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Fetal Heart Rate Feature Extraction from Cardiotocographic
Recordings through Autoregressive Model’s Power Spectral- and

Pole-based Analysis

Alfredo Illanes1 and Michel Haritopoulos2

Abstract— The main objective of this work is to perform an
autoregressive model (AR)-based power spectral analysis of the
fetal heart rate (FHR) signal for the extraction of significant
features for fetal welfare assessment. A group of features is
directly computed from the AR-based spectrum while another
group is computed from the poles representation. The presented
method is applied to real cardiotocographic (CTG) signals and
for different frequency bands, and the obtained results are
very promising as they exhibit direct correlations between the
extracted features and the fetal welfare in terms of umbilical
pH.

I. INTRODUCTION

In current clinical practice, intrapartum monitoring for
fetal welfare during labor and delivery is commonly per-
formed by a technology known as electronic fetal monitoring
or a cardiotocograph (CTG), which provides continuous
information on fetal heart rate (FHR) and maternal uterine
contractions (UC). The CTG is a simple and non-invasive
tool which can provide to clinicians accurate indicators on
fetal status. However, the analysis of the CTG involves
interpretation of the complex relationship between the FHR
and the UC signals. A good interpretation of CTG depends
on the knowledge, skills and experience of healthcare user
to interpret FHR and UC signals in order to recognize the
different features and patterns of these signals. This leads
to significant intra- and inter- observer variations even if
specific guidelines have been published for its interpretation
[1]. Therefore many efforts have been focused on developing
automated techniques to reliably interpret the CTG signal and
provide a support system for more objective physicians de-
cisions concerning fetal condition [2], [3]. These approaches
involve generally a signal pre-processing step, followed by
the extraction of different signal features that constitute the
input of a final classification step in order to help distinguish
healthy from pathological states. The performance of this last
step is completely dependent on the quality of the extracted
features.

Several algorithms for CTG feature extraction have been
proposed in the literature. Most of them use time domain and
frequency domain features related with FHR variability. The
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time domain features usually consist in statistical indicators
computed from short and long term FHR signal analysis
[4]. The frequency-based features are usually computed from
operations performed over the energy of different spectral
components computed with FFT-based techniques [5], [6].
Spectral analysis allows estimating the effect of the inter-
action between sympathetic and parasympathetic systems
on the alterations of the heart rate variation. However,
spectral estimation through FFT-based techniques is a tedious
task due to the low signal-to-noise ratio (SNR) and to
the missing data characterizing CTG recordings. Is for this
reason that AR-based parametric modelling techniques have
been proposed, because they are known to require only a
fraction of the samples required by the FFT method for the
same resolution and because they allow the extraction of
quantitative spectral parameters. In this context some works
propose time-variant AR-based spectral estimation for CTG
feature extraction [7]–[9].

The main drawback of these works is that they do not
exploit the pole-based representation that AR spectral esti-
mation provides. Moreover, in the case of [7] and [8], the
AR spectral estimation is used to investigate the reactivity
level of the fetus and not directly focused on separating
pathological fetus cases.

The main objective of this work is to extract several
AR-based power spectral features from the FHR signal of
a CTG recording, and to correlate these features with the
fetal welfare in terms of umbilical pH. Hence, two groups
of features are analyzed: a first group which is extracted
directly from the computed AR-base spectrum and a second
one which is made of features extracted from the AR
poles model. For experimentation purposes we applied the
proposed method to the CTU-UHB CTG Database [10],
available on the PhysioNet website, and the obtained results
show that several extracted features exhibit a high correlation
with the umbilical cord artery pH, which is promising result
for further classification steps.

II. DATA AND METHOD
A. Experimental Data

For evaluation of the extracted AR-based power spec-
tral features, the CTU-UHB Intrapartum Cardiotocography
Database [10] is used. It is the first open-access database
for research purposes on intrapartum CTG signal processing.
It contains 552 carefully selected intrapartum recordings
providing time information as well as FHR and UC signals,



both sampled at 4Hz, and it aims at stimulating research in
CTG signal processing and analysis while providing a way to
objectively compare results obtained by different approaches.
To date, expert obstetrician evaluation of these CTG data is
still pending. The aforementioned database is freely available
at http://http://physionet.org/physiobank/
database/ctu-uhb-ctgdb/ and the method we pro-
pose in this section is applied to these real CTG data. For
evaluating the extracted features, the arterial umbilical pH is
used as a gold standard [3].

B. Spectral and Pole Analysis of AR Model for Feature
Extraction

Parametric modeling is a technique for time series analysis
in which a mathematical model is fitted to a sampled signal.
It has several advantages since it allows description of signals
by a few model parameters. The AR model is the preferred
method for this class since it is the best compromise between
temporal resolution and speed, efficiency and simplicity of
algorithms.

An AR model assumes that the value of the current
sample y[n] at sample number n in a data sequence,
y[1], y[2], . . . , y[N ] can be modeled as a linearly weighted
sum of the p most recent sample values, y[n − 1], y[n −
2], . . . , y[n−p] and a white zero mean noise e[n] of variance
σ2:

y[n] = −
p∑
k=1

aky[n− k] + e[n] (1)

where p is the model’s order and which value is generally
chosen to be much smaller than the sequence length N ,
ak{k = 1, 2, . . . , p} are the AR parameters and n is the
discrete-time index. The z-transform can be applied to (1)
and then the AR model transfer function can be expressed
as:

H[z] =
Y [z]

E[z]
=

1

1 +
∑p
k=1 akz

−k (2)

where Y (z) and E(z) are the z transforms of the time series
y[n] and the noise e[n], respectively.

The transfer function can be used for several signal
analysis, such as Power Spectral Density (PSD) and pole
decomposition analyses. The PSD can be computed by
evaluating H(z) around the unit circle in the complex plane,
i.e., z = ej2πf :

PSD(f) =
1

|1 +
∑p
k=1 ake

−j2πfk|2
. (3)

The pole representation offers an easier way to compre-
hend the phenomena and contains important information on
the system condition and dynamics, due to the relationship
between poles and spectral peaks. The poles zk are obtained
by finding the roots of the AR coefficient in the denominator
of H(z), giving rise to a pole representation form of (2):

H(z) =
1∏p

k=1(1− zkz−1)
. (4)

Each pair of complex conjugate poles in (4) has a one-to-
one relationship with a peak in the AR spectrum, PSD(f),
in the z domain [11]. The PSD is divided in bell-shaped
curves, with the power and frequency characteristics obtained
from the positions and residuals of each pole. The values of
each of the r resonant frequencies are given by the phase
angle, θk, of the corresponding pole in the upper half of the
complex plane:

fk =
θk
2π

= tan−1
(
Im(zk)

Re(zk)

)
fs
2π

(5)

where fs and fk, k = 1, 2, . . . , r correspond to the sampling
frequency and to the r resonant frequencies resulting from
the poles, respectively.

Each pole of frequency fk can be also characterised by
its module mk (i.e. how close or far from the unitary circle
it is located):

mk =
√
Re(zk)2 + Im(zk)2 (6)

and by the spectral power Pk, which is obtained from the
real part of the residue term rk:

rk = z−1(z − pk)H(z)|z=zk
Pk = 2σ2Re(rk)|z=zk . (7)

For the presented work we have experimented various AR
model orders (from 8 to 12), but they all provided similar
results; finally, we chose a 10th order AR model following
the works of [7], [8] and the AR parameters were estimated
using the Yule-Walker method.

C. AR Model Implementation

1) CTG signal preprocessing: Clinical CTG recordings
usually involve several types of artifacts mainly due to
mother’s and fetus’ movements or displacements of the
transducer. The loss of sensor’s contact can temporarily
interrupt one or both the uterine contraction (UC) and the
fetal heart rate (FHR) signals. These artifacts result on
sharp short duration abrupt changes in the signal or even
on completely signal discontinuities thereby causing loss of
signal. The main objective of this step is to segment each
recorded signal into a number of reliable continuous tracks.

For noise reduction, the artifact rejection method proposed
in [3] was applied. In a first step, the segments of the FHR
signal that are considered abnormal in amplitude (less than
50 bpm and more than 200 bpm) or those corresponding
to missing data are interpolated using an Hermite spline
interpolation. The data are only interpolated when the length
of the segment is equal or less than 15 seconds; otherwise,
it is removed from the whole signal.

2) Stationary segments extraction: Due to the FHR signal
quality and to discontinuities it is always proposed in the
literature to extract stationary or stable segments (called also
epochs) from the whole FHR signal. The main principle is
that spectral estimation increases with data length. However,
the state of the fetus change with time. Thus, there is a
trade-off between selecting an epoch length that is long



enough for spectral estimation but also short enough to avoid
nonstationarities [9].

In this work a long term analysis is performed following
[3], [9]. Segments of 15 minutes are chosen as close as
possible to delivery, because during the last minutes major
changes in fetal condition can occur [3]. On average, the
chosen segments start at approximately 66% of the beginning
of the whole CTG recording.

3) FHR spectrum contributions: Based on previous stud-
ies, as for adults, different frequency contributions can
be identified in FHR [6], [7]: a DC component (i.e. the
average of the FHR), a very low frequency (VLF) band
(0Hz − 0.03Hz), related to very slow control mechanisms
and presenting non linear characteristics, low frequency (LF)
band (0.03Hz−0.15Hz), mainly associated physiologically
with neural sympathetic fetal activity, a high frequency (HF)
component (0.5Hz−1.0Hz) related to fetal breathing (HF),
and also a movement frequency (MF) (0.15Hz − 0.5Hz)
correlated with fetal movements and maternal breathing.
Their PSDs have been used in previous research work for
discriminating fetal pathologies [7].

According to the FHR bands described above, in this work
a multi-band analysis and feature extraction algorithm is
performed. Each band is extracted from the main FHR signal
by using different scales computed with the Daubechies
Discrete Wavelet Transform (DWT). The FHR signal is
first divided in 10 wavelet scales and then 4 signals are
reconstructed whose pseudo-frequency bands are equivalent
to:
• Band 1: Total band between 0.01Hz and 2Hz.
• Band 2: Low frequency band between 0.02Hz and

0.14Hz.
• Band 3: Middle frequency band between 0.1Hz and

0.4Hz.
• Band 4: High frequency band between 0.4Hz and

1.4Hz.
4) Extracted indicators: From the FHR AR modeling 20

indicators are extracted. These indicators can be divided
in two groups: AR PSD-based and pole-based. The AR
PSD-based ones correspond to the more usual indicators
proposed for heart rate variability (HRV) analysis, generally
FFT-based, as the ones used in [6] and [8] computed from
frequency bands’ energies, while the pole-based ones are
indicators computed directly from the obtained module,
residue or frequency of the poles.

a) AR PSD-based indicators: To construct these indi-
cators first the PSD of the AR model is computed and then
operations over the energy of the PSD are performed. These
indicators were only applied to the high-pass filtered signal
(Band 1), because spectral energies require to be computed
from the whole frequency range (Band 1). The first five
indicators ind1, ..., ind5 are all obtained by computing the
definite integrals of the AR model’s PSD over [LB,UB]
(whose values are summarized in Table I):

indi =
1

T

∫ UB

LB

PSD(f)df, i ∈ [1, 5], (8)

TABLE I
INTEGRAL LIMITS VALUES FOR INDICATORS 1 TO 5

i 1 2 3 4 5
LB 0.2 1 0.15 1 0.5
UB 0.03 0.2 0.04 0.5 0.15

where for each indicator indi the i value is function of
the values of the lower (LB) and upper (UB) limits of the
integral in (8).

Two indicators (ind{1,2}) are inspired from work in [8]
and the rest of them (ind{3,4,5}) are similar to the ones used
in [6] but with different frequency band limits and computed
from the LF, HF and MF bands as described at the beginning
of Section II-C.3.

We also used the normalized LF (ind3) and HF (ind5)
indicators which led to indicators ind6 and ind7. The ratios
LF/(MF + HF ) (ind8) and LF/HF (ind9), known to
be indexes of relative sympathovagal balance, were also
considered.

b) Pole based indicators: The originality of this work
is to use indicators extracted from the main pole parameters.
The indicators are computed from the pole’s frequencies,
modules and residues of the poles belonging to the upper
half of the unitary circle and that are not located at the DC
frequency. Let fk, mk and Pk be the frequency, module and
power, respectively, computed from (5), (6) and (7), for each
one of the M poles zk belonging to the upper part of the
unitary circle. Here are the pole-based indicators considered
in this work:
• The mean, variance and maximal values of the M pole

modules mk form indicators ind10, ind11 and ind12,
respectively.

• The mean and maximal values of the M pole spectral
power Pk are indicators ind13 and ind14, respectively.

• The total pole’s spectral power calculated as
∑M
k=1 Pk

is indicator ind15.
• The mean and minimal value of the M pole’s frequen-

cies fk are indicators ind16 and ind17, respectively.
• The frequency belonging to the unitary circle’s closest

pole is indicator ind18.
• The frequency where is located the pole which has

the maximal value of power spectral pole Pk form the
indicator ind19.

• Finally, the AR modeling error constitutes indicator
ind20.

III. RESULTS

We mentioned in Section II-A that the extracted features’
evaluation is based on the umbilical cord artery pH which is
the most commonly used outcome measure, sign of respira-
tory hypoxia. Umbilical pH values lower or equal to 7.05 is
the widely used value for distinction between pathological
and normal delivery [3].

As explained in Section II-C, in this work 20 indicators are
used for extracting features from four filtered versions of the
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Fig. 1. The mean value (solid line) for 3 different extracted features in function of the pH with the respective regression model (dotted line). From left
to right: AR spectrum-based and AR pole-based indicators features of Band 1, and one R pole-based indicator features of Band 3. At the far right: the
Pearson correlation coefficient for all 53 computed indicators.

FHR signal. The indicators are divided in two groups (AR
spectral-based and AR pole-based), where the 20 indicators
are used only with the filtered FHR signal in the Band
1, while only the pole-based indicators are used in the
remaining frequency bands. Therefore, 53 features are finally
extracted from the FHR signal (20 features from filtered
Band 1 signal and 11 features for each one of the other
bands). For evaluating the significance of these 53 extracted
features, each one of the features is put in correlation with the
umbilical pH values through a scatter plot. This is done by
separating the CTG recordings belonging to the CTU-UHB
CTG database in groups by pH value and by calculating the
mean of the features for each group. Then, the feature’s mean
values for each group of pH value are normalized between 0
and 1 and then are plotted in function of the corresponding
pH which values are set as shown in Table II:

TABLE II
DEFINITION OF THE PH VALUES GROUPS

Denoted by pH = 6.9 7.0 7.1 7.2 7.3 7.4
if pH < 6.80 6.95 7.05 7.15 7.25 7.35

and pH ≤ 6.95 7.05 7.15 7.25 7.35 7.50

From the 53 FHR signals’ extracted features, 29 features
show a good correlation with the pH value after visual
inspection of the correlation scatter plots, supported by the
computation of the Pearson correlation coefficient on the
linear regression of the scatter plot (see the last plot of
Figure 1). From the first 3 plots of Figure 1 showing one
AR spectrum-based and two AR pole-based features, it is
possible to observe a direct or inverse correlation between
the feature and the pH value. In the band [0.01Hz−2Hz], the
inverse relationship between ind9 and pH would suggest that
when pH value increases, the HF PSD energy increases with
respect to the LF PSD energy, while the direct relationship of
the indicator ind18 shows that when the pH value increases,
the frequency of the most stationary pole also increases. In
the band [0.1Hz − 0.4Hz], the direct relationship between
ind16 and pH suggests that the mean frequency of the poles
has a growing trend.

IV. DISCUSSION

The obtained results show that from the 53 extracted
features, 29 presented good correlation with the umbilical

pH and that the extracted AR pole-based features were more
significant that the generally used AR spectral-based ones.
Finally, it is important to observe that the good correlated
features show a big difference between a high pH (pH >
7.35) and a low one (pH ≤ 6.95).

Comparison of the proposed method with current clinical
practice in order to improve its potential predictive improve-
ment, physiological interpretation of the features issued from
the AR’s pole-based analysis and investigation on statistical
differences between pathological and normal delivery of the
proposed indices for classification algorithms’ development
are some of the research perspectives provided by this work.
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C. Stylios, L. Lhotská, and P. Janku, “Automatic evaluation of fhr
recordings from ctu-uhb ctg database,” in Information Technology in
Bio-and Medical Informatics. Springer, 2013, pp. 47–61.

[4] M. Cesarelli, M. Romano, and P. Bifulco, “Comparison of short term
variability indexes in cardiotocographic foetal monitoring,” Computers
in biology and medicine, vol. 39, no. 2, pp. 106–118, 2009.

[5] J. Van Laar, M. Porath, C. Peters, and S. Oei, “Spectral analysis of fetal
heart rate variability for fetal surveillance: review of the literature,”
Acta obstetricia et gynecologica Scandinavica, vol. 87, no. 3, pp. 300–
306, 2008.

[6] J. Y. Kwon, I. Y. Park, J. C. Shin, J. Song, R. Tafreshi, and J. Lim,
“Specific change in spectral power of fetal heart rate variability related
to fetal acidemia during labor: comparison between preterm and term
fetuses,” Early human development, vol. 88, no. 4, pp. 203–207, 2012.

[7] M. G. Signorini, G. Magenes, S. Cerutti, and D. Arduini, “Linear
and nonlinear parameters for the analysisof fetal heart rate signal
from cardiotocographic recordings,” Biomedical Engineering, IEEE
Transactions on, vol. 50, no. 3, pp. 365–374, 2003.

[8] M. Romano, P. Bifulco, M. Cesarelli, M. Sansone, and M. Bracale,
“Foetal heart rate power spectrum response to uterine contraction,”
Medical and Biological Engineering and Computing, vol. 44, no. 3,
pp. 188–201, 2006.

[9] P. A. Warrick, E. F. Hamilton, D. Precup, and R. E. Kearney,
“Classification of normal and hypoxic fetuses from systems model-
ing of intrapartum cardiotocography,” Biomedical Engineering, IEEE
Transactions on, vol. 57, no. 4, pp. 771–779, 2010.
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