Full Bayesian inference with hazard mixture models

Abstract : Bayesian nonparametric inferential procedures based on Markov chain Monte Carlo marginal methods typically yield point estimates in the form of posterior expectations. Though very useful and easy to implement in a variety of statistical problems, these methods may suffer from some limitations if used to estimate non-linear functionals of the posterior distribution. The main goal is to develop a novel methodology that extends a well-established marginal procedure designed for hazard mixture models, in order to draw approximate inference on survival functions that is not limited to the posterior mean but includes, as remarkable examples, credible intervals and median survival time. The proposed approach relies on a characterization of the posterior moments that, in turn, is used to approximate the posterior distribution by means of a technique based on Jacobi polynomials. The inferential performance of this methodology is analyzed by means of an extensive study of simulated data and real data consisting of leukemia remission times. Although tailored to the survival analysis context, the proposed procedure can be adapted to a range of other models for which moments of the posterior distribution can be estimated.
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

Contributeur : Julyan Arbel <>
Soumis le : jeudi 24 septembre 2015 - 16:47:22
Dernière modification le : lundi 18 février 2019 - 13:16:21
Document(s) archivé(s) le : mardi 29 décembre 2015 - 09:13:55


Fichiers produits par l'(les) auteur(s)




Julyan Arbel, Antonio Lijoi, Bernardo Nipoti. Full Bayesian inference with hazard mixture models. Computational Statistics and Data Analysis, Elsevier, 2016, 93, pp.359--372. 〈http://www.sciencedirect.com/science/article/pii/S0167947314003417〉. 〈10.1016/j.csda.2014.12.003〉. 〈hal-01203296〉



Consultations de la notice


Téléchargements de fichiers