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Abstract

Ecotoxicology is primarily concerned with predicting the effects of toxic substances

on the biological components of the ecosystem. In remote, high latitude environments

such as Antarctica, where field work is logistically difficult and expensive, and where

access to adequate numbers of soil invertebrates is limited and response times of biota

are slow, appropriate modelling tools using microbial community responses can be

valuable as an alternative to traditional single-species toxicity tests. In this study, we

apply a Bayesian nonparametric model to a soil microbial dataset acquired across a

hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. We model

community change in terms of OTUs (operational taxonomic units) in response to a
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range of total petroleum hydrocarbon (TPH) concentrations. The Shannon diversity

of the microbial community, clustering of OTUs into groups with similar behaviour

with respect to TPH, and effective concentration values at level x, which represent

the TPH concentration that causes x% change in the community, are presented. This

model is broadly applicable to other complex datasets with similar data structure and

inferential requirements on the response of communities to environmental parameters

and stressors.

keywords Antarctica, Dependent models, Fuel spills, Griffiths-Engen-McCloskey distribu-
tion, Shannon diversity index, Soil biodiversity, Species abundance

1 Introduction

An understanding of the environmental processes that affect ecosystems is of fundamental

importance for their management and conservation. Ecotoxicology is primarily concerned

with predicting the effects of toxic substances on the biological components of the ecosystem.

Toxicity data based on the response of a range of native biota is critical to the derivation

of site-specific environmental quality guidelines. These include trigger values or contami-

nant thresholds, which when exceeded prompt remediation and/or clean-up activities. They

also include remediation targets which define an acceptable level of ecosystem recovery and

restoration, and once reached through remediation, enable sign-off of sites as no longer posing

significant environmental risk.

While ecotoxicological assessments aim to predict the effects of contaminants on an ecosys-

tem, monitoring and characterising the state of an entire ecosystem is rarely practicable.

Thus, toxicity tests are generally conducted on single species (populations), or groups of

species (communities), as indicators of the overall system state. In remote, high latitude

environments such as Antarctica, where field work is logistically difficult and expensive,

and where terrestrial ecosystems are comprised of relatively few species and simple food

webs, appropriate modelling tools using microbial community responses can be valuable as

an alternative to traditional single-species toxicity tests. Such community assessments may

provide more representative and relevant information that incorporates complex interactions

between species compared with simple single-species tests.

Modelling the responses of species or communities to contamination gradients is conceptually

very similar to the broader goal of modelling species responses to environmental conditions,

which is an area of long-standing study in the ecological sciences. Conventional observational
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ecological studies have generally dealt with a relatively small number of species, and the

modelling methods have been developed accordingly. Thus, while methods for single-species

modelling are relatively mature and diverse (e.g. Elith et al., 2006), community modelling

methods are less well established. The development of community modelling methods has,

at least in part, been driven by the emergence of high-throughput microbial and similar

studies, which can provide information on tens of thousands of species simultaneously, many

of which can be extremely sparse. One approach to community modelling is to model single

species in an independent fashion, and then assemble the individual model predictions into

a composite prediction of the community (e.g. Ellis et al., 2011). However, such approaches

typically struggle with rare species, which are difficult to model with confidence because of

their sparse observations. Appropriate propagation of the uncertainty in individual species

models into the composite predictions can also be difficult. An alternative approach, which

has become more common in recent years, is to simultaneously model the response of the

community as a whole. This can involve the modelling of univariate summaries of multi-

species responses, such as compositional dissimilarity (e.g. Ferrier and Guisan, 2006; Ferrier

et al., 2007) or rank abundance distributions (Foster and Dunstan, 2010). Alternatively,

the responses of multiple species can be modelled simultaneously (e.g. Foster and Dunstan,

2010; Dunstan et al., 2011; Wang et al., 2012).

A common approach to characterising single-species responses is through the probability of

presence pj of each species j at a site, often as a function of the environmental conditions at

that site. This approach can be extended to multiple species using a multi-response model.

The multinomial distribution, which generalises the binomial distribution to the case where

there are more than two species, provides an intuitive framework when the sampling process

consists of independent observations of a fixed number of species. This distribution gives the

probability of observing any given combination of species, conditional on parameters which

are the species relative proportions. This intuitive modelling of species relative proportions

has led to the recent popularity of multinomial methods in ecological (e.g. Bohlin et al., 2009;

Fordyce et al., 2011; De’ath, 2012; Holmes et al., 2012) and genomic (Dunson and Xing, 2009)

applications. The multinomial approach also provides a natural link to indices that describe

various community properties of interest to ecologists, such as species diversity, richness, and

evenness. The literature on diversity in ecology is extensive, see e.g. Hill (1973); Patil and

Taillie (1982); Foster and Dunstan (2010); Colwell et al. (2012); De’ath (2012). We focus

here on the Shannon index, cf Section 2.

In ecotoxicological studies with contaminants, interest is generally directed towards estimat-

ing the concentrations of toxicants that cause a certain level of impact on a population or

community. The effective concentration, or ECx value, is the concentration that causes x%
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effect on the population relative to the controls (e.g. Newman, 2012). For example, the EC50

is the median effective concentration and represents the concentration of a toxicant which

induces a response halfway between the control baseline and the maximum after a specified

exposure time (see Section Methods for a more detailed definition). Of more ecological rele-

vance in terms of protecting the ecosystem, estimates of lower effective quantiles such as the

EC10 and EC20 are also commonly estimated. These more sensitive estimates are included

in species sensitivity distribution (SSD) models, which are in turn used to derive appropriate

protective guidelines on contaminant concentrations. Currently, it is not clear how to best

calculate ECx values using whole-community data, and to identify the vulnerable members

within.

In this study, we apply the modelling method presented by Arbel et al. (2013) to a soil

microbial dataset acquired across a hydrocarbon contamination gradient at the site of a

fuel spill in Antarctica. The method used here extends that presented by Holmes et al.

(2012). It allows for an unknown a priori number of species, accounts for additional factors

by introducing dependence into the model, and allows predictions to be made at any value

of the dependent variable (i.e. contaminant concentration value). This brings estimates

which are more efficient, both computationally and inferentially, and allows assessment of

the response of species, for instance in terms of diversity, to contamination. This method

provides a robust and practical way to assess a mixed community of organisms (whether

microbes or macro organisms) and determine their responses to a toxicant. There are many

studies that focus on the response of a single organism but often this response will have

repercussive effects on a community and the surrounding ecosystem. This method provides

a platform by which to explore those effects and derive toxicology data for multiple species

without the need for empirical data.

2 Methods

2.1 Soil sample collection and analysis

Soil samples were collected from a range of sites across a fuel contamination gradient at Aus-

tralias Casey Station in East Antarctica (110◦ 32′ E, 66◦ 17′ S). The data comprise counts

of a large number (of the order of 1 800) of microbial taxa, referred to as OTUs (oper-

ational taxonomic units; see Schloss et al., 2009), collected at 22 sites, across a range of

hydrocarbon contamination (Siciliano et al., 2014). Genomic DNA extracted from samples

was sequenced on a 454 Titanium FLX+ instrument (Roche, Brandford, CT, USA) at the
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Research and Testing facility (Lubbock, TX, USA) using the universal bacterial primers

28F and 519R (Dowd et al., 2008). Pyrosequencing data were processed using the mothur

software package (Schloss et al., 2009). This involved removal of short reads (<150bp), ex-

cessive homoploymeric reads (>8bp repeats) and denoising with AmpliconNoise (min/max

flows 360/720) (Quince et al., 2011). Preclustering at 1% was performed to negate the per

base error rate of the 454 platforms. Seed sequences were then aligned to the SILVA 16S

rRNA gene database alignment using a NAST alignment algorithm (Pruesse et al., 2007;

Caporaso et al., 2010). Reads were then chimaera-checked (Edgar et al., 2011) and clus-

tered into OTUs at 96% sequence similarity to achieve approximately species-level units as

derived by Kim et al. (2011). Seed sequences from each OTU were then classified using a

Näıve Bayesian classifier in mothur against the Greengenes 16S reference database (October

2012 version, see McDonald et al., 2012).

While a range of geographic, environmental and soil physico-chemical measurements were

obtained as covariate data for each sample, in this study we specifically focus on the concen-

tration of fuel in the soil, measured as total petroleum hydrocarbon (TPH) in mg/kg of soil.

TPH concentrations in each soil sample were measured using a Gas Chromatograph with

flame ionization detection (GC-FID) via hexane extraction, as described by Schafer et al.

(2007). Total signal in the C9-C28 range was measured to determine TPH concentrations.

Although a continuous variable, the same TPH concentration was recorded for several sites,

ranging from 0 to 22 000 mg TPH/kg soil. This is the case for the baseline which comprises

10 uncontaminated sites (ie with zero TPH). The statistical model (see below) expresses the

count of each OTU as a function of the environmental covariates. In order to accommodate

for multiple sites with identical TPH concentrations, the ties in concentration were jittered,

i.e. had a random Gaussian noise added (absolute value for the case TPH=0). This noise can

be interpreted as errors in the measurement process and be incorporated in the probabilistic

model. Reproducing the estimation for different small values of variance for that noise

compared with the variability in observed TPH, we have noted that the results were not

substantially altered.

For computational reasons, only the most abundant OTUs were included in the analyses.

Here, only OTUs with total abundance exceeding 10 over all sites were included, which

occurred for 392 OTUs. However, we show in the Appendix that repeating the analyses by

including or discarding up to 20% of OTUs did not substantially alter the results.
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2.2 Statistical model

A brief summary of the modelling procedure is given here: full details of the model are

provided by Arbel et al. (2013). The following notation is used to refer to the data. Each

unique covariate value, possibly after jittering, is indexed by i and is denoted by Xi, i =

1, . . . , I. Recall that this may correspond to a single site or to a collection of sites with the

same covariate value. However, for the sake of simplicity, we refer to i as the site index (i.e.

“site i”). OTUs are indexed by j = 1, 2, . . ., so that the abundance of OTU j at site i is

denoted by Nj(Xi), and the total abundance of all OTUs at site i by N(Xi). The same

notation, using p instead of N , relate to proportions, or average proportions, rather than

abundances. That is, pj(Xi) is the probability of observing OTU j at site i. The probability

distribution p(Xi) = (p1(Xi), p2(Xi), . . .), denoted with a bold letter for a vector, is the

distribution of these probabilities across all OTUs at site i; i.e. the community composition.

The dependence of the community composition on the covariate X is modelled by:

Yn,i |p(Xi)
ind∼

∞∑
j=1

pj(Xi)δj,

where the nth observation made at site i is denoted by Yn,i, for i = 1, . . . , I, n = 1, . . . , N(Xi),

and δj stands for taxa j. That is, observation is OTU j with probability pj(Xi).

Not all taxa in the population are assumed to have been observed, and no a priori value is

placed on this total number, which might be much larger than the number of observed taxa.

Note that we do not attempt to estimate the number of undetected taxa (see for example

Royle and Dorazio, 2008, for an extensive account on the role of imperfect detectability).

A Bayesian perspective is adopted for estimation of this model. The basic machinery requires

specification of the prior distributions of the community vectors p(Xi). It takes the form of a

probability distribution, which represents a reasonable prior knowledge about the parameters

of the model. It is updated with the data and the sampling model through the celebrated

Bayes’ rule in order to obtain the posterior distribution of the parameters. All inferential

information is enclosed in that distribution. A common approach to estimating such models

is through Markov chain Monte Carlo methods (MCMC), which (approximately) sample

from the posterior distribution. Hence, the inference from the fitted model make use of a

so-called posterior sample, which is a random sample of probabilities p(Xi) drawn from the

posterior distribution.

A common prior distribution for models of this type is the Griffiths-Engen-McCloskey dis-
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tribution, denoted by p(Xi) ∼ GEM(M), and defined by

pj(Xi) = Vj(Xi)
∏
l<j

(1− Vl(Xi)) with Vj(Xi)
iid∼ Beta(1,M).

This construction of generic probability weights pj is often described using the analogy of

breaking a stick. Start with a stick of length 1, break it at a random length V1, and define

p1 = V1. Do the same for the remaining stick of size : break it at a random length V2, define

p2 = V2(1 − V1), and continue iterating with this process. The remaining length a stage j,∏j
i=1(1 − Vi), goes to zero when j goes to infinity, and so the pj’s sum to 1. Commonly,

independent priors on p(Xi) are used for different Xi (e.g. Holmes et al., 2012). However,

since we are dealing with a continuous covariate, it is arguably more appropriate to adopt a

dependent prior that evolves smoothly with the covariate X: a small change in Xi induces a

small change in p(Xi). The GEM distribution can thus be extended to a dependent version

with this smoothness constraint, denoted here by Dep-GEM. Both models will be compared

in our analyses.

The GEM prior on the vector Vj(Xi) is required to be marginally Beta-distributed. The

Dep-GEM prior additionally requires that Vj(Xi) exhibit dependence across i in order to be

smooth with respect to the covariate X. This is achieved using Gaussian processes Z, whose

covariance matrices allow a very flexible modelling of the dependence through a so-called

band-width parameter. Informally speaking, the band-width can be thought of as roughly the

distance one has to move in the covariate space before the process can change substantially.

Also, the model allows estimation of the probability p(X∗) for covariate values X∗ that are

unobserved, by computing the predictive distribution of the Gaussian processes. See Arbel

et al. (2013) for details.

The parameter M is called the precision parameter of the prior, and governs the uniformity

of the probabilities drawn from it. Higher values of M yield a more uniform probability

distribution, which is equivalent to a more diverse community, and so M effectively controls

the level of diversity in the prior. For small M , the first few taxa share most of the weights,

whereas in the limiting case M , the weights tend to be uniformly distributed, cf Figure 1.

Exploratory analyses indicate that, given a sufficiently large range of M , the OTU frequencies

drawn from this distribution are similar to those observed in the data. A random prior

distribution on M can be used to ensure that it has adequate range.

A means of studying communities diversity is through the Shannon diversity index (also
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Figure 1: Proportions pj sampled from the Griffiths-Engen-McCloskey distribution. From
left to right : precision parameter M = 5, 10, 20 (different y-axis scaling). The x-axis repre-
sents the species index j = 1, 2, . . .. The diversity of the sample increases as the precision
parameter M increases (left to right). Large values of M tend to give more uniformly dis-
tributed probability values.

known as the Shannon–Wiener index, the Shannon–Weaver index, and the Shannon entropy),

defined by

HShan(p) = −
∑
j

pj log pj. (1)

The prior expectation of the Shannon index under the GEM prior is given by

E(HShan) = ψ(M + 1)− ψ(1),

where ψ is the digamma function (see Cerquetti, 2014). Figure 2 illustrates the a priori

effect of M on the Shannon index.
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Figure 2: Prior expectation of the Shannon diversity index under GEM distribution. The
x-axis represents the precision parameter M .

The estimation of the model is described in Arbel et al. (2013). Posterior sampling is per-
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formed by a Gibbs algorithm, with a Metropolis- Hastings step for non-conjugate condition-

als. It is run for 50 000 iterations thinned by a factor of 5 with a burn-in of 10 000 iterations.

The parameters of the hyperpriors are chosen so that they are weakly informative. The

efficiency and convergence of the sampler was assessed by trace plots and autocorrelations

of the parameters, which did not reveal any convergence issues.

2.3 Inference from fitted models

Fitted models can be used to make a range of inferences about the microbial taxa and the

response of the community to contamination.

Diversity, defined in Equation (1) by the Shannon index as noted above, was estimated

from the posterior sample obtained from the Gibbs algorithm. It consists of a sample of

probabilities p(X) (i.e. estimates of community composition). The Shannon index can be

calculated for each of these samples, yielding a posterior estimate of the Shannon index,

which is illustrated in Figure 3, for both GEM and Dep-GEM models.

On the basis of their fitted responses, OTUs were classified as increasing or decreasing with

contamination. The classification was based on the difference mj, for each OTU j, between

its average probability at low contaminant (i.e. X < Xmed = 6 050 mg/kg TPH, the median

value of observed TPH) and its average probability at high contaminant (i.e. X > Xmed).

An intuitive interpretation of mj is that it indicates to what extent OTU j is impacted by

the contaminant. The posterior distribution is available for mj, along with 95% credible

intervals. The clustering was conducted as follows: if zero was on the left of the credible

interval (i.e. mj was deemed from the posterior distribution to be highly likely to be larger

than zero), then OTU j was classified as decreasing with TPH; if zero was on the right,

it was classified as increasing. Otherwise (if the credible interval included zero) it was

deemed that the model did not give enough information about the response of OTU j to the

contaminant, and it was given a “no-classification” label. The classification was performed

for both the GEM and the Dep-GEM models. We also classified each OTU directly using the

raw data, from which no credible interval is available, and so no OTUs were placed in the

“no-classification” group in this case.

In order to obtain an overview of the ecological relevance of these classification results, we

compared the results to a list of 181 genera of known hydrocarbon-degrading bacteria (Prince

et al., 2010). This list is based on published results from a wide range of ecosystem types –

not just Antarctic soils – and so this comparison was only expected to give general indications

of ecological relevance. We expected that genera known to be hydrocarbon-degraders would
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typically show an increasing response to contamination, whereas the reverse would be true

for other genera. The sensitivity (true positive rate) and specificity (true negative rate) were

calculated on the basis of the number of correctly-classified OTUs (excluding those OTUs

that were given “no-classification” by the model). The weighted sensitivity and specificity

were also calculated by taking into account the relative abundances of the OTUs. Note that

these comparisons were only conducted using those OTUs identified to a taxonomic level of

genus or finer.

The ECx value (see e.g. Newman, 2012) is the TPH concentration associated with an x%

response in the target organisms. For single-species studies, this is commonly assessed by

an x% increase in mortality or some sub-lethal response, and is determined using logistic

or probit regression. In applications with a multi-species response, it is the response of the

community as a whole that is of interest. This can be defined in a number of ways depending

on the specific aspects of interest to the ecological application. In an application where the

Shannon index is deemed to be an appropriate community indicator, the estimated Shannon

index curve (e.g. Figure 3) could be used to define the ECx threshold. As an alternative, we

illustrate the use of a dissimilarity index as a measure of change in community composition.

Many dissimilarity functions are available; for the purposes of demonstration we adopted the

commonly-used Bray–Curtis dissimilarity (Bray and Curtis, 1957). We defined the baseline

community as the ten uncontaminated sites, where TPH equals zero. To calculate an ECx

value, we seek the TPH level that corresponds to an x% change in the community composition

relative to the baseline. The dissimilarity at TPH zero (labelled D0 here) is an estimate of

the variability in community composition between uncontaminated sites, and so is greater

than zero. The Bray–Curtis dissimilarity has a maximum value of 1, which occurs when

two sites have no species in common (i.e. disjoint community compositions). For ECx, we

therefore calculated the Dx threshold as Dx = 1− (1−D0)(100− x)/100. This is equivalent

to assuming that an EC0 value (i.e. no change relative to baseline) occurs at D = D0, an

EC100 value (i.e. 100% change in composition) occurs at D = 1, and with linear interpolation

for intermediate values. The dissimilarity curve is not guaranteed to be monotonic, and so

there may be several TPH values associated with a certain dissimilarity level Dx. In this

situation, the smaller value should generally be used, so as to provide a conservative ECx

estimate. It is unlikely that this dissimilarity threshold will coincide exactly with one of

the measured TPH levels in the data, and so this approach required the model to be able

to interpolate between observed TPH values. This is one of the features of the Dep-GEM

model. This approach also allowed the uncertainty in the ECx value to be estimated, by

considering the 95% credible intervals on the estimated dissimilarity. Since the curves of the

credible intervals are similarly not necessarily monotonically increasing, it may be necessary

to define an increasing envelope of them in order to derive the credible intervals for ECx
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values. Note that this technique leads to conservative estimates for the uncertainty about

ECx values, since it enlarges the proper credible intervals for the dissimilarity.

3 Results for microbial data

Estimates of diversity with respect to hydrocarbon contamination are shown in Figure 3.

The Dep-GEM model (Figure 3a) suggested that diversity first increases with TPH with a

maximum at 3 000mg TPH/kg soil, and then decreases with TPH. The GEM model estimates

are shown for comparison in Figure 3b. These estimates showed more variability with respect

to TPH, being closer to the estimates of the diversity from raw data. Note that the GEM

estimates were only available at levels of the covariate that were present in the data, because

of the independent nature of the model specification. The Dep-GEM, in contrast, provided

predictions across the full range of TPH values.
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Figure 3: Diversity estimation results.
(a) Dep-GEM model estimates (50 000 MCMC samples). Thick line: Shannon diversity
estimate. Dashed lines: credible interval for the diversity index. Dots: Shannon diversity
index in raw data. (b) GEM model estimates (50 000 MCMC samples). Triangles: posterior
mean estimate of the Shannon diversity index.

The clustering results are summarised in Table 1. Our data included 64 distinct bacterial

genera, of which 22 also appeared on the list of known hydrocarbon-degrading taxa. Table 1

shows the comparison of the classification results to the list of known hydrocarbon-degrading

genera. Broadly, the results of all methods showed a reasonable match to the expected

responses. The GEM model gave more “no-classification” results than the Dep-GEM model.
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This illustrates the fact that the GEM model uses less information than the Dep-GEM (which,

for each contaminant value, borrows information to neighboring contaminant values for the

estimation), hence has larger credible intervals which tend to include zero more often. This

means that, although the sensitivity and specificity of the GEM model were similar to that of

the Dep-GEM, more OTUs were left unclassified by the GEM approach compared to the Dep-

GEM. The sensitivity and specificity of all methods were generally higher when weighted by

OTU abundance (rather than simply calculated on the number of OTUs correctly classified).

This suggests that high-abundance OTUs were typically deemed to have a response that

matched the expected behaviour. This may be because the higher-abundance OTUs are

better modelled by these methods, and so their response is more likely to be correctly

characterized. Alternatively, low-abundance OTUs may simply not express the response

type that might be expected for their genus. OTUs from a hydrocarbon-degrading genus,

if present only in low numbers, might not tend to increase in response to the presence

of hydrocarbons because they are out-competed by other, more abundant hydrocarbon-

degrading bacteria. All methods showed generally low values of sensitivity (i.e. not all OTUs

from hydrocarbon-degrading genera actually showed increasing responses to contamination).

This is consistent with the nature of the list of hydrocarbon-degrading bacteria, which was

drawn from a diverse range of studies covering many ecosystem types. Particular species

found to be associated with hydrocarbon-degradation in those studies might not match the

species within the same genera found in our samples. Additionally, the model was estimated

separately on the three groups. We plot the results for diversity and dissimilarity estimation

in Figure 5 in Appendix. Note that the decreasing / increasing pattern of the groups with

respect to TPH is not visible in the graphs since it is defined in terms of probability of the

species, while we plot diversity and dissimilarity.

The estimated compositional dissimilarity curve with TPH is shown in Figure 4, along with

the ECx values extracted from it and provided in Table 2. Dissimilarity generally increased

with TPH, illustrating that the contaminant alters community structure. Typically, EC10,

EC20 and EC50 values, cf Table 2, are reported in toxicity studies to be used in the derivation

of protective concentrations in environmental guidelines or for comparisons of sensitivity

between biota. EC10, EC20 and EC50 values estimated from this model are 1 875, 3 125

and 6 875 mg TPH/kg soil respectively. For small x (less than 10%), the lower bound of the

credible interval on the ECx value is zero, because both TPH and dissimilarity values are

bounded below by zero. Conversely, for large x (more than 75%), the upper bound on the

credible interval is 25 000, which is the limit of the TPH range in our analysis.

As a sensitivity analysis of the performance of the model, we have estimated the model on

modified data, by

12



Fuel concentration (g TPH/kg soil)

B
ra

y−
C

ur
tis

 d
is

si
m

ila
rit

y

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

(a) Bray–Curtis dissimilarity

Fuel concentration (g TPH/kg soil)

B
ra

y−
C

ur
tis

 d
is

si
m

ila
rit

y

EC10
EC20

EC50

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

(b) Illustration of ECx estimation

Figure 4: Dissimilarity and ECx estimation results.
(a) Posterior distribution (Dep-GEM model) of the dissimilarity between the control commu-
nity (TPH equals zero) and other sites (color dots show the TPH levels actually present in
the data). The thick line shows the mean estimate, including TPH values in between those
actually observed. The dashed lines give 95% credible intervals of the dissimilarity estimate.
(b) Illustration of estimation of ECx values and credible intervals.

D1 Deleting the least abundant taxa (fixing the threshold total abundance limit at 12

instead of 10 in the default data set), which amounts to a decrease of 15% in the

number of taxa,

D2 Including additional taxa up to total abundance of 8 (instead of 10 in the default data

set), which amounts to an increase of 19% in the number of taxa,

D3 Excluding randomly 5 sites out of 22 in the default data set, ie 23% of the sites.

As the plots of the results in Figure 6 in Appendix show, the model is fairly robust to these

modifications of the data as the estimations are consistent with Figures 3 and 4.

4 Discussion

In this study we applied a dependent Bayesian model to soil microbial data, to assess the

effects of hydrocarbon contamination on microbial communities. While many ecotoxicol-

ogy studies are conducted using single species, in microbial analysis, whole communities

are generally considered. Some studies have considered the effects of toxicants on microbial
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communities but with the advent of next generation sequencing technologies, we are now

able to accurately identify members of the communities to make reliable inferences (Vazquez

et al., 2009). Our method allows community-level analyses to derive toxicology end points

and to understand the effects of contaminants closer to the whole-of-ecosystem level. This is

novel in the field of microbiology and can provide insight to the harmful effects of pollutants,

because microbes are typically the most sensitive members of the ecosystem and can there-

fore potentially be used as an indicator of contamination impacts (van Dorst et al., 2014).

While statistical methods to determine point estimates for single species tests are well estab-

lished (e.g. Probit Analysis, Trimmed Spearman Karber), standard methods to determine

the sensitivity of whole communities and to derive single point estimate values are currently

lacking. In addition the responses of whole communities to stressors are often poorly under-

stood. Such community based assessments are becoming more important, especially in harsh

environments such as Antarctica in which plant and invertebrate communities typically dis-

play low diversity, and are difficult to measure responses in. The method presented here has

potential value in other applications that consider changes in community composition with

respect to environmental or other processes. More broadly, the method can be applied to

any set of categorical response variables indexed by integers. As seen in the Introduction,

the literature on diversity in Ecology is extensive, but we note that similar indices arise in

other areas of science, such as biology, engineering, physics, chemistry, economics, health

and medicine (see Borges and Roditi, 1998; Havrda and Charvát, 1967; Kaniadakis et al.,

2005), and in more mathematical fields such as probability theory (Donnelly and Grimmett,

1993), which are possible fields of application of our methodology.

There are several computational limitations of the approach: the model is difficult to estimate

on very large data sets, even if extremely sparse as is the case of the original ecotoxicological

data set studied here. Indeed, the sparsity of the data is a source of computational difficulty

with the posterior computation (see Arbel et al., 2013). However, in terms of diversity, most

of the information is driven by the largest OTUs, and so working on a subsample of the data

is satisfactory in this respect. We used only the most abundant OTUs, but showed that the

results were not sensitive to the abundance threshold used for inclusion.

An attractive feature of the dependent model is that it allows predictions at arbitrary co-

variate levels, not just those values that were present in the data. This allows inferences to

be made across the full range of covariate values (and, with care, possibly beyond the range

of covariate values actually sampled). This is a particularly useful consideration in several

situations, for instance where experimental data are sparse, such as in polar applications

that involve costly and logistically difficult fieldwork, or in situations in which a critical

contaminant level lies in-between two tested TPH levels (as with the calculation of ECx
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values demonstrated here). However, extra care should be taken with the interpretation of

estimates that lie between sampled values since they are typically driven by the assumptions

on the model (e.g. smoothness constraints) rather than by the data.

In Holmes et al. (2012), the total number of species is assumed to be known. In this case,

the observational model is equivalent to the multinomial model at the species level. This

assumption is a limitation of that model specification, in the sense that incorrect assumptions

for the total number of species might alter the resultant estimations. This limitation is

overcome by the nonparametric structure of the Dep-GEM model.

There are many ways in which this work can be extended. Additional factors to TPH which

include other types of environmental factors about soil composition, geographical factors,

etc, could be utilised in the model. This extension to multiple covariates would be more

demanding to fit numerically, although with little additional coding cost. This would allow

interactions between predictor variables to be specified a priori by the covariance structure

of the Gaussian processes. The model could also handle categorical covariates (as well as a

mix of continuous and categorical) by using a latent continuous variable (say a normal) for

each of them, and then using for example its sign in the case of a binary variable.

This study brings some new elements to the understanding of the effects of contaminants

on ecosystems. The grouping is a valuable information for knowing which OTUs are to be

studied for deriving environmental quality guidelines, while the EC50 and EC20 estimates

allow fixing thresholds in these guidelines.

The sensitivity and specificity of all methods was generally higher when weighted by OTU

abundance (rather than simply calculated on the number of OTUs correctly classified).

This suggests that high-abundance OTUs were typically deemed to have a response that

matched the expected behaviour. This may be because the higher-abundance OTUs are

better modelled by these methods, and so their response is more likely to be correctly

characterized. Alternatively, low-abundance OTUs may simply not express the response type

that might be expected for their genus. OTUs from a hydrocarbon-degrading genus, if present

only in low numbers, might not tend to increase in response to the presence of hydrocarbons

because they are out-competed by other, more abundant hydrocarbon-degrading bacteria.

All methods showed generally low values of sensitivity (i.e. not all OTUs from hydrocarbon-

degrading genera actually showed increasing responses to contamination). This is consistent

with the nature of the list of hydrocarbon-degrading bacteria, which was drawn from a diverse

range of studies covering many ecosystem types. Particular species found to be associated

with hydrocarbon-degradation in those studies might not match the species within the same

genera found in our samples.
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Several OTUs were consistently classified as increasing with hydrocarbon contamination, yet

did not appear on the list of known hydrocarbon-degrading genera. These were from the

genera Methyloversatilis (order Rhodocyclales), Propionicimonas (order Actinomycetales),

and Simplicispira (order Burkholderiales). However, other species from these genera are

known hydrocarbon-degraders (Prince et al., 2010). It is thus possible that the OTUs in our

study observed to increase with TPH also possess the genes for metabolic utilisation of the

various compounds in the fuel (Cooksey et al., 1990; Dressler et al., 1991; Cho et al., 1998).

Diversity of microbial communities, although not strongly affected, was reduced in response

to fuel contamination. The EC25 value of 3 125 mg TPH/kg soil estimated in this study

indicates that relatively small concentrations of hydrocarbons can elicit an effect on the mi-

crobial community. Few other point estimates of fuel toxicity are available for Antarctic soil

biota. Our results here for microbial diversity are higher than those of Schafer et al. (2009)

who reported EC25 values for microbial community composition and microbial biomass of

800 and 2 400 mg TPH/kg soil, respectively. Harvey et al. (2012) using nitrification rates as

a surrogate for microbial activity, reported EC25 values of 200 and 400 mg/kg for potential

nitrification activity and gross nitrification, respectively. However, all of these microbial end-

points (including the results from the present study) are lower than the findings of Nydahl

(2013) who investigated the response of several Antarctic moss species and a terrestrial alga

from Casey Station to soil artificially contaminated with fuel. All species were relatively

insensitive to fuel contamination with reduced photosynthetic efficiency observed at concen-

trations ≥ 25 500 mg TPH/kg soil. Inhibitory concentrations (IC) were calculated, and IC10

and IC20 estimates ranged from 21 300 to 61 500 mg TPH/kg soil. Hence microbial processes

and community structure and function appear to be more sensitive indicators of fuel con-

tamination than are the responses of plants in single species tests. Further work is required

using other Antarctic biota including plants and micro-invertebrates to assess whether this

truly represents an increased sensitivity of microbial species compared to higher taxa.

Degradation of the hydrocarbon present in the soils and survivability of bacteria is a pos-

sible explanation for the community profile shifts observed in the data that was examined.

However, there are a number of other reasons why the microbes may respond to an exoge-

nous toxicant. Microbial communities are complex and many dependencies and competitive

relationships exist (Hosni et al., 2011; Stewart, 2012). The restriction of the dominance of

abundant taxa can significantly alter the impact on other bacteria. For example, if a dom-

inant species is significantly impacted by the presence of a toxic hydrocarbon, then other

species will have the opportunity to thrive and increase abundance, provided they are toler-

ant of or resistant to the compound. Additionally, the removal of a bacterial species from a

community may limit the quantity of secondary metabolites available to a dependent sym-
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biont species that subsequently diminishes in abundance due to this indirect effect of the

toxicant (Epstein, 2009; Lewis et al., 2010). These effects can at first have a positive impact

of community measures such as species richness at low TPH levels, but will always impact

negatively as levels rise.

The list of known hydrocarbon-degrading bacteria used here is certainly incomplete. The

vast majority of bacteria are unable to be cultured in vitro (Ferrari et al., 2005). In addition

to the well-characterised species that degrade hydrocarbons, there are a large range of taxa

from extreme environments, such as Antarctica, that are yet to be cultured (Lee et al., 2012).

It is highly likely that, given the range of compounds in TPH and the richness of species

in the samples examined, there are many more species capable of degradation. Here, the

analysis was limited to those taxa that were able to be classified to genus level. However, it

is common knowledge that bacterial taxonomy is far behind the rest of the field and many

thousands of taxa isolated through molecular surveys remain unclassified (McDonald et al.,

2012; Werner et al., 2012; Winsley et al., 2012). If a taxonomy was provided for all OTUs,

it is likely that the confidence in this method will increase further as more taxa can be

analysed, making the testing more robust.

Overall, this paper presents a novel modelling method for deriving point estimate concen-

trations in toxicological studies. It is unique in its approach and its ability to work with

multiple species and large data sets to produce toxicity estimates which reduce complex mul-

tispecies responses to a single sensitivity value that represents the response of the community.

The model is broadly applicable to other complex datasets with similar data structure and

inferential requirements on the response of communities to environmental parameters and

stressors.
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A Estimation on the different response groups
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Figure 5: Estimation of the Dep-GEM model on the three response groups (50 000 MCMC
samples).
(Left) Diversity estimation results. Thick line: Shannon diversity estimate. Dashed lines:
credible interval for the diversity index. Dots: Shannon diversity index in raw data. (Right)
Bray–Curtis dissimilarity index and credible intervals.
(Top) probability decreasing with TPH, (Middle) probability increasing with TPH, (Bottom)
group with no clear pattern (see Section 3).
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B Sensitivity analysis
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Figure 6: Sensitivity analysis for Dep-GEM model estimates (50 000 MCMC samples).
(Left) Diversity estimation results. Thick line: Shannon diversity estimate. Dashed lines:
credible interval for the diversity index. Dots: Shannon diversity index in raw data. (Right)
Illustration of estimation of ECx values and credible intervals based on the Bray–Curtis
dissimilarity index.
(Top) data D1, (Middle) data D2, (Bottom) data D3 (see Section 3).
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x ECx min max
5 1250 0 2500
10 1875 0 3125
15 2500 1250 3750
20 3125 1250 4375
25 3125 1875 4375
30 3750 2500 5625
35 4375 3125 6250
40 5000 3750 6875
45 6250 4375 8125
50 6875 5000 8750
55 8125 6250 10000
60 9375 6875 11250
65 10625 8750 13125
70 12500 10000 16250
75 15000 11875 25000
80 20625 14375 25000

Table 2: Estimates of mean ECx values and their 95% credible intervals for fuel based on
microbial community dissimilarity (all units are mg TPH/kg of soil).
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