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a b s t r a c t

The recycling of materials originating from end-of life products is essential to preserve our raw material
resources, which are increasingly expensive and whose extraction is increasingly impactful for the envi-
ronment. However, certain materials are still not recycled today. In the case of plastics, their recycling
includes grinding, which generates complex mixtures. It is not possible to sort these mixtures and reach
a high degree of purity with the existing physico-chemical processes. Automated sorting processes using
near infrared spectroscopy are limited to dark-colored materials. One option is to add tracers to virgin
materials to allow identification and rapid sorting of end-of-life products, using UV fluorescence spec-
trometry as the identification technique. The optimization of the polymer/tracer/detection system is
based on several criteria: the reliability and speed of detection of UV fluorescence tracers added to a poly-
mer matrix with carbon black, the relevance of the environmental impact of the tracers, and the preser-
vation of the mechanical properties of the polymer with the tracers added.

1. Introduction

Certain oil and mineral resources are becoming increasingly
rare and expensive to extract, and their extraction has increasingly
serious environmental impacts on both the ecosystem and human
health. As many studies have shown, improving a product’s recy-
clability is one of the ways to limit environmental impacts and
material costs. The production of recycled materials makes it pos-
sible to save over 80% in energy in comparison with that required
for virgin materials (Fig. 1), and to avoid considerable greenhouse
gas emissions.

Despite the development of product eco-design (Millet, 2003;
Tonnelier et al., 2007) and the improvement of recycling technolo-
gies, polymers are recycled very little today. Why? Firstly, crushing
processes produce complex mixtures. It is not possible to sort these
complex mixtures and achieve high purity rates with the existing
physico-chemical methods (Reuter et al., 2006), and spectrometric
methods do not allow the sorting of dark-colored polymer materi-
als. In 2009, 24.3 Mtons of plastic waste were generated in Europe,
and only 22.5% on average were recycled in all sectors combined
(PlasticsEurope, 2010).

The presence of impurities in the polymers due to poor sorting
quality impacts the performance of the recycled material. Good

recycled material quality is required in order to find ‘‘noble’’ outlets
and expand the number of opportunities to use a high-performance,
safe material with an economic value close to that of virgin plastics.

Finally, in today’s context, many mass consumption products es-
cape collection or are treated in medium-sized facilities. Mass
quantities of recycled plastics are not available. It is therefore nec-
essary to find compromises between the sorting level (by matrix, by
additive, etc.), the properties and the volumes generated in order to
meet the demands of the key players in the market.

To overcome these technological limitations, one possibility is
to add specific tracers to polymer families to facilitate their rapid,
automated industrial sorting using UV fluorescence spectrometric
sorting. The research problematic is to determine the criteria for
selecting the polymer candidates for recycling and detection condi-
tions in line with the choice of tracers.

In 2008, a first study entitled TRITRACE focusing on the detec-
tion of tracers in colorless and black polypropylene and white
ABS was carried out with the industrial partners SEB Group, Plastic
Omnium, and Tracing Technologies, and two laboratories, the
ITECH and the ARTS et METIERS ParisTech Institute in Chambéry.
Two patents (Lambert and Hachin, 2010a,b) were registered. The
study was continued in 2010 though a program financed by the
French National Research Agency (ANR) and expanded to include
other tracers and polymer families.

The initial results of these two projects are discussed in this
paper. A description of the polymer tracing process for recycling
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is presented with a state of the art of the tracing techniques used
for recycling. The concept of tracing for the purposes of material
recycling was defined and experimented. The approach of this
study consisted of different steps: firstly to define the appropriate
polymer candidates, secondly to determine the tracers according to
the number of polymers chosen and according to technical criteria
such as the intensity of the light sources available enabling tracer
excitation and the sensitivity and speed of the detection systems
receiving the fluorescence signals. Two polymers containing two
tracers and two white and black colorants were tested. Tests re-
sults were conducted to validate fluorescence detection and the
mechanical preservation of properties before and after aging of
the samples in accordance with the specifications of the automo-
tive and household appliance sectors.

List of polymers

ABS: Acrylonitrile–butadiene/styrene

PA: Polyamide

PC + ABS: Polycarbonate + ABS blend

SAN: Styrene acrylonitrile

PA 66: Polyamide 66

PP copo, P/E: Polypropylene copolymer

HIPS: High impact polystyrene

LDPE: Low density polyethylene

HDPE: High density polyethylene

2. Description of the polymer tracing process for recycling

2.1. Bibliographical research

Several studies have been published on tracing technologies for
polymers recycling. The development of the concept of a virgin
polymer tracing system for sorting began in 1993. The first patent
registered (British Petroleum Company, 1993) describes a method
to identify polymers by detecting the fluorescence of certain trac-
ers composed of rare earths in the near-infrared spectral range
(NIR) between 700 and 900 nm for tracer concentrations from
0.001 ppm to 1 ppm. The source used is a laser diode emitting in
the NIR at 670 nm. The disadvantage of this method is its difficulty
to detect a signal in the NIR when the matrix has a dark color. The
carbon black used as a colorant absorbs all of the rays in the NIR
(Eisenreich et al., 1992).

A patent registered in 1994 (Bayer, 1994) describes two tracer
systems with different fluorescence emission wavelengths, with
tracers with different fluorescence durations for each system. The
identification principle allows codification with four tracers. This
method is currently used in the biochemical sector. The experi-

mental system includes a flash lamp and a programmable camera
to defer the shooting of the image by a few nano-seconds after
excitation by the source. This system thus enables the identifica-
tion of molecules that have the same fluorescence emission wave-
length but not the same duration. This method appears difficult to
install in a rapid, automated sorting system, since with industrial
systems there is continuous light on the samples to be sorted, mak-
ing it impossible to differentiate the fluorescence durations in or-
der to differentiate the tracers.

In 1998, another study (Simmons et al., 1998) (Ahmad, 2004) fi-
nanced by a European program led to a first pilot system to sort
plastic bottles in the packaging sector. With this system, thanks
to a codification based on combinations of three tracers with con-
centrations raging between 0.5 and 20 ppm, it was possible to iden-
tify bottles made with PEHD. Patents for this identification system
were registered by the program partners (Lambert and Hachin,
2004). The pilot bench did not enable the identification of dark-col-
ored tracers, and no test was carried out on other types of polymer
matrixes.

In 2007, a study was carried out on the state of the art of the
different tracing technologies (Froelich et al., 2007a,b). Two
technologies were validated to sort black polypropylene: magnetic
tracer detection and X ray fluorescence detection of tracers made
from rare earths. In 2008, a thesis was financed by the French
Environment and Energy Management Agency (ADEME) to con-
duct laboratory tests on X fluorescence detection (Bezati et al.,
2010). The results of this research showed that detection with
magnetic tracers is industrially viable but does not allow codifica-
tion with several tracers. X fluorescence detection enables the
detection of tracers based on rare earth oxides at concentrations
of 1000 ppm in black or painted polymers. The absorption of the
X fluorescence by the molecules of the ambient air makes it
impossible to decrease the concentrations of tracers to below
100 ppm, and detection times are still long with respect to the
industrial constraints of rapid sorting. The choice of tracers is
limited to rare earths.

In conclusion, all of these different studies validated the poly-
mer tracing technique. Certain aspects of the fluorescence of poly-
mer tracer systems must be explored in further depth, such as
possible signal attenuation phenomena due to the interaction be-
tween tracers, polymers and their additives such as carbon black,
the influence of polymer aging on fluorescence, and the choice of
tracers with a lesser impact on natural resources.

2.2. The concept of material tracing for recycling

This technique makes it possible to identify a material thanks to
the signature of a tracer and not its intrinsic properties, and is al-
ready used to authenticate objects such as banknotes.

Polymer tracing consists of incorporating into a material a small
concentration of a substance with specific luminescence properties
after irradiation by a light source, and carrying out a spectrometric
analysis of the signal of the substances incorporated in the material
in order to identify them according to the positive or negative sig-
nal (Fig. 2).

The concept of polymer tracing for recycling is different from
that of the marking of polymer parts in accordance with ISO
11469 2000: ‘‘Generic identification and marking of products made
of plastic materials’’. Following this standard, new parts are en-
graved with a code enabling the identification of their materials,
in order to recycle parts after manual sorting.

The polymers that are candidates for tracing are those recog-
nized as difficult to sort with the current physico-chemical sorting
or optical sorting technologies. They are essentially polymers that
are dark-colored and have similar densities, or that have fillers that
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Fig. 1. The use of recycled material saves energy compared to the use of virgin
material (BIR, 2009).



modify their density and when combined are incompatible for
recycling (Froelich et al., 2007a,b).

The tracers are incorporated during the compounding phase,
when all additives such as anti-UV agents and stabilizers are added
(see Fig. 3).

The incorporation of tracers in polymers can only be viable at
the European scale, provided that a European directive and a stan-
dard for tracer incorporation procedures are decided upon. Certain
immediate applications are possible, such as the marking of la-
beled materials or products. The difficulty in Europe is not only
technological, but regulatory.

During a product’s usage phase, the tracers must not modify
material properties or deteriorate during the product’s lifetime.

Tracing technology can be integrated in the current treatment
path for used products (Fig. 4). The plastic fraction is extracted
from the other fractions and represents a complex mixture of
crushed particles. The polymers are identified using a spectro-
scopic detection process. The plastics are irradiated with a UV
source and detection is carried out in the visible spectrum. The
polymers are identified and sorted according to each polymer’s
identity code (Fig. 5).

During the recycling phase, the quantity of tracer is controlled
and topped up along with the quantity of additives usually added,
i.e. anti-UV agents, antioxidants, etc. (Fig. 6).

3. Approach

To confirm that the tracer sorting technology is viable, several
steps are required: choosing the polymers to be traced, choosing
the tracers and choosing the detection system.

3.1. Choosing the polymers to be traced

Measurements made on samples taken after crushing show that
black-colored polymers account for the majority in the automotive
sector and represent up to 40% in the electrical and electronic
product sector. The quantities of polymers to be traced are there-
fore potentially large.

The choice of polymers to be recycled is defined by their ability
to be recycled, their inability to be sorted with current industrial
sorting technologies and their chemical compatibility, market de-
mand in terms of the volumes sought, and the potential quantities
available in the waste (Fig. 7).

3.1.1. Material recyclability
The directive on waste defines recyclability as the ability to be

removed from the end-of-life flow to be recycled. Recycling en-
ables the production of secondary materials, or secondary raw
materials, from an element of waste. This definition does not in-
clude the production of secondary materials as a substitute fuel.
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Fig. 2. Flow diagram of the detection of polymers marked with tracers.
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Fig. 3. Phases for tracer incorporation in the virgin material.

elv Depollution Disassembly Crusching

Metals 
sorting Recycling

Shredder 
residues

Landfill

Spectrometric 
sorting of 

Polymer/tracer

Polymers 
recycling

Fig. 4. Treatment phases for polymers traced for recycling and originating from end-of-life vehicles (elv).



In the ISO standard on the recyclability and recoverability of vehi-
cles (ISO standard 22628, 2002-02-15), recyclability is defined as
the recovery of waste to produce products, materials or substances
intended for their original purpose or for other purposes.

In this study, the recyclability of a polymer is defined as the
ability of a material to produce a secondary raw material having
the same purpose as its initial function, i.e. with mechanical prop-

erties, a type of usage and an economic value close to those of the
virgin material.

3.1.2. The limits to existing sorting processes
Electrostatic sorting, floating and sorting by NIR spectrometry

are existing techniques that have not been validated for complex
mixtures originating from product crushing (Table 1).

Densimetric sorting performs well when density differences rep-
resent 0.12 (Standard XP R10-402, 1996, Vehicle design in view of
end of life recovery optimization – Road vehicles). For smaller differ-
ences or the cases where densities overlap, densimetric sorting is not
possible on an industrial level. For example, this is the case for two
types of material fractions often found in crushing residues from
the automotive or electrical/household appliance/electronic sectors,
such as PP (0.8–0.96 g/cm3), PEHD (0.94–0.95 g/cm3) and PEBD
(0.92–0.93 g/cm3) or PP-T20s (1.04–1.06 g/cm3), HIPS (1.03–
1.05 g/cm3) and ABS (1.04–1.06 g/cm3). Moreover, these polymers
are chemically incompatible with each other.

NIR spectrometric sorting enables the identification of light-
colored but not dark-colored polymers. Certain light-colored
polymers are hard to identify with a high confidence index when
associated with other polymers with a similar molecular struc-
ture. This is the case for example for ABS and ABS/PC or SAN.

3.1.3. Market demand and potential quantities available
The demand for polymers on the European market is divided

into application sectors. The highest demand is for PE and PP in
the packaging and automotive sectors and for electrical and elec-
tronic products. These three sectors are subjected to regulatory
constraints such as the European waste directive, and therefore
represent potentially large available quantities. Today the recy-
cling rate is on average 22.5% in Europe, which is fairly low. It

Fig. 5. Diagram of an automated spectrometric sorting machine (Pellenc).
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Fig. 6. Flow diagram of the life cycle of the traced polymers.



reaches 30% in the packaging sector, 10% in the automotive sector,
and 9.5% in the electrical and electronic sector (PlasticsEurope,
2010). These rates vary considerably according to country.

The demand for recycled polymers is high, and is not satisfied in
today’s market. It is especially high for carmakers. With the Eco 2
label, the carmaker Renault has committed to using at least 5% of
recycled plastics, and other manufacturers such as PSA, Toyota
and BMW have adopted a similar approach.

The polymers that must be recycled in priority are those for
which demand is high and which must satisfy specific applications
in each industrial sector. These therefore include the polyolefins
(PP, PEHD, and PEBD) common to all sectors, and styrenics (PS
and ABS) and polyamides (PA66) for the automotive sector and
for electrical and electronic products (Fig. 8). The table below
(Table 2) summarizes the criteria for choosing materials to trace
for recycling.

3.2. Criteria for the choice of fluorescent tracers

Constraints taken into account for the choice of tracers are fluo-
rescence phenomena of polymers, attenuation phenomena due to

certain additives incorporated into polymers and the requirements
for polymers applications in automotive and electric–electronic
sector.

3.2.1. The limits to fluorescence phenomena
Fluorescence is a light emission process visible during the spon-

taneous radiative relaxation of a chemofluorescent excited by the
absorption of incident radiation.

This process thus takes place in two steps: the absorption of a
photon by the fluorescent molecule (chemofluorescent), followed
by the emission of a photon with lower energy by this same
chemofluorescent.

Fluorescence is often emitted at higher wavelengths than that
of excitation radiation. In a linear excitation regime where the
absorption coefficient does not depend on the incident intensity,
the fluorescence yield, or Stern–Volmer factor, is defined by the
relationship of the re-emitted light energy versus the incident en-
ergy absorbed.

Chemofluorescents are thus characterized by an excitation spec-
trum and a fluorescence spectrum. The distance between the two
peaks of these two spectra is called the Stokes displacement. The
spreading out of the absorption spectrum is due to the existence
of the intermediate energy levels between the different electronic
levels (Jablonski’s diagram). The characteristics of the chemofluor-
escents are the quantic fluorescence yield (number of photons
emitted/number of photons absorbed), which depends on the envi-
ronment into which the chemofluorescent is added, the intensity of
fluorescence and the fluorescence lifetime.

Certain phenomena can disturb fluorescence, and are referred
to as quenching phenomena. Quenching of fluorescence is a de-
crease in the quantic yield of a chemofluorescent, and can be:

� Dynamic: with species such as halogens, amines, acryla-
mides, e.g. fluorinated, brominated, chlorinated additives.

� Static: formation of non-fluorescent complexes, e.g. inter-
action between the polymer or an additive with the
chemofluorescent.

� Due to the attenuation of the light in the presence of colo-
rants during either excitation or emission or during reab-
sorption, e.g. carbon black.

� Due to a high concentration of chemofluorescent which
reabsorbs its own fluorescence.

The choice of tracers also depends on the fluorescence emis-
sions of the matrixes, which have a fluorescence spectrum that
is continuous but also has peaks depending on the excitation
wavelengths (Gachkovskii, 1967). The fluorescence of polymers
is mainly due to the carbon–carbon double bonds. One must also
take into account the effect of the additives added to the poly-
mers to color them, for example titanium dioxide and carbon
black.

Criteria for 
selection of 
polymers to 

recycle

Recyclability of 
polymers

Limit of sorting 
and recycling 

processes

European market 
demand

Availability and 
size of waste 

sources

Fig. 7. Criteria for the choice of polymer materials to be recycled.

Table 1
The limits to existing sorting techniques.

Physico-
chemical
sorting

Densimetric sorting
(Hwang Jiann-Yang, 1995)
(Altland et al., 1995)

Low cost, industrial stage

Not suited when densities are
similar < 0.12 g/cm3

Sorting by floating
(Fraunholcz, 2004)

Low cost,

Complex technique,
laboratory stage

Triboelectric sorting (Hearn
and Ballard, 2004)

Low cost, industrial stage

Sensitive to humidity and
dust, does not sort complex
mixtures, limited to certain
polymers

Spectrometric
sorting

NIR absorption (Huth-
Fehre et al., 1998)

Very rapid identification,
industrial stage

Does not detect dark-colored
plastics and polymers with
similar formulation

X rays (Biddle, 1999) Rapid, industrial
Does not detect polymers,

with the exception of PVC/PET
separation

UV fluorescence (Pascoe,
2003) (Bart, 2006)

Enables the detection of food
materials in the industrial stage

No industrial sorting for
polymers, not very
characteristic spectra for
polymers



3.2.2. Industrial constraints
In addition to the constraints described above, other constraints

include health and safety, the environment, the cost, etc. The spec-
ifications for the tracers finally read as follows:

� must be non-toxic in compliance with the RoHS regulations,
� must not exceed 0.06€/kg of polymer,
� must improve detection and sorting techniques,
� must be chemically compatible with all of the components

of the traced polymer,
� must have a good capacity to be detected despite the pres-

ence of pigments in the material or on its surface, carbon
black and paint,

� must be compatible with the function of the polymer,
� must not modify the mechanical and aging properties of the

material,
� must not interfere with the fluorescence emission of the

polymers,
� must not deteriorate over time,
� no interferences between tracers in the case of

combinations,
� low tracer concentrations C < 1000 ppm, depending on the

detection limits.

3.2.3. Chemofluorescent families
The choice of chemofluorescents, which is very wide, was lim-

ited to inorganic molecules and especially to two families, lantha-
nide-based and Zn-based complexes. The special feature of these
chemofluorescents is that when they are excited with UVs between

300 nm and 400 nm they have a fluorescence in the visible light
spectrum. These chemofluorescents enter into the composition of
low consumption lamps and offer stable properties and good tem-
perature resistance.

Lanthanides are normally found in the form of trivalent cations,
except for europium, which has two forms, 2+ et 3+, and cerium 3+
and 4+. Lanthanides, after cerium, rarely have a degree of oxidation
of 4+. The absorption and emission of lanthanide ions originating
from ff transitions are called ‘‘forbidden’’ transitions, meaning that
the absorption and emission are very weak and slow. These prob-
lems are overcome by ion complexing with a ligand.

In inorganic chemistry, a complex is a polyatomic structure con-
stituted of one or several cations (most often metallic) surrounded
by several ligands which are molecules or ions that transfer a portion
of their electronic density onto the cation, thus forming chemical
bonds with the latter.

Lanthanide complexes can be lanthanides doped with lanthanide
or metallic oxides doped with lanthanides. There are also lanthanide
complexes doped with polymers and silica, used in electrolumines-
cent diodes.

Yttrium oxide doped with Eu3 + ions makes it possible to obtain
yttrium orthovanadate YVO4:Eu3 + or yttrium oxysulfide Y2O2S:
Eu3+(Handbook of Chemistry and Physics, vol. 4, CRC Press, New
York, 2007–2008 ‘‘Yttrium’’, p. 41). These are luminophors used
to produce the red color in cathode-ray tube televisions. The red
color itself is produced by the de-excitation of europium atoms.
Yttrium compounds can be doped with different lanthanide cations
such as Tb3+(terbium) to achieve a green luminescence.

Barium magnesium aluminates doped with europium Al2Ba2M-
g2O7: Eu2+, magnesium cerium terbium aluminate, and magne-
sium cerium aluminate are other possible chemofluorescents,
used in the composition of Philips’ low consumption lamps.

3.3. Choice of source and detection system

3.3.1. Limiting factors
The choice of the source is a predominant criterion with respect

to the choice of detectors. The choice of sources is limited for certain
UV wavelengths. Three criteria must be taken into account when
choosing sources for an industrial application: the lifetime of the
sources, the matching between the spectrum of the lamps and the
excitation spectra of the tracers, and the power of the source per sur-
face unit.

Lasers, diode lasers and LEDs (light emitting diodes) do not exist
in all wavelengths. For example, LEDs do not exist for the spectral
zone between 290 and 330 nm (Davitt et al., 2005). Xenon lamps
have a continuous spectrum but with varying intensities depend-

Fig. 8. Market demand breakdown by sector (PlasticsEurope, 2010).

Table 2
Summary of the criteria for choosing polymers to trace for recycling.

Criteria for choosing polymer materials to
trace

Examples of polymers

Recyclability Thermoplastic polymers
Market demand Polyolefins, Styrenics,

Polyamides
Large potential quantities Polyolefins
Ability

to be
sorted Difficult to sort and

incompatible or having
different applications

PP/PEBD,
PP/
PEHD,

PEHD/PEBD, PP-TD20/ABS,
PP-TD20/PS, ABS/PS,

Difficult to sort with current
technologies and compatible

ABS/SAN/ASA, PC + ABS/PC

Easy to sort with existing
technologies and incompatible

PP/ABS, PP/PS,PE/ABS, PE/PS



ing on the wavelengths, mercury lamps have a spectrum that is
characteristic and discontinuous, and LEDs have a spectrum with
a short bandwidth (Fig. 9a–c). The lifetime of lamps is shorter
(1000–4000 h) than that of LEDs (10,000 h). The choice of tracers
is thus dependent on the existence of the sources for industrial
applications.

3.3.2. Industrial constraints
Criteria for choosing the detection and sorting mode:

� High yield and purity rate for the separated materials.
� Detection and sorting of crushed plastics with a grain size of

roughly 20 mm.
� Incident sources compatible with the excitation wave-

lengths of the tracers.
� Source lifetime and cost compatible with an industrial

application.
� Detectors sensitive in the tracer fluorescence emission

wavelengths in light-colored and black polymers and allow-
ing a detection of 10 ms.

� Filters allowing the detection of tracers with spectra with
peaks that are close to each other.

4. Results

The results were achieved using two tracers, one a complex of
rare earths doped with rare earths, and the other a complex of
metallic oxides doped with rare earths. These tracers are referred
to below as T1 and T2. The fluorescent wavelengths detected for
their identification are respectively 615 nm and 525 nm. Biblio-
graphical research indicates that tracer T1 is potentially more stable
and less influenced by its environment than tracer T2.

4.1. Mixtures produced

The tests were performed with a polypropylene matrix, colorless
and colored with carbon black for the black color, and an ABS matrix
colored with titanium dioxide. Two tracers were tested (Table 3).
The first one had a red fluorescence and the second a green fluores-
cence. The mixtures are shown in the table below (Table 3). Tracer
concentrations are higher with the polymer matrixes colored black
than with the light-colored matrixes, because the carbon black lim-
its the fluorescence emission in the matrix.

4.2. Resistance of the mechanical properties before and after aging

Specimens and plates were made from a masterbatch (a con-
centrate of tracers in a polymer). The latter was then diluted to
0.5%, 1%, 2% and 4% to reach a final concentration ranging be-
tween 25 and 250 ppm. Plates were painted to test paint adher-
ence. The incorporation of tracers at a low concentration posed
no problems.

4.2.1. Method
Standardized tests on the mechanical properties before and after

aging were performed in order to verify that the incorporation of
tracers at concentrations between 25 and 250 ppm had no influ-
ence on the mechanical properties of the polymers. The PP parts
were compared either bare or painted. ABS parts were compared
bare. The parts were subjected to different types of aging (thermal,
UV, immersion in water, etc.). Comparisons were also carried out on
aged and non-aged parts.

4.2.1.1. Characterization method for the mechanical properties. Trac-
tion: The uniaxial traction properties were measured using the
testomeric M350-20CT instrument together with a 2000 kgf force
sensor and a mechanical extensometer. The tests were performed
in compliance with standard ISO527-2: 1996 at a temperature of

Fig. 9. (a) Spectrum of a mercury lamp, (b) spectrum of a Xenon lamp, (c) spectrum of a LED.



22 �C ± 2�. The specimens had a standard type 1A size
(150�20�4 mm). The Young modulus was measured on the first por-
tion of the curve. The speed applied to measure strain at failure was
50 mm/min. For each configuration, 5 specimens were tested.

Flexure: Flexure was measured on the same 3-point bending
instrument in compliance with standard ISO 178. The size of the

specimens was standardized at 80�10�4 mm. The spacing between
the holders (space) was 64 mm in compliance with the standard
(16 times the thickness of the specimen). Test speed was 2 mm/
min for 5 specimens per configuration.

Impact strength: Impact strength was tested at 22 �C using a
ZWICK D7900 Type 5102-100/00 instrument in compliance with

Table 3

Polymer/tracer mixtures.

Reference Tracer T1 Concentration (ppm) Tracer T2 concentration (ppm) T1 + T2 Concentration (ppm)

PP homopolymer + carbon black (black colorant) 0 100 200
PP colorless copolymer 0 25 50
ABS + TiO2 (white colorant) 0 25 50
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Fig. 10. Impact strength properties.
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standard ISO179. A 2 mm slit was cut into the specimens (real sec-
tion 8�4 mm), and 10 specimens were tested per series.

4.2.1.2. Aging tests. The aging tests standardized for ABS are not the
same as those for PP, since ABS has an inferior aging resistance and
specific applications.

For the ABS: QUV (Accelerated Weathering testing): at 55 �C,
under 340 nm, test duration 400 h.

For the PP: WOM (Weather-Ometer): as per D 27 1911/D, test
duration = 2750 h.

4.2.2. Results
At the percentages used, in the PP and ABS tested, the tracers

do not significantly modify properties such as traction, flexure, or
impact strength, (Figs. 10–12). The mechanical properties of
PP have been compared before and after aging test (Fig. 13).
The losses of properties are similar between virgin PP and PP
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with tracer. For example the loss of elongation properties is 40%
for virgin PP before and after aging tests and 30% for PP with
tracers.

Likewise, properties such as the adherence, brilliance, and
color of the painted PP are not modified by the presence of the
tracers.

4.3. Detection tests before and after aging

The objective was to identify the UV fluorescence of the chosen
tracers in different polymer matrixes containing two colorants and
after standardized aging tests.

4.3.1. Optical system and experimental conditions
The detection system included a Xenon source, a low-pass filter

and an emission monochromator to analyze a fluorescence wave-
length specific to each of the tracers, a CCD camera to detect the
system, and a data acquisition and processing system (Fig. 14).

Experimental conditions:
The main criteria to validate the measurements were:

� To eliminate the Rayleigh scattering with a filter.
� To search for a linearity perimeter between the intensity of

the signal and concentration.
� To determine the excitation and emission wavelengths.

� To validate an excitation wavelength allowing discrimina-
tion between the fluorescence of the tracers and that of
the matrix.

� The intensity of the tracer’s fluorescence signal must be
greater than three times the standard deviation of that of
the white (matrix signal) in order to be validated.

Experiment protocol:

� 20 Different surface measurements per sample, on aged
samples. The measurement was only made on the exposed
surface.

� Integration time 0.01 s.

Xelamp (a) 

Monochromator (d)

Signal analysis (f)

Filter (b)

UV light

Fluorescence + 
Rayleigh

60°

Camera CCD (e)

Fig. 14. The source (a) is a 150 W Xe lamp, emitting from 240 to 850 nm. The beam
passes through a low-pass filter (b) with a 370 nm cutoff wavelength, thus only UV
light reaches the sample with a 60 degree incidence angle. The light reflected on the
sample (c) is composed of fluorescence lines and Rayleigh scattering. The reflected
beam enters an emission monochromator (d) and is then detected by a CCD camera
device (e) and computed by a signal analysis system (f).
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Fig. 15. Fluorescence of the ABS without and with carbon black.

Table 4
Tracer detection results before and after aging.

PP + NC + T1 PP colorless PP + T2 ABS + TiO2 + (T1 + T2)

Reference 0 0 0
T1 X X
T2 X 0
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Fig. 16. Quenching phenomenon due to the presence of carbon black at a
concentration of 5% in a polypropylene matrix with a concentration of tracer n�1
between 500 and 1000 ppm.



� Measurement uncertainty calculation.
� The tests were validated by 2 test campaigns and the results

are reproducible.

The relative uncertainty of the measurements due to the instru-
ment was less than 1%, and was determined by carrying out 20 mea-
surements on the same surface. The relative standard deviation of
the measurements increases when tracer concentration decreases.

The tracer detection window was optimized with preliminary
tests.

3D spectra were made on powder tracers and then on polymer
samples containing different tracer concentrations. The polymer
matrixes have a continuous fluorescence in the visible spectrum,
but different signal intensities depending on the wavelength
(Fig. 15). The fluorescence of the matrix is not a limiting factor
for tracer detection for concentrations from 500 to 1000 ppm.

For lower concentrations, the fluorescence of the matrix must
be taken into account for the signal–noise to be sufficient, in order
to have a confidence index greater than 95%.

The excitation wavelength was thus determined, taking into ac-
count the spectral zone common to each tracer and matrix in order
to optimize the tracers’ fluorescence signal. The detection character-
istics are the wavelengths of excitation and emission fluorescence,
the monochromator slit width for a time of 10 ms. The detection of
the polymer-tracer systems was then validated for excitation wave-
lengths between 250 and 400 nm. Measurements of the white (ma-
trix signal) (see Fig. 15) and measurements with different tracer
concentrations were performed. The most favorable windows are lo-
cated between 300 and 370 nm. These tests were carried out before
and after aging of the samples.

4.3.2. Tracer detection results before and after aging
The results are validated whatever the predefined concentra-

tions (Table 4).
(X = identification, 0 = no signal detected):
Tracer T1 was identified in the black PP homopolymer and the

white ABS. Tracer T2 was identified in the colorless PP copolymer
but not in the ABS.

The measurements confirmed the tracer concentrations in the
polymers for the black PP homopolymer and the colorless PP

copolymer, and the standard deviations were less than the signal
difference measured for each concentration.

4.3.3. Quenching phenomena
Three tracer fluorescence quenching phenomena were ob-

served. This signal attenuation may be due to the interaction
between:

– Colorants (carbon black and TiO2) and polymer.
– Tracers when they are combined.
– Polymers and tracers.
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Fig. 17. Intensity of the fluorescence signal of tracer T1 in black PP before and after
aging.
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Fig. 18. Intensity of the fluorescence signal of tracer T2 in colorless PP before and
after aging.
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Tracer T1 is detected in the polypropylene colored black and the
ABS colored white. The signal is attenuated by the presence of the
white and black colorants, but the signal–noise ratio is sufficiently
high for detection to be positive.

Additional tests showed that the order of magnitude of the tra-
cer signal attenuation for PP colored white and colored black is a
factor of 350 (Fig. 16).

No quenching phenomenon was observed with the combination
of tracers T1 and T2 in PP colored white and black.

A quenching phenomenon was observed when tracer T2 was
incorporated in the ABS colored white, whereas it was perfectly
detected in the colorless polypropylene, and additional tests
showed that it was also detected in PP colored black and white.

In conclusion, the signal from tracers T1 and T2 incorporated in
PP is attenuated but still detected in the presence of black and
white colorants. There is no interaction of tracers T1 and T2 when
they are combined in PP. Tracer T2 is not detected when incorpo-
rated in ABS.

4.3.4. Effects due to aging
It would seem that the effect of aging on the surface of the two

polymers tested is different. The signal of the two tracers is more
intense after aging of the PP. The detection signal is less intense
for the ABS (Figs. 17–19). Since the aging was under UV light, there
are probably oxidation mechanisms occurring on the matrixes that
modify their surface properties. When one visually examines the
surface condition of the two matrixes with and without tracer,
the PP tends to whiten and the ABS tends to yellow strongly.

5. Conclusion

The concept of tracing polymers to enable their recycling re-
sponds to a real need to improve the recyclability of black-colored
polymers with similar densities used in automotive and Electrical
and Electronic Equipment products. The potential quantities of
these materials are considerable and available, and correspond to
a market demand for recycled materials fueled by regulations on
waste treatment and the use of recycled materials.

The addition of tracers into polymer matrixes does not modify
their mechanical properties at percentages lower than 250 ppm.
The two polymers tested can be identified by a specific tracer.
One of the tracers is not detected in ABS due to a quenching phe-
nomenon. The minimum concentrations detected range from 25
and 100 ppm and are compatible with the REACH regulation. The
detection of black polypropylene was successful. The tracers are
stable after aging tests. For the incorporated concentrations, the
signal measured is proportional to the concentration. It is therefore
possible to detect tracer concentrations in the polymers and thus
top up the tracer concentration in recycled polymers.

Further works should be conducted on the determination of
minimum detectable concentrations by a detection pilot system.
A standard process should be proposed for the addition of tracers
in polymer candidates for recycling.

This tracing technology can be applied to other materials whose
sorting is currently unsatisfactory, for example to sorting different
types of glass.
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