggregate measure of

capacity such as total seats.30

When transit demand is price elastic, the capacity rankings are conclusive only for the number

of trains:31

Proposition 8. Assume that transit demand is price elastic. Then a more efficient fare regime

has a larger number of trains (m). Train capacity (s), fleet capacity (ms), and total usage (N) can

be larger or smaller with a more efficient fare regime.

Together, Propositions 7 and 8 reveal that whether train capacity should be increased or de-

creased in response to a change of fare regime can depend on demand elasticity. In the numerical

example of Section 8 it turns out that when demand is relatively inelastic, train capacity is smaller

with the SO-fare than the optimal uniform-fare, but the ranking is reversed when the elasticity

is large enough. Since transit demand elasticities depend on various factors including fare levels,

modal split, severity of traffic congestion and so on, the appropriate direction of capacity adjust-

ment can differ between cities. Contrary to what is often claimed, introducing a more efficient

pricing regime such as TOD fares does not necessarily reduce the need for capacity expansion.

To conclude this section we briefly investigate Mohring’s square-root rule and the effects of capac-

ity cost function parameter values on cost recovery from fare revenues. In the optimal uniform-fare

regime, Eqs. (21a) and (21b) can be solved jointly to obtain explicit formulas for the unconditionally

30Proposition 7 is a counterpart to Lemma 3 in Kraus and Yoshida (2002). Consistent with Prop. 7, they find
that the number of train runs is longer, and train capacity smaller, in the SO than the uniform-fare regime.

31Prop. 8 is a counterpart to Prop. 3 in Kraus and Yoshida (2002). Their conclusions are similar except that in
their model total usage is unambiguously larger in the SO than with a uniform fare.
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optimal values, su∗ and mu
∗ . The characteristics of the solution depend on the relative magnitudes

of parameters ν0 and ν1. If ν1 = 0, the cost of a train is independent of its capacity and there are

scale economies with respect to train service. In the other limiting case with ν0 = 0, there are no

scale economies. In either case, Mohring’s square-root rule does not apply because the headway is

held fixed. Details are provided in on-line Appendix J.

The degree of cost recovery from fare revenue is readily derived for both the optimal uniform-fare

and SO-fare regimes. From Eq. (6), fare revenue in the uniform-fare regime is Ru = λN2/ (musu).

Given first-order condition (21a) this implies Ru∗ = (ν1m
u
∗ + ν2) su∗ . From Eq. (14), fare revenue in

the SO-fare regime is Ro = λN2/ (moso) + RV o. Given (21a), this yields Ro∗ = (ν1m
o
∗ + ν2) so∗ +

RV o − so∗RV os . From Eq. (15) for RV o, the formula simplifies to Ro∗ = (ν1m
o
∗ + ν2) so∗. Hence, for

both fare regimes the cost recovery ratio, ρ, is ρi =
Ri∗

K(mi∗,s
i
∗)

=
(ν1mi∗+ν2)s

i
∗

ν0mi∗+(ν1mi∗+ν2)si∗
, i = u, o. With

no scale economies with respect to train size (i.e., ν0 = 0), fare revenue fully covers capacity costs.

Otherwise, costs are only partially recovered and the service runs a deficit.

7. Market distortions

The fare and capacity choices derived thus far are based on the assumption that first-best

conditions apply. Any alternative travel modes to transit are priced at marginal social cost, and no

distortions exist elsewhere in the economy. Fares can then be based on Pigouvian principles, and

the benefits and costs of capacity can be assessed on Marshallian partial-equilibrium principles. In

practice first-best conditions rarely, if ever, hold. In this section we briefly consider two instances

in which the conditions fail: one in which public funds are scarce, and the other in which driving is

an alternative to transit and unpriced traffic congestion exists.

7.1. Marginal cost of public funds

Transit authorities are often short of funds, and may be obliged to cover a portion of their costs

from fare-box revenues. Governments may also be willing to sacrifice some allocative efficiency

in return for stronger finances. These factors can be captured by assigning to fare revenues and

capacity costs a weight of 1 + φ, φ ≥ 0, where 1 + φ is the marginal cost of public funds (MCPF).

The MCPF measures “the efficiency cost of raising one unit of tax revenue, given that the tax

revenue is spent on a public good that does not affect the consumption of taxed commodities”32

32As an anonymous referee pointed out, in the case of fare revenues 1 + φ could be viewed as a marginal benefit,
or premium, from raising funds, rather than a cost. Here and in the numerical example of Section 8 we assume that
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(Proost et al., 2007, p. 66).

We focus here on how the MCPF affects the optimal choice of fares. With a MCPF of 1 + φ,

weighted social surplus in the uniform-fare regime becomes

SSua =

∫ ∞
p

N (u) du+ (1 + φ) τuN (p) ,

where p = δ̄ + λN
ms + τu. If φ > 0, a one-dollar loss of consumers’ surplus from fare payment is

outweighted by a one-dollar gain in revenue for the authority. Let η, (η < 0), denote the local price

elasticity of demand. It is straightforward to show that the optimal uniform fare works out to

τu =
λN

ms
− φ

φ+ η (1 + φ)

(
δ̄ + 2

λN

ms

)
, (22)

where φ+ η (1 + φ) < 0 to assure that τu <∞. The fare is set above the Pigouvian level of λN
ms by

an amount that increases with φ.

Adding a premium to revenue generation does not affect the principle that users should be

allocated efficiently between trains. The SO-fare thus varies between trains in the same way as

before, but a constant, τo, is added to the fare for each train. Weighted social surplus thus becomes

SSoa =

∫ ∞
p

N (u) du+ (1 + φ)

(
τoN (p) +

λN

ms
+RV o

)
,

where p = δ̄ + 2λN
ms + τo. The optimal flat component of the fare works out to

τo = − φ

φ+ η (1 + φ)

(
δ̄ + 2

λN

ms

)
. (23)

Eq. (23) matches Eq. (22) for the uniform fare except that the component λN
ms is absent.

7.2. Modal choice and unpriced traffic congestion

So far it has been assumed that any alternatives to transit are priced at marginal social cost so

that the welfare analysis can be restricted to transit. Yet automobile travel, the main alternative

to transit in most cities, is generally underpriced. Here we examine how unpriced traffic congestion

affects optimal transit policy. We first consider fares, and then briefly capacity. To keep the analysis

simple, we treat transit and driving as perfect (demand) substitutes and limit attention to interior

the same value of φ applies to fare revenues and capacity costs. To simplify terminology, we stick to convention and
refer to marginal costs. The MCPF varies widely in both theory and practice. It can be less than one for taxes that
enhance economic efficiency. It is large for distortionary taxes, and it can be undefined for taxes with a narrow base
for which an increase in the tax rate causes revenues to drop.
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equilibria in which both modes are used. To economize on writing, we also use general notation for

the functions.33

Let NA denote the number of trips taken by automobile, NR the number of trips taken by

transit, and Ci (Ni) the user cost function for mode i, i = A,R. Let N denote the total number

of trips, and p (N) the inverse demand curve corresponding to demand function (18). In the no-

fare regime, NA, NR, and N can be solved using the identity N = NA + NR and the equilibrium

conditions

p (N) = CA (NA) = CR (NR) .

In the uniform-fare regime the equilibrium conditions are

p (N) = CA (NA) = CR (NR) + τu.

It is straightforward to show that the second-best optimal uniform fare is

τu = C ′R (NR)NR − C ′A (NA)NA
pN (N)

pN (N)− C ′A (NA)
, (24)

where the prime (′) symbol denotes a derivative. Eq. (24) is none other than Eq. (2) in Verhoef

et al. (1996) who study second-best pricing of a congestible facility when there is an unpriced

alternative that is also congested. The second-best uniform fare is equal to the optimal uniform

fare with no mode choice, C ′R (NR)NR, minus a fraction of the optimal uniform toll for the road,

C ′A (NA)NA. The fraction is larger the less elastic is travel demand (i.e., the larger is ‖pN (N)‖)

and hence the greater the potential for transit fare reductions to curtail traffic congestion rather

than simply inducing more travel. If traffic congestion is severe enough, the second-best uniform

fare can be negative.

Consider now the SO-fare regime. For any given number of transit users it is clearly optimal

to price transit efficiently. The SO-fare therefore varies between trains in the same way as with

inelastic travel demand, but the fare schedule is shifted down by the same amount as the uniform

fare in Eq. (24). The propositions established in Section 5 therefore continue to hold with NR in

place of N .34

33The analysis in this subsection does not depend on linearity of the crowding cost function.
34The equivalent result holds in Kraus and Yoshida’s (2002) model. The propositions do not generally hold if users

are heterogeneous. To see this, suppose that individuals who prefer to drive at peak times also prefer to take transit
at peak times. Since these individuals contribute the most to traffic congestion, it is desirable to reduce peak-period
fares so that some will switch to transit. As Glaister (1974) showed, it is possible for second-best peak fares to be
below off-peak fares, and even negative.
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Finally, consider optimal capacity investment. In the optimal uniform-fare and SO-fare regimes,

transit usage is efficiently priced and the investment rules given in Eqs. (19a) and (19b) remain

optimal. However, usage is not optimal in the no-fare regime and the investment rules need to be

modified. Depending on the relative numbers of drivers and transit users, the severity of traffic

congestion, and the price elasticity of demand, the modified investment rules can call for more or

less transit capacity than when traffic congestion is absent. For details see on-line Appendix K.

8. Optimal pricing and capacity for the Paris RER A line

The numerical example draws on recent empirical estimates of crowding costs. It is calibrated to

describe service on the Paris RER A line during the morning peak although the example should be

considered only illustrative for the line.35 RER A crosses the Île-de-France region (which includes

Paris) from West to East. It is one of Europe’s busiest rail transit lines with over 1.1 million users

per weekday, and is considered to be at capacity.36 The line is 109 km long and is served by 46

stations. Base-case parameter values are: β = 7.4 [e/(hr·user)], γ = 17.2 [e/(hr·user)], λ = 4.4

[e/user], and h = 2.5 [min/train]. The demand function (18) is assumed to have a constant-

elasticity form N = N0p
η with η = −1/3.37 Parameter N0 and parameters ν0, ν1, and ν2 of the

capacity cost function are chosen to yield equilibrium values for the optimal uniform-fare equilibrium

of Nu = 32, 600, mu
∗ = 24, su∗ = 1, 733, and a cost recovery rate of 5/6. The resulting values are:

N0 = 69, 003 [users], ν0 = 936.7 [e/train], ν1 = 0.1344 [e/user], and ν2 = 61.63 [e· train/user]. In

adopting this procedure we are not assuming that the existing fare scheme actually follows first-

best pricing principles. Indeed, in 2013 the cost recovery rate for the Île-de-France region was only

about 40 percent.38 Rather, we are using the optimal uniform-fare regime for calibration because

it is an intermediate regime, and also the most qualitatively descriptive of actual practice. The

relative efficiency of the optimal uniform-fare regime can be measured by taking the no-fare and

social optimum regimes as polar benchmarks and using the index Effu = ŜS
u−ŜSn

ŜS
o−ŜSn

. Results for

35Parameter values are explained in Appendix C.
36Page 36 in http://www.stif.org/IMG/pdf/Deliberation no2012-0163 relative au schema directeur du RER A.

pdf.
37An elasticity of −1/3 is in the mid-range of empirical estimates (Oum et al., 2008, p.249). Consumers’ surplus

is infinite with η > −1. To enable comparisons of consumers’ surplus between regimes, the area to the left of the
demand curve is computed only for p ≤ e100.

38See www.stif.org/transports-aujourd-hui/tarication-francilienne/les-recettes-tarifaires-source-de.html.
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Table 1: Comparison of no-fare, optimal uniform fare, and SO-fare (i.e., social optimum) regimes: base-case parameter
values

Fare regime
No-fare (n) Optimal uniform fare (u) Social optimum (o)

m 25.26 24 26.70
s 1, 762 1, 733 1, 710
N 37, 173 32, 600 32, 907
p 6.40 9.48 9.22

Rev/user 0 3.45 3.39
TCC 161, 558 133, 499 111, 520
SDC 76, 210 63, 244 80, 376
TC 237, 768 196, 743 191, 896
K 138, 270 134, 889 136, 528
R 0 112, 407 111, 520
ρ 0 0.833 0.817
CS 1, 873, 288 1, 766, 213 1, 774, 816
SS 1, 735, 018 1, 743, 732 1, 749, 807

Total gain 8, 714 14, 789
Gain/user 0.27 0.45
Rel.eff 0 0.59 1

the three fare regimes are reported in Table 1.39

8.1. No fare

With no fare, the equilibrium private cost (which equals the equilibrium user cost) is e6.40.

There are Nn = 37, 173 users who are accommodated in mn
∗ = 25.26 trains with nominal capacities

of sn∗ = 1, 762. Total crowding costs (TCCn) and total schedule delay costs (SDCn) account for

respectively 68 percent and 32 percent of total user costs (TCn). Capital costs (Kn) are about 58

percent as large as total user costs (TCn). Given no fare, the degree of cost recovery is zero.

8.2. Optimal uniform fare

The optimal uniform fare is τu =e3.45. It boosts the equilibrium private cost to pu = e9.48

which is e3.08 above the no-fare equilibrium price. Ridership drops to Nu = 32, 600: about 12

percent below the no-fare level. Both the number of trains and train capacity are lower than

with no fare although capacity costs are reduced by only 2.4 percent. By design, fare revenue of

Ru =e112, 407 covers a fraction ρu = 0.833 of capacity costs. Consumers’ surplus is lower than

39Throughout the numerical example, m is treated as a continuous variable. The results change very little if m is
restricted to integer values (see on-line Appendix M).
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with no fare, but social surplus is higher by e8, 714 or about e0.27 per rider in the uniform-fare

equilibrium. With the base-case parameter values, Effu ' 0.59 so that the optimal uniform fare

yields nearly 3/5 of the efficiency gain from the SO-fare.

8.3. Social optimum

The social optimum calls for more trains than either the no-fare or the optimal uniform-fare

regime. This is consistent with the rankings for the SO and optimal-uniform fare regimes in Prop. 8.

However, train capacity is slightly lower than in the other two regimes.40 Ridership and consumers’

surplus are slightly higher than with a uniform fare. Price, revenue per user, and cost recovery

are slightly lower. Crowding costs are significantly lower than in the other regimes (58 percent of

total user costs), while, schedule delay costs are correspondingly higher because the SO-fare spreads

usage more evenly over trains. Capacity costs are intermediate between the other regimes. Social

surplus is higher than with no fare by about e0.45 per rider.41

8.4. Short-run versus long-run welfare gain from pricing

In Table 1, capacity is chosen optimally for each fare regime. Because rail transit capacity can

take years to adjust, it is of interest to compare fare regimes in the “short run” when capacity is

fixed. If pricing is assumed to become more efficient over time, there are three cases to consider:

regime u with capacity fixed at (mn
∗ , s

n
∗ ), regime o with capacity fixed at (mn

∗ , s
n
∗ ), and regime o with

capacity fixed at (mu
∗ , s

u
∗). Let Gxyx denote the welfare gain in shifting from regime x to regime y

when capacity remains fixed at its optimal level for regime x. With the base-case parameter values,

Gnun = e8, 336, Guou = e5, 273, and Gnon = e14, 589. By comparison, from Table 1 the long-run

welfare gains when capacity is adjusted optimally are Gnu = e8, 714, Guo = e6, 076, and Gno =

e14, 788. The long-run gains are higher by 4.5 percent, 15.2 percent, and 1.4 percent respectively.

The difference between short-run and long-run gains is appreciable only for Guo. This is mainly

40According to Prop. 8, with price-elastic demand optimal capacity rankings are theoretically ambiguous. One
reason why, in the example, capacity is lowest in the social optimum is that the number of trains is largest. Capacity
is highest for the no-fare regime because the greater benefits when there are more users turns out to outweigh the
reduction in benefits due to latent demand. Nevertheless, the differences between regimes in optimal capacity are
fairly small.

41As shown in on-line Appendix M, the welfare gains from the optimal uniform and SO fares are sensitive to the
elasticity of demand. With η = 0, the uniform fare has no effect and the gain from the SO fare drops to e0.185 per
rider. By contrast, if the elasticity is doubled to η = −2/3, the per-capita gains from the optimal uniform fare and
SO fare rise to e0.51 and e0.70 respectively.
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Table 2: Effects of increasing parameters β and γ (or parameter h) by 10 percent

Fare regime
No-fare (n) Opt. unif. fare (u) Soc. opt. (o)

m −4.98% −4.98% −4.44%
s +1.69% +1.70% +1.64%
N −1.07% −0.99% −0.96%

Welf. gain +0.7% +6.3%

because regimes u and o differ the most in terms of optimal number of trains.42

In all three fare regimes the equilibrium price is an increasing function of parameters β, γ, λ,

and h. Equilibrium usage thus decreases if these parameters increase in value. Varying parameters

β, γ, λ, or h also induces changes in m and s, and to determine the size of the effects it is necessary

to solve for the new equilibria.

As a first experiment, the unit schedule delay cost parameters β and γ were both increased by 10

percent. The results are shown in Table 2. In each fare regime the number of trains drops by nearly

5 percent because users incur higher schedule delay costs, which reduces demand. Train capacity

increases by about 1.7 percent, but equilibrium prices still rise and usage drops slightly. Welfare

gain Gnu increases by 0.7 percent, and welfare gain Guo increases by 6.3 percent. An increase in

headway, h, has exactly the same effect as an equal percentage increase in β and γ.

As a second experiment, the crowding cost parameter λ was increased by 10 percent. The results

are shown in Table 3. In all fare regimes the number of trains rises by about 3 percent while train

capacity increases by just over 2 percent. Usage drops by about 1 percent. Welfare gains Gnu and

Guo both increase slightly.43

Tables 2 and 3 depict long-run effects of changes in parameter values. These effects can differ

significantly from the short-run effects when capacity is given. Consider, for example, welfare gain

Guo. In the short run with s and m fixed, Guo is given by Eq. (17). With a 10 percent increase

in β and γ, Guo rises by a factor of (1.1)
2
, or 21 percent. This is more than triple the long-run

increase of 6.3 percent shown in Table 2. A 10 percent increase in λ causes Guo to fall in the short

42Note that by Prop. 5, usage with the SO-fare and capacity fixed at (mu
∗ , s

u
∗ ) is the same as usage with the

optimal uniform fare. Thus, in the short run, regimes u and o differ only in how passengers are distributed between
trains.

43It is plausible that with economic growth, parameters β, γ, and λ will all increase — and perhaps at similar
rates as considered in subsection 5.2. As a third experiment, the three parameters were all increased by 10 percent.
The overall effects were close to the sum of the effects shown in Tables 2 and 3 except that m decreased by a slightly
smaller percentage. To economize on space, the results are not reported in a third table.
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Table 3: Effects of increasing parameter λ by 10 percent

Fare regime
No-fare (n) Opt. unif. fare (u) Soc. opt. (o)

m +3.02% +3.02% +2.92%
s +2.14% +2.14% +2.15%
N −1.06% −1.08% −1.08%

Welf. gain +2.4% +1.4%

run by a factor (1.1)
−1

or about 9 percent. Yet Table 3 shows that the long-run gain actually rises

by 1.4 percent.

The large differences between the short-run and long-run effects highlight the importance of the

planning time horizon. For example, recent empirical research has led to improved estimates of

the costs of public transport crowding (OECD, 2014). A rise in the estimated unit cost of crowd-

ing (i.e., parameter λ) might dissuade a planner with a short-run perspective from implementing

train-dependent fares. By contrast, a planner with a long-run perspective could be spurred to go

ahead. This illustrates the well-known lesson that pricing and capacity investment decisions are

interdependent, and should be considered jointly (Lindsey, 2012).

8.5. Marginal cost of public funds

To examine the effect of the marginal cost of public funds (MCPF) on fares and capacity, the

calculations were repeated for values of parameter φ ranging from 0 up to 0.3.44 The same value of φ

was applied to fare revenues and capacity costs. Fares for the optimal uniform-fare and SO regimes

were computed using Eqs. (22) and (23). Values for the numbers of trains and train capacities were

computed using variants of Eqs. (19a) and (19b). As shown in Figure 3, optimal fares increase

rapidly with the MCPF, and reach over e20 with φ = 0.3. These high fares are explained by

the relatively low price elasticity of demand of η = −1/3 which permits significant revenue to be

generated with only a modest loss of allocative efficiency.45 The relative efficiency of the optimal

uniform-fare regime in generating weighted social surplus increases from 0.59 with φ = 0 up to

0.97 with φ = 0.3. The steep increase is attributable to the fact that, with homogeneous users, a

44The prescribed value for project evaluation in France is 0.3 (Comité directeur des transports, 2004). This falls
within the range of theoretical and empirical values identified in the literature. See, for example, Snow and Warren
(1996) and Gahvari (2006). Small and Verhoef (2007, §4.2.5 and pp. 177−8) provide a discussion and some empirical
estimates of MCPF from a transportation perspective.

45If the elasticity is doubled to η = −2/3, fares only rise to about e8 with φ = 0.3. Some estimates of the long-run
elasticity of public transit demand are in this range. See Schimek (2015).
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Figure 3: Fare revenues and relative efficiency as functions of MCPF

uniform fare is fully efficient at generating revenues, and as the weight on revenues increases the

performance gap between the optimal uniform-fare and SO-fare narrows.

Numbers of trains and train capacities are presented in Figure 4 as fractions of their base-case

values with φ = 0. Train capacities decrease in all three fare regimes. The largest reduction occurs

in the uniform-fare regime, and the smallest in the no-fare regime which is unaffected on the demand

side by revenue generation incentives. Numbers of trains are affected proportionally less than train

capacities, and the number actually increases slightly in the social optimum.46

9. Conclusion

We have analyzed the time pattern of usage and crowding on a rail transit line using a model

(the PTC model) of trip-timing preferences. Users face a trade-off between riding a crowded train

that arrives at a convenient time, and riding a less crowded train that arrives earlier or later than

46One reason for this is that capacity costs become more burdensome as the MCPF increases. Since train-capacity-
specific costs (i.e., term ν2s in Eq. (20)) account for over three-quarters of total capital costs in the example, it is
more effective to trim costs by reducing train capacity than decreasing the number of trains. However, generating
fare revenues also becomes more important as MCPF rises. To partly offset the loss of service quality and ridership
due to the reduction in s, it can be optimal to increase m.
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Figure 4: Optimal numbers of trains and train capacities relative to base case as functions of MCPF

desired. We solve user equilibrium for three fare regimes: no fare, an optimal uniform fare that

controls the total number of users, and an optimal time-dependent fare that controls the distribution

of users between trains as well. We also solve for the optimal long-run number and capacities of

trains.

Timely trains are more crowded in all fare regimes. Under plausible assumptions, passenger loads

are more evenly distributed in the social optimum than in the other regimes. Because crowding is

assumed to occur at all levels of train occupancy, it is impossible to eliminate crowding costs even

if fares can be varied freely. Consequently, imposing Pigouvian fares makes users worse off, at least

before accounting for how fare revenue is used.

We show that if the crowding cost function is convex, the short-run welfare gain from intro-

ducing optimal time-dependent fares decreases with total ridership. The marginal social cost of

accommodating an additional passenger is then higher in the social optimum than with a uniform

fare even though passengers are distributed optimally across trains in the social optimum. This

finding contrasts with both conventional wisdom and models of road traffic congestion.

Solving for optimal transit supply in the PTC model is complicated by the fact that (even

treating the headway as uniform and fixed) capacity has two dimensions: the number of trains

and the capacity of each train. We treat a special case with linear crowding and schedule delay

cost functions, and a uniform headway between trains. The ranking of optimal capacity in the
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no-fare and optimal uniform-fare regimes is ambiguous in general. More users take transit in the

no-fare regime, but the benefit from expanding capacity is diluted by latent demand. Comparison

of the uniform-fare and SO regimes is more clear-cut. With inelastic demand, the SO has a larger

number of trains, a lower train capacity, and a larger fleet capacity. With elastic demand, the same

result holds for number of trains but the other rankings are ambiguous. The prospect that capacity

investments yield higher benefits in the social optimum again contrasts with conventional wisdom

that capacity investments and efficient pricing are substitutes for relieving congestion.

For illustration, we calibrate the model to describe the Paris RER A line during morning-peak

conditions. We find that total schedule delay costs account for roughly one third of total user costs,

with total crowding costs comprising the rest. Ignoring schedule delay costs, as is implicitly done

with static models, thus leads to underestimation of the total costs of congestion by about one

third. With the base-case parameter values, the welfare gain from implementing efficient pricing is

e0.27 per user for the optimal uniform fare, and e0.45 for the optimal time-dependent fare. While

these amounts may seem modest, the system-wide gain could be large. The RER A line carries

more than 300 million users per year, and on average more than 1.5 million individuals used public

transport in the Île-de-France region during the morning peak (7am-9am) in 2010.47 Given 250

working days per year, a welfare gain of about e0.50 per trip, and doubling the number of trips to

account (roughly) for evening travel, the annual total welfare gain from optimal pricing amounts

to nearly e400 million per year.48

The analysis in this paper could be extended in various directions. One is to allow travelers

to differ in their trip-timing preferences and disutility from crowding. Doing so would permit

consideration of the equity implications of alternative fare regimes and capacity expansion policies.

Another extension is to consider rewards as a way to redistribute passengers across trains. An

alternative to penalizing peak-period users with high fares is to reward off-peak users with low,

or possibly even negative, fares.49 Pricing usage below marginal social cost is inefficient when it

induces excessive travel, but the induced deadweight loss may be an acceptable price to pay if

discounting fares helps overcome opposition to time-of-day pricing. A third extension, which we

47See p.11 in www.lvmt.fr/IMG/pdf/RAPA Chaire Stif 2013-2014 v1.pdf.
48This figure is comparable to the social benefit from congestion pricing of roads in Paris. By modeling the Île-de-

France region as a monocentric city with congestion and endogenous road capacity, De Lara et al. (2013) estimated
an annual social saving of e606 million from a cordon toll.

49As noted in the introduction, some cities have implemented such schemes.
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examined briefly, is to add driving on congested roads as an alternative to public transit. Reducing

fares below first-best levels is one way to reduce traffic congestion. The efficacy of discounting fares

naturally depends on cross-price elasticities of demand between driving and public transit which

vary widely between and within cities.50

Another important consideration is service reliability. Service can be disrupted for many reasons:

special events that create surges in ridership, bad weather, terrorist threats or actual attacks,

mechanical failures, sick passengers, people or objects falling on the tracks, etc.. Delays at one

station can cascade or snowball downstream as well as onto connecting lines. Service is deteriorating

in some large cities. During the first quarter of 2016, 16.5% of RER A users arrived more than five

minutes later than prescribed by the timetable.51 From 2012 to 2016, delays more than doubled on

the New York City subway system, and on weekdays only two-thirds of trains reach their final station

within five minutes of the schedule.52 Travelers can adapt to travel time uncertainty by departing

earlier (or possibly later) or switching to a different transport mode (Monchambert and de Palma,

2014). System operators can improve reliability by padding schedules, increasing the number of

reserve vehicles, and increasing boarding rates. Technological advances can reduce the frequency of

mechanical failures and intrusions onto track (Transport for London, 2014). For example, modular

designs facilitate the removal and replacement of components more quickly, and fully-automatic

train operation helps to eliminate human error. Modeling these elements will be challenging, and

likely require numerical as well as analytical methods.
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Appendix A. Proof of Proposition 3

Let j index trains in order of decreasing schedule delay cost so that δ1 > δ2 > ... > δm. (Because

trains arrive early and late, the index does not correspond to the temporal sequence in which trains

are run.) Since in the UE nej = g−1 [ce − δj ] and g′ (.) > 0, nej increases with j: ne1 < ne2 < ... < nem.

We show that nej ≶ n
o
j ⇐⇒ nejg

′ (nej) ≶MSCo − ce. Given noj = v−1[MSCo − δ (tj)], it follows

that

nej ≶ noj

⇐⇒ g−1 [ce − δj ] ≶ v−1 [MSCo − δj ]

⇐⇒ v
{
g−1 [ce − δj ]

}
≶ MSCo − δj

⇐⇒ ce − δj + g−1 [ce − δj ]× g′
{
g−1 [ce − δj ]

}
≶ MSCo − δj

⇐⇒ g−1 [ce − δj ]× g′
{
g−1 [ce − δj ]

}
≶ MSCo − ce

⇐⇒ nejg
′ (nej) ≶ MSCo − ce.

Variables nej and noj have the same ranking as nejg
′ (nej), the marginal external cost of crowding

in the UE, and MSCo−ce, which is constant. Because total patronage, N , is fixed, some trains are

more more heavily loaded in the UE, and the others are more heavily loaded in the SO. Consequently,

if ng′ (n) is a strictly increasing function of n (i.e., ε (n) > −1), there exists a unique train ̂ such

that nej < noj when j < ̂, nê ≥ nô , and nej > noj when j > ̂ . Conversely, if ng′ (n) is a strictly

decreasing function of n (i.e., ε (n) < −1), there exists a unique train ̂ such that nej > noj when

j < ̂, nê ≤ nô , and nej < noj when j > ̂.

Appendix B. Proof of Proposition 4

We prove the case for which the welfare gain Geo decreases with N . The proof for the case in

which Geo increases follows the same steps, and is omitted. As mentioned in the text, Geo decreases

if the marginal social cost of an additional user is higher in the SO than the UE. Thus, it suffices

to show that MSCo > MSCe.

As Appendix A, let k index trains in order of decreasing schedule delay cost so that in the

no-fare equilibrium, ne1 < ne2 < ... < nem. Equilibrium cost with no fare, ce, is determined implicitly

by Eq. (1):
m∑
k=1

g−1 [ce − δk]−N = 0. (B.1)
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This equation can be written
m∑
k=1

f [g (nek) + g′ (nek)nek] = N, (B.2)

where f (n) ≡ v−1 (n). Since f (v (n)) = n,

f ′ (n) =
1

v′ (n)
=

1

2g′ (n) + g′′ (n)n
. (B.3)

The marginal social cost of a trip in the no-fare equilibrium is MSCe = ∂(ceN)
∂N = ce + ∂ce

∂NN .

Using Eq. (B.1) to derive ∂ce

∂N one obtains

MSCe = ce +
N∑m

k=1
1

g′(nek)

. (B.4)

From Eq. (10) the marginal social cost of a trip in the social optimum is defined implicitly by:

m∑
k=1

f [MSCo − δk] = N. (B.5)

By Assumption 1, the LHS of Eq. (B.5) is a strictly increasing function of MSCo. Suppose

we substitute eqn. (B.4) for MSCe in place of MSCo in Eq. (B.5). If the resulting LHS is less

than N , then MSCo > MSCe and the proof is complete. To economize on notation, let gk denote

g (nek), g′k denote g′ (nek), and nk denote nek. After a few substitutions one can write

m∑
k=1

f [MSCe − δk] =

m∑
k=1

f

[
gk +

N

m

m∑m
k=1

1
g′k

]
.

Define

meck ≡ gk + g′knk, (B.6)

and

m̃eck ≡ gk +
m∑m
k=1

1
g′k

N

m
. (B.7)

Given Eq. (B.2), we need to prove that the following expression is negative:

∆F ≡
m∑
k=1

f

[
gk +

m∑m
k=1

1
g′k

N

m

]
︸ ︷︷ ︸

ñk

−
m∑
k=1

f [meck]︸ ︷︷ ︸
nk

.

Given Assumption 1, ñk > nk for small k, and ñk < nk for large k. The rankings of ñk and nk,

and of c̃k and ck, are shown in Figure B.5.
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Figure B.5: Ridership and marginal social cost

Function f () is concave if we assume that the marginal social cost of crowding is a strictly convex

function of load (i.e., v′′ (n) > 0). Clearly, for all trains ñk − nk < (c̃k − ck) f ′ [ck] , k = 1...m.

Using Eqs. (B.6), (B.7) and (B.3) this implies

∆F =

m∑
k=1

ñk −
m∑
k=1

nk <

m∑
k=1

(c̃k − ck) f ′ [ck]

=

m∑
k=1

(
m∑m
k=1

1
g′k

N

m
− g′knk

)
1

2g′k + g′′knk
.

Now,
∑m
k=1

1
g′k

=
∑m
j=1

∏
i6=jg

′
i∏

k
i=1g

′
i

. Hence

∆F =

m∑
k=1

(
N

∏m
i=1 g

′
i∑m

j=1

∏
i 6=jg′i

− g′knk

)
1

2g′k + nkg′′k

=

m∑
k=1

(
N

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i

− nk

)
g′k

2g′k + nkg′′k

=

m∑
k=1


(∑

l 6=k nl

)∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i

+

( ∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i

− 1

)
nk

 g′k
2g′k + nkg′′k

=

m∑
k=1


∑
l 6=k

nl


︸ ︷︷ ︸

(1)

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′i︸ ︷︷ ︸

(2)

−
∑
j 6=k

∏
i 6=jg

′
i∑m

j=1

∏
i 6=jg′i︸ ︷︷ ︸

(3)

nk︸︷︷︸
(4)


g′k

2g′k + nkg′′k
(B.8)
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In the second line of eqn. (B.8),

m∑
k=1

(
N

∏
i 6=kg

′
i∑m

j=1

∏
i 6=jg′k

− nk

)

= N

m∑
k=1

( ∏
i 6=kg

′
i∑m

j=1

∏
i6=jg′i

)
−

m∑
k=1

nk

= N −N = 0.

Terms (1) and (2) in the last line of Eq. (B.8) are decreasing functions of k. Terms (3) and (4)

are increasing functions of k. Hence Eq. (B.8) is negative if
g′k

2g′k+nkg′′k
is a non-decreasing function

of k, or equivalently if ε (n) =
g′′knk
g′k

is a non-increasing function of k which is guaranteed if we

assume that ε (n) is a nonincreasing function of load (i.e., dε(n)
dn ≤ 0).

Appendix C. Parameter values for numerical example

The numerical example requires base-case parameter values for β, γ, λ and h, and target values

for N , m and s. The operating period was set to one hour, and target values were chosen for

the optimal uniform-fare regime. This regime is intermediate in efficiency between the no-fare and

SO-fare regimes, and it is arguably the most descriptive of public transit service in Paris where

fares are positive and constant throughout the day.

Consider first the supply-side parameters m, h and s. According to the document “Schéma

Directeur du RER A” written in June 2012 by the STIF (Syndicat des Transport d’̂Ile-de-France),

30 trains per hour are supposed to operate during the morning peak in the East-West direction on

the RER A line. However, the frequency actually achieved over the 4-year period February 2008 to

February 2012 was only 24.4 trains per hour.53 The target value for number of trains was thus set

to m = 24, and the headway was set to h = 60
24 = 2.5 mins.

Two types of bi-level train sets are operated during the morning peak:54

• MI2N train sets with 904 seats and standing room for 1,636 users (4 users/m2) for a total

capacity of 2,540 riders

• MI09 train sets with 948 seats and standing room for 1,683 users (4 users/m2) for a total

capacity of 2,614 riders

53See p.36 in www.stif.org/IMG/pdf/Deliberation no2012-0163 relative au schema directeur du RER A.pdf.
54See p.54 in www.stif.org/IMG/pdf/Deliberation no2012-0163 relative au schema directeur du RER A.pdf.
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This suggests a value for capacity of about s = 2, 600. However, in the model users are assumed

to travel from a single origin to a single destination whereas the RER A line serves many stations.

La Défense is the most popular destination, but a substantial fraction of users pass through it.

Only part of train capacity is thus effectively devoted to users who exit at La Défense. After

experimentation with alternative values of s, and other parameters described below, we settled on

a capacity equal to two-thirds of nominal train capacity so that s = 2
3 · 2, 600 = 1, 733.

Consider now the demand-side parameters. According to a January 2011 document “Étude La

Défense Analyse des Trafics” prepared by the DRIEA (Direction Régionale et Interdépartementale

de l’Équipement et de l’Aménagement), in 2009, 32,600 users arrived at La Défense by RER A

between 8:25am and 9:25am.55 This count includes users traveling in both East-West and West-

East directions, but it excludes users who are passing through. Including travel in both directions

results in overestimation of traffic in one direction, whereas excluding users who pass through La

Défense results in underestimation this traffic. Lacking an indication as to which bias dominates,

we set N = 32, 600.

Wardman et al. (2012) conduct a meta-analysis of estimates of β, γ, and the value of travel

time; call it α. They report point estimates of β = 0.74 · α and γ = 1.72 · α (see Table 19, p.25).

For commuters in France, α =e15/hr (see Table 15, p.21) which is consistent with the government-

recommended value. This suggests setting β = 0.74 · 15 = e11.1/hr, and γ = 1.72 · 15 = e25.8/hr.

However, in the model it is assumed that users have the same desired arrival time, t∗. In reality,

trip-timing preferences vary. The assumption of a common t∗ leads to overestimation of schedule

delay costs. In addition, with β = e11.1/hr and γ = e25.8/hr., condition (E.1) that all trains

are used was violated given plausible values for other parameters. After experimentation with

alternative values of β, γ, and s (noted above) we scaled down β and γ by one-third to β = e7.4/hr

and γ = e17.2/hr.

Empirical studies of public transit crowding often report crowding costs as time multipliers.

This is consistent with evidence that disutility from crowding is proportional to amount of time

spent in crowded conditions. The crowding cost parameter can then be written

λ = α · tt · (tm− 1) , (C.1)

55See Figure 2 on page 8 in http://cpdp.debatpublic.fr/cpdp-grandparis/site/DEBATPUBLIC GRANDPARIS
ORG/ SCRIPT/NTSP DOCUMENT FILE DOWNLOADCB59.PDF.
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where tt is travel time and tm is the time multiplier.

According to the survey “Étude mobilité transports à la Défense - Profils, usages et modes de

déplacements des salariés et habitants du quartier d’affaires” by the EPAD (Établissement Public

de la Région Pour l’Aménagement de la Défense), in 2006, the average travel time incurred by

public transport riders who used only one transport mode to reach La Défense was 40 mins.56 This

is consistent with a study by the Enquête Global Transport in 2010, which found an average travel

time for commuters of 41 mins.57 We thus set tt = 40 mins or 2/3 hrs.

Haywood and Koning (2015) have estimated time multipliers for Paris. They obtain a linear

approximation of the time multiplier (see Eq. (10), p.194) of tm = 1 + 0.11 · d, where d is the

density of passengers per square metre. Substituting the estimates of α, tt, and tm into Eq. (C.1)

one obtains λ = 15 · 2/3 · 0.11 · d. With a density of 4 users/m2 for standing room on the train sets

used on the RER A line (see above), this yields λ = 4.4.

Appendix D. Glossary

Appendix D.1. Latin characters

c : user cost of a trip [e/user]

CS : total consumers’ surplus [e]

e : superscript for uniform-fare regime

g (n) : expected crowding cost function [e/user]

Gxy : welfare gain in shifting from pricing regime x to y

h : time interval between successive trains [hr/train]

k : index of train

K : capacity cost function [e]

m : number of trains used [trains]

MEC : marginal external cost of a trip [e/user]

MSC : marginal social cost of a trip [e/user]

n : number of users on a train [users/train]

nk : number of users taking train k [users/train]

56See p.11 in http://www.ladefense-seine-arche.fr/fileadmin/site internet/user upload/8-ENLIEN/etudes/etude-
mobilite-transports.pdf.

57See p.3 in http://www.driea.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/Fiche Actifs cle0cecb9.pdf.
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N : total number of users [users]

o : subscript for socially-optimal fare regime

p : private trip cost including fare [e/user]

R : total fare revenue [e]

RV : variable fare revenue from socially optimal fare schedule [e]

s : measure of train capacity [users/train]

SDC : total schedule delay costs [e]

SS : social surplus [e]

t : departure time from origin station [clock time]

t∗ : desired arrival time at destination [clock time]

TC : total user costs [e]

TCC : total crowding costs [e]

u : superscript for optimal uniform-fare regime

v (n) : marginal social crowding cost function [e/user]

Appendix D.2. Greek characters

β : cost per minute of arriving early [e/(hr·user)]

γ : cost per minute of arriving late [e/(hr·user)]

δ : schedule delay cost function [e/user]

ε : elasticity of g′ (n)

η : elasticity of demand

λ : crowding cost parameter [e/user]

ν0 : capacity cost function coefficient on m [e/train]

ν1 : capacity cost function coefficient on m · s [e/user]

ν2 : capacity cost function coefficient on s [e·train/user]

τ : fare [e/user]

φ : 1 + φ : marginal cost of public funds
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On-line appendices

Appendix E. Conditions for positive usage of all trains

Appendix E.1. Uniform fare

Because the first (or last) train carries the fewest passengers, the equilibrium usage pattern

solution satisfies all the non-negativity constraints nek > 0 if ne1 > 0 and nem > 0. Given Eq. (2) the

requisite condition is:

N >
ms

λ

(
max [δ1, δm]− δ

)
. (E.1)

Since service is costly to provide, condition (E.1) is satisfied when m and s are chosen optimally as

in Section 6.

Appendix E.2. Social optimum

Given Eq. (12) for nok, the non-negativity constraint on usage of all trains is satisfied if

N >
ms

2λ

(
max [δ1, δm]− δ

)
.

This condition is satisfied if condition (E.1) is satisfied for the no-fare equilibrium.

Appendix E.3. Optimal capacity

It is not obvious from Eqs. (19a) and (19b) whether condition (E.1) is satisfied at the long-run

optimum. However, if m is restricted to integer values (as is the case in reality), it is possible to

show that condition (E.1) is indeed satisfied.

Appendix F. Proof of ∂Ri/∂N = ∂MSCi/∂N · N, i = u, o

Total fare revenue from the optimal uniform fare is Ru = τuN . Hence ∂Ru

∂N = τu + ∂τu

∂N N .

Now MSCu = ∂TCu

∂N = ∂(cuN)
∂N = cu + ∂cu

∂N N = cu + τu.

Thus ∂MSCu

∂N N =
(
∂cu

∂N + ∂τu

∂N

)
N = τu + ∂τu

∂N N = ∂Ru

∂N .

Total fare revenue from the SO-fare is Ro =
∑m
k=1 τ

o
kn

o
k. Hence

∂Ro

∂N
=

m∑
k=1

(
τok +

∂τok
∂nok

nok

)
∂nok
∂N

.
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The marginal social cost of a trip is the same for all trains that are used: MSCo = cok + τok . Hence:

∂MSCo

∂N
=

(
∂cok
∂nok

+
∂τok
∂nok

)
∂nok
∂N

,

∂MSCo

∂N
nok =

(
∂cok
∂nok

nok +
∂τok
∂nok

nok

)
∂nok
∂N

=

(
τok +

∂τok
∂nok

nok

)
∂nok
∂N

,

∂MSCo

∂N
N =

m∑
k=1

∂MSCo

∂N
nok =

m∑
k=1

(
τok +

∂τok
∂nok

nok

)
∂nok
∂N

=
∂Ro

∂N
.

Appendix G. Proof of Proposition 5

We first consider uniform fares (which include no fare and the optimal uniform fare as special

cases), and then the SO-fare.

Appendix G.1. Uniform-fare regimes

With a uniform fare, the equilibrium private cost of a trip, pe, equals the user cost plus the fare:

pe = δ̄ +
λN

ms
+ τ . (G.1)

Eq. (G.1) serves as a supply function for trips. Solving (G.1) and the demand function (18) yields

the equilibrium private cost and number of trips, p̂e and N̂e. If the fare is zero, the equilibrium

price is

p̂n = δ̄ +
λN̂n

ms
. (G.2)

Social surplus equals consumers’ surplus: ŜS
n

= ĈS
n

=
∫∞
p̂n
N (u) du. The optimal uniform fare

is given by Eq. (4): τ̂u = λN̂u

ms , and fare revenue is R̂u = τuN̂u =
λ(N̂u)

2

ms . The efficient price of a

trip equals marginal social cost:

p̂u = M̂SC
n

= ĉu + τ̂u = δ̄ +
2λN̂u

ms
. (G.3)

Social surplus is equal to ŜS
u

=
∫∞
p̂u
N (u) du+ τuN̂u. Finally, the welfare gain in switching from

no fare to the optimal uniform fare is Gnu = ŜS
u
− ŜS

n
.

Appendix G.2. Social optimum

The social optimum can be supported by imposing time-dependent fares τok = λnok/s. Given (7)

and (16), total travel costs are T̂C
o

= δ̄N̂o +
λ(N̂o)

2

ms − RV o. Since variable revenue in Eq. (15)
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does not depend on the number of trips, the marginal social cost of a trip is M̂SC
o

= δ̄ + 2λN̂o

ms .

Similar to the optimal uniform-fare regime, the efficient price of a trip equals marginal social cost:

p̂o = M̂SC
o (
N̂o
)

= δ̄ +
2λN̂o

ms
. (G.4)

Eqs. (G.3) and (G.4) reveal that the optimal price is the same function of usage in regimes u and

o. This is consistent with the observation that, if the crowding cost function is linear, the marginal

social cost of trips is the same in the SO and UE. Social surplus is equal to

ŜS
o

=

∫ ∞
p̂o

N (u) du+Ro
(
N̂o
)

=

∫ ∞
p̂o

N (u) du+
λ
(
N̂o
)2

ms
+RV o.

The welfare gain in switching from no fare to the SO-fare is Gno = ŜS
o
− ŜS

n
, and the welfare

gain in switching from the optimal uniform fare to the SO-fare is Guo = ŜS
o
− ŜS

u
.

Appendix G.3. Comparison of the regimes

Private costs in regimes n, u and o are given by Eqs. (G.2), (G.3), and (G.4) respectively. For

given values of m, s, and N , it is clear that private costs are the same in regimes u and o, and lower

in regime n. With elastic demand this implies that equilibrium usage is the same in regimes u and

o, and higher in regime n. Correspondingly, the equilibrium private cost and consumers’ surplus

are the same in regimes u and o, and higher in regime n. Social surplus is highest in regime o,

lowest in regime n, and intermediate in regime u.

Appendix H. Optimal timetable

Appendix H.1. Optimal timetable

The optimal timetable is derived by minimizing users’ total costs. For given m and s, the

optimal timetables for the UE and SO generally differ because their load patterns differ. However,

the timetables coincide given linear schedule delay costs and a constant headway.

With a constant headway between trains, the timetable is fully described by the arrival time of

the last train, tm. Let 1x be the indicator function with 1x = 1 if x is true, and 1x = 0 otherwise.

The optimal timetable is described in:

Proposition 9. With the optimal timetable, the last train leaves at time

tom = t∗ + h
(
m− ϕm − 1 γm

β+γ>ϕm

)
,
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where ϕm ≡
⌊
γm
β+γ + 1

2

⌋
. Train k, with k = ϕm + 1 γm

β+γ>ϕm
, arrives on time at t∗. The unweighted

average schedule delay cost is δ ' βγ
β+γ

mh
2 .

According to Prop. 9, the higher the cost of late arrival (γ) relative to early arrival (β) the

earlier service begins. The fraction of trains that arrive before t∗ is approximately γ/ (β + γ). This

formula is approximate because the number of trains is integer-valued. For the same reason, the

formula for average schedule delay cost, δ, is approximate too.

We first derive the optimal timetable for the UE, and then show that this timetable is also

optimal for the SO.

Appendix H.2. Optimal timetable for user equilibrium

Total costs in the UE are TCe = δN + λN2

ms . The timetable should therefore be chosen to

minimize average schedule delay cost, δ. The timetable can be defined by the arrival time of the

last train, tm. It is clearly not optimal to set tm < t∗, and have all trains arrive early, since δ could

be reduced by setting tm = t∗. Similarly, it is not optimal to set tm > t∗ + (m− 1)h, and have all

trains arrive late, since δ could be reduced by setting tm = t∗ + (m− 1)h. Thus, one train must

arrive during the interval (t∗ − h, t∗]. Call it train k̂. Train k̂ is the last train to arrive at or before

t∗. Average schedule delay cost is

δ =
1

m

(
k̂∑
k=1

β (t∗ − tk) +

m∑
k=k̂+1

γ (tk − t∗)

)

=
1

m

(
k̂∑
k=1

β
(
t∗ − tk̂ + h

(
k̂ − k

))
+

m∑
k=k̂+1

γ
(
tk̂ − t

∗ + h
(
k − k̂

)))

=
1

m

((
t∗ − tk̂

) [
(β + γ) k̂ − γm

]
+ (β + γ)h

k̂
(
k̂ − 1

)
2

+ γh
m
(
m+ 1− 2k̂

)
2

)
. (H.1)

The first component of the RHS of Eq. (H.1),
(
t∗ − tk̂

)
, is the time between the arrival time of

train k̂ and t∗. If tk̂ < t∗ we can differentiate Eq. (H.1):

∂δ

∂
(
t∗ − tk̂

) =
(β + γ) k̂

m
− γ.

If k̂ > γm/ (β + γ), then ∂δ/∂
(
t∗ − tk̂

)
> 0 and δ is minimized by setting t∗ − tk̂ to its minimal

value: t∗ − tk̂ = 0. Conversely, if k̂ < γm/ (β + γ), then ∂δ/∂
(
t∗ − tk̂

)
< 0 and δ is minimized by

On-line appendices - 4



setting t∗ − tk̂ = h. Hence it is optimal to schedule one train at t∗. Call it train k∗. Replacing k̂ in

Eq. (H.1) with k∗ one obtains

δ = (β + γ)h
k∗ (k∗ − 1)

2m
+ γh

m+ 1− 2k∗

2
.

Treating k∗ as a continuous variable for the moment, the first-order condition for minimizing δ with

respect to k∗ is k∗o = γm
β+γ + 1

2 . Since k∗ is an integer, we have to compare δ when k∗ = bk∗oc and

when k∗ = bk∗oc+ 1. We find

δk∗=bk∗oc − δk∗=bk∗oc+1 ≶ 0⇐⇒ γm

β + γ
≶

⌊
γm

β + γ
+

1

2

⌋
.

Hence,

k∗ =

⌊
γm

β + γ
+

1

2

⌋
+ 1× 1 γm

β+γ>b γmβ+γ+ 1
2c

tm = t∗ + h

(
m−

⌊
γm

β + γ
+

1

2

⌋
− 1× 1 γm

β+γ>b γmβ+γ+ 1
2c

)
,

where 1 is an indicator function with 1x = 1 if x is true, and 1x = 0 otherwise. In summary, if

γm/ (β + γ) > bγm/ (β + γ) + 1/2c, then

k∗ = bγm/ (β + γ) + 1/2c+ 1, and

tm = t∗ + h(m− 1− bγm/ (β + γ) + 1/2c).

Conversely, if γm/ (β + γ) <
⌊
γm
β+γ + 1

2

⌋
, then

k∗ = bγm/ (β + γ) + 1/2c , and

tm = t∗ + h (m− bγm/ (β + γ) + 1/2c) .

Appendix H.3. Optimal timetable for social optimum

Total costs in the social optimum are given by Eqs. (16) and (15):

TCo = δN +
λN2

ms
− s

4λ

(
∆−mδ2

)
,

where

∆−mδ2
=

m∑
k=1

δ2
k −

1

m

[
m∑
k=1

δk

]2

, (H.2)

and

δk = β [t∗ − tm + h (m− k)]
+

+ γ [tm − t∗ − h (m− k)]
+
. (H.3)
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TCo differs from TCe in including the third term on the right-hand side. As above, let k̂ be the

last train to arrive at or before t∗. Differentiating (H.2) with respect to tm, and using (H.3), it is

possible to show after considerable algebra that

∂
(

∆−mδ2
)

∂tm
=

γ

β + γ
m+ 1− k̂.

The term ∆−mδ2
therefore reaches an extreme point for the same k̂ as does δ. Hence TCo reaches

a minimum for the same timetable as TCe.

Appendix I. Proof of Proposition 6

First-order conditions for a maximum of SSi are58

∂SSi

∂s
= p (N)

∂N

∂s
−
(
−λN

2

ms2
+

(
δ̄ +

2λN

ms

)
∂N

∂s
+Ks

)
+RV is = 0, (I.1)

∂SSi

∂m
= p (N)

∂N

∂m
−
(
∂δ̄

∂m
N − λN2

m2s
+

(
δ̄ +

2λN

ms

)
∂N

∂m
+Km

)
+RV im = 0. (I.2)

The private cost of usage is given by Eq. (G.1) which can be written

p (N)−
(
δ̄ +

2λN

ms

)
= τ − λN

ms
. (I.3)

The fare, τ , depends on the pricing regime. To maintain generality we assume for the moment that

τ can depend on N , m, and s. Substituting (I.3) into (I.1) and (I.2) yields:

λN2

ms2
+

(
τ − λN

ms

)
∂N

∂s
−Ks +RV is = 0, (I.4)

λN2

m2s
− ∂δ̄

∂m
N +

(
τ − λN

ms

)
∂N

∂m
−Km +RV im = 0. (I.5)

The demand derivatives are obtained by totally differentiating (G.1):

∂N

∂s
=

− λN
ms2 + dτ

ds

pN − λ
ms −

dτ
dN

> 0, (I.6)

∂N

∂m
=

∂δ̄
∂m −

λN
m2s + dτ

dm

pN − λ
ms −

dτ
dN

> 0. (I.7)

58Given δ̄ ∼= βγ/ (β + γ)hm/2 as per Prop. (9), ∂δ̄/∂m ∼= βγ/ (β + γ)h/2 which is a constant.
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Substituting (I.6) and (I.7) into (I.4) and (I.5), the first-order conditions become

λN2

ms2
·
pNN − τ − dτ

dNN

pNN − λN
ms −

dτ
dNN

+

(
τ − λN

ms

)
dτ
dsN

pNN − λN
ms −

dτ
dNN

= Ks −RV is ,(
λN

m2s
− ∂δ̄

∂m

)
N ·

pNN − τ − dτ
dNN

pNN − λN
ms −

dτ
dNN

+

(
τ − λN

ms

)
dτ
dmN

pNN − λN
ms −

dτ
dNN

= Km −RV im.

Appendix J. Optimal capacity in the uniform-fare regime

In the uniform-fare regime, Eqs. (21a) and (21b) can be solved jointly to obtain quartic equations

for the unconditionally optimal values, su∗ and mu
∗ :

ν1(su∗)
4 + Z(su∗)

3 − λZ2N2/ν2
2 = 0,

ν1(mu
∗)

4 + ν2(mu
∗)

3 − λν2
2N

2/Z2 = 0,

where Z ≡ N∂δ̄/∂m+ ν0. If ν1 = 0, an explicit solution obtains:

su∗ (N) =

(
∂δ̄

∂m

λ

ν2
2

N3 +
λν0

ν2
2

N2

)1/3

,

mu
∗ (N) =

λ

ν2 [su∗ (N)]
2N

2.

According to Mohring’s (1972) square-root rule, both optimal service frequency and the number of

passengers carried per train (or bus) increase with
√
N . In the PTC model, service frequency is

constant because headway is fixed. su∗ rises59 with N at a rate faster than N2/3, and mu
∗ grows at a

rate slower than N2/3, but since it does increase with N the duration of the travel period increases.

As N increases, adding trains becomes less attractive because they are scheduled increasingly early

or late. The number of trains, mu
∗ , approaches a constant value and su∗ increases approximately

linearly with N .60 With ν1 = 0, it is possible to show that equilibrium user cost is a U-shaped

function of N with a minimum at N = ν0

(
∂δ̄/∂m

)−1
. However, both the equilibrium price, p,

and the average system cost, cu (mu
∗ , s

u
∗) + K (mu

∗ , s
u
∗) /N , decline monotonically with N . This is

attributable to the fact that, with ν1 = 0, the user cost function has constant returns to scale while

the service cost function has increasing returns.

59In Kraus and Yoshida’s (2002) model, the effect of N on s is ambiguous. Nevertheless, they remark (p.178) that
s is likely to increase with N .

60Eventually a physical limit to train capacity would be reached due to constraints on platform size or tractive
power.
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The limiting case ν0 = 0 applies if there are no scale economies with respect to train size:

ν1 +
∂δ̄

∂m

N

su∗
− λ

ν2
2

(
∂δ̄

∂m

)2(
N

su∗

)4

= 0,

ν1 (mu
∗)

4
+ ν2 (mu

∗)
3 − λν2

2

(
∂δ̄

∂m

)−2

= 0.

The first equation in the system solves for a unique value of N/su∗ which implies that train capacity is

chosen proportional to ridership. The second equation solves for a unique value of mu
∗ which implies

that the number of trains is independent of ridership. These properties imply that equilibrium user

cost, cu, price, pu, and average system cost are all constant. Hence, unlike in Mohring’s model (in

which ν1 = ν2 = 0, ν0 > 0) there are no scale economies with respect to traffic density.

Appendix K. Optimal transit capacity with no fare and traffic congestion

With no fare and no traffic congestion, the second-best optimal values of s and m are given by

Eqs. (19a) and (19b) in Proposition 6 with i = n:

λN2

ms2
· pN

pN − λ
ms

= Ks,(
λN

m2s
− ∂δ̄

∂m

)
N · pN

pN − λ
ms

= Km.

When transit demand is price sensitive, the potential benefit from expanding transit capacity is

partly undermined by latent demand.

It is straightforward but tedious to show that, with unpriced traffic congestion, the corresponding

conditions are

λN2
R

ms2
· pN

pN − λ
ms

 1 + NA
NR

1 +
pN

λ
ms

C′A(pN− λ
ms )

 = Ks, (K.2a)

(
λNR
m2s

− ∂δ̄

∂m

)
NR ·

pN

pN − λ
ms

 1 + NA
NR

1 +
pN

λ
ms

C′A(pN− λ
ms )

 = Km. (K.2b)

The LHS of each equation is multiplied by a scaling factor shown in square brackets. Because the

scaling factor is the same, traffic congestion does not alter the relative benefits of expanding train

capacity versus increasing the number of trains. The scaling factor can be greater than or less than
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1. Expanding transit capacity does induce more travelers to take transit, but the benefit is diluted

by the fact that the reduction in traffic congestion induces some travelers to return to their cars.

Eqs. (K.2a) and (K.2b) reveal that the presence of traffic congestion is more likely to increase the

net benefit from capacity expansion when NA and C ′A are large. This is because the benefits from

congestion relief are then high.

Appendix L. Proof of Propositions 7 and 8

In fare regime f , the average fare paid is τ = λN
ms . Variable revenue is RV f = f · RV o with

RV o = s
4λ

(∑m
k=1 δ

2
k − 1

m [
∑m
k=1 δk]

2
)

, or RV o = s
4λV for short, where V is a function of m but

does not depend on s or N . In parts of the proof it is necessary to impose an upper bound on RV o.

For this purpose we first prove the following

Lemma: RV o < 1
12
λN2

ms = 1
12τN .

Proof: Condition (E.1) that all trains are used implies

λN

ms
> max [δ1, δm]− δ.

For large values of m, Prop. 9 yields δ1 ' δm ' βγ
β+γmh, and δ ' βγ

β+γ
mh
2 . Hence

λN

ms
>

βγ

β + γ

mh

2
.

This inequality can be rearranged to obtain

λN2

ms
>

s

4λ

(
βγ

β + γ

)2

h2m3 = 12RV o. � (L.3)

The Lemma establishes that variable revenue from the SO-fare cannot exceed 1/12 of the revenue

collected from the average fare.

Total demand (N) and the optimal values of m and s are given by Eqs. (I.3), (I.4) and (I.5) in

Appendix I. Applying τ = λN
ms , these equations become:

p (N)−
(
δ̄ +

2λN

ms

)
= 0, (L.4)

λN2

ms2
−Ks +RV fs = 0, (L.5)

λN2

m2s
− φN −Km +RV fm = 0, (L.6)
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where Ks = ν1m+ ν2, Km = ν0 + ν1s, and φ ≡ dδ̄/dm is a constant. Totally differentiating (L.4),

(L.5), and (L.6) with respect to f yields a system of three equations:
2λN
m2s

2λN
ms2 pN − 2λN

ms

− λN2

m2s2 − ν1 +RV fms − 2λN2

ms3
2λN
ms2

− 2λN2

m3s +RV fmm − λN2

m2s2 − ν1 +RV fms
2λN
m2s − φ




dm
df

ds
df

dN
df

 =


0

−RV fsf
−RV fmf

 . (L.7)

The determinant of the coefficient matrix is positive. Each derivative is considered in turn.

Appendix L.1. Derivative of m

Applying Cramer’s Rule to (L.7) one obtains:

dm

df

s
=

(
pN −

2λ

ms

)
1

ms2

−5
λN2

ms
+msν1 − 3fRV o︸ ︷︷ ︸

A

− 8
λ2N2

m3s4
, (L.8)

where
s
= means has the same sign as. Expression (L.8) is positive if it is positive in the limiting

case of perfectly inelastic demand (pN → −∞) as well as perfectly elastic demand (pN = 0). In the

limiting case pN → −∞, dm/df > 0 if term A is negative. From Eq. (L.5)

λN2

ms
= s (ν1m+ ν2)− fRV o, (L.9)

and term A can be written

A = −4ν1ms− 5ν2s+ 2fRV o. (L.10)

According to the Lemma, RV o < 1
12
λN2

ms . Given (L.5), this implies RV o < 1
12s (ν1m+ ν2). Substi-

tuting this inequality into (L.10) yields

A < −4ν1ms− 5ν2s+
1

6
fs (ν1m+ ν2) < 0.

In the opposite limiting case with pN = 0,

dm

df

s
= − 2λ

m2s3

(
−5

λN2

ms
+msν1 − 3fRV o

)
− 8

λ2N2

m3s4

s
=
λN2

ms
−msν1 + 3fRV o

s
= sν2 + 2fRV o > 0.

where the last line follows from (L.9). This proves that dm/df > 0.
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Appendix L.2. Derivative of s

Applying Cramer’s Rule to (L.7) again one obtains:

ds

df

s
=

(
pN −

2λ

ms

)
1

m

λN2

ms
+msν1 − 3fRV o︸ ︷︷ ︸

B

− 4

(
φ− 2λN

m2s

)
λN

ms
. (L.11)

Expression (L.11) is negative if it is negative in both limiting cases of perfectly inelastic demand

and perfectly elastic demand. In the limiting case pN → −∞, ds/df < 0 if term B is positive. This

can be confirmed following the same steps as for (L.8). With pN = 0,

ds

df

s
= − 2λ

m2s

(
λN2

ms
+msν1 − 3fRV o

)
− 4

(
φ− 2λN

m2s

)
λN

ms
.

Using (L.9), this simplifies to
ds

df

s
= 3sν2 − 2φN .

which can be positive or negative. Hence, with sufficiently inelastic demand ds/df < 0, but the

sign is otherwise indefinite.

Appendix L.3. Derivative of ms

The derivative of fleet capacity is

d (ms)

df
= s

dm

df
+m

ds

df
.

Applying formulas for the derivatives dm/df and ds/df one obtains

d (ms)

df

s
=

2λ

ms
(−4msν1 + 6fRV o)− pN (4sν2 + 2fRV o) . (L.12)

In the limiting case pN → −∞, (L.12) is clearly positive. With pN = 0, the sign is indefinite.

Appendix L.4. Derivative of N

For total usage

dN

df

s
=

(
φ− 2λN

m2s

)(
λN2

ms
− 3fRV o − 6

λN2

ms

)
− 2λN

m2s

(
λN2

ms
+ 3msν1 − 3fRV o

)
.

Applying first-order conditions (L.5) and (L.6), and combining terms, one obtains

dN

df

s
= (5ν0m+ 2ν1ms+ 3ν2s) s (ν1m+ ν2)︸ ︷︷ ︸

C

(L.13)

− (2ν0m+ 8ν1ms+ 12ν2s) fRV
o.

On-line appendices - 11



Expression (L.13) is positive with f = 0. With f > 0, the second line is negative and the sign

of (L.13) depends on the relative magnitudes of two terms. From the Lemma, RV o cannot exceed

1/12 of the revenue collected from the average fare. Term C in line 1 comprises the portion of

capacity costs that vary with train capacity. If there are no scale economies with respect to train

size (i.e., ν0 = 0), term C accounts for total capacity costs. In addition, fare revenue fully covers

capacity costs. Expression (L.13) then becomes

dN

df

s
= (2ν1ms+ 3ν2s)K (m, s)− (8ν1ms+ 12ν2s) f

1

12
K (m, s)

which is unambiguously positive. In summary, total usage increases with the efficiency of the fare

regime unless, possibly, there are very substantial scale economies with respect to train capacity.

Appendix M. Sensitivity analysis

Appendix M.1. Integer-valued number of trains

The number of trains, m, has been treated as a continuous variable although it is discrete in

reality. An integer constraint can be imposed by fixing m, and then choosing s for regimes n, u and

o. To assess how the integer constraint affects results, m was first set to the largest integer smaller

than the real-valued solution, and then the next integer larger. Thus, for the no-fare regime m was

first set to bmn
∗ c, and then bmn

∗ c + 1. Since mu
∗ was calibrated to be an integer value, this was

unnecessary for regime u. The integer value yielding the higher social surplus was then selected.

The results changed very little, and social surplus was virtually unchanged. Integer constraints also

had little effect for a range of other parameter values.

Appendix M.2. Demand elasticity

If the price elasticity of demand is reduced to η = 0, ridership is the same in the three fare

regimes. With pN = −∞, the first-order conditions (19a) and (19b) for s and m are the same for

regimes n and u so that su∗ = sn∗ , and mu
∗ = mn

∗ . Imposing the uniform fare yields no welfare gain

at all, and merely transfers money from users to the transit authority. The SO-fare does yield a

welfare gain although (with ridership fixed at 32, 600) it is only e0.185 per rider compared to e0.45

per rider in the base case.

To examine the effects of a higher price elasticity, η was doubled in magnitude to −2/3. To

maintain equilibrium ridership at 32, 600 in the optimal uniform-fare regime, parameter N0 was
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Table M.1: Comparison of no-fare, optimal uniform fare, and SO-fare (i.e., social optimum) regimes: η = −2/3

Fare regime
No-fare (n) Optimal uniform fare (u) Social optimum (o)

m 26.34 24 26.75
s 1, 764 1, 733 1, 725
N 41, 006 32, 600 33, 220
p 6.72 9.48 9.22

Rev/user 0 3.45 3.39
TCC 187, 604 133, 499 112, 503
SDC 88, 044 63, 244 81, 248
TC 275, 648 196, 743 193, 751
K 139, 632 134, 889 137, 558
R 0 112, 407 112, 503
ρ 0 0.833 0.818
CS 1, 206, 851 1, 106, 343 1, 115, 033
SS 1, 067, 219 1, 083, 862 1, 089, 978

Totalgain 16, 643 22, 759
Gain/user 0 0.51 0.70
Rel.eff 0 0.73 1

increased to 146, 056. The results are shown in Table M.1. With the higher price elasticity, con-

sumers’ surplus and social surplus in each regime are lower than with the base-case parameters.

Regime u is otherwise unaffected. However, the welfare gain per rider nearly doubles from e0.27

to e0.51. The welfare gain per rider in the social optimum increases from e0.45 to e0.70, but by

a smaller percentage so that the relative efficiency of regime u increases.
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