
HAL Id: hal-01202738
https://hal.science/hal-01202738

Submitted on 21 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Anisotropic and feature sensitive triangular remeshing
using normal lifting

Vincent Nivoliers, Bruno Lévy, Christophe Geuzaine

To cite this version:
Vincent Nivoliers, Bruno Lévy, Christophe Geuzaine. Anisotropic and feature sensitive triangular
remeshing using normal lifting. Journal of Computational and Applied Mathematics, 2015, 289,
pp.225-240. �10.1016/j.cam.2015.01.041�. �hal-01202738�

https://hal.science/hal-01202738
https://hal.archives-ouvertes.fr

Anisotropic and Feature Sensitive Triangular Remeshing using Normal Lifting

Vincent Nivoliersa,b, Bruno Lévyc, Christophe Geuzaineb

a Université de Lyon, LIRIS, R3AM group
b Université de Liège, Montefiore institute, ACE group

c Loria / inria Nancy Grand Est, Alice project team

Abstract

This work describes an automatic method to anisotropically remesh an input bad quality mesh while preserving
sharp features. We extend the method of Lévy and Bonneel [17], based on the lifting of the input mesh in a 6D space
(position and normal), and the optimization of a restricted Voronoï diagram in that space. The main advantage of this
method is that it does not require any parameterization of the input geometry: the remeshing is performed globally,
and triangles can overlap several input charts. We improve this work by modifying the objective function minimized
in the optimization process, in order to take into account sharp features. This new formulation is a generalization of
the work of Lévy and Liu [18], which does not require any explicit tagging of the sharp features. We provide efficient
formulas to compute the gradient of our objective function, thus allowing us to use a quasi-Newton solver [19] to
perform the minimization.

Keywords: geometry, mesh generation, restricted Voronoï diagram
PACS: 02.40.Sf, 02.60.Pn, 02.70.Dh
2000 MSC: 65L50

1. Introduction1

Mesh generation is a crucial step in order to perform numerical simulations on CAD objects. Our work focuses on2

surface mesh generation, sometimes also denoted as boundary recovery. Many techniques have already been devel-3

oped for this task. Our method takes as input a 3D object provided as a bad quality mesh (like many stereolithography,4

or STL, meshes), and generates a new mesh with nice triangles in terms of aspect ratio. For CAD objects defined in5

other formats, fully automatic algorithms exist to generate such a mesh, since these are internally used for the visual-6

ization and rendering of the object. In terms of quality, most STL meshes are not suitable for numerical simulations,7

since their triangles may have very bad shapes. In addition, gaps and T-junctions may occur, especially when adjacent8

spline patches in the CAD geometry were not discretized accordingly. Our method is an extension of the work of Lévy9

and Bonneel [17], based on the optimization of restricted Voronoï diagrams. It can be considered as a generalization10

of Lloyd relaxation [20], to generate a regular sampling of an input mesh. Lévy and Bonneel [17] designed a method11

capable of automatically generating anisotropic elements in curved regions of the mesh. Our contribution with respect12

to their algorithm adds several features :13

• automatic detection and preservation of sharp features;14

• automatic isotropic scaling of the elements in curved regions;15

• handling of gaps and T-junctions in the input mesh with a robust normal computation;16

• new efficient formulation of the gradient of the objective function.17

Email addresses: vincent.nivoliers@ulg.ac.be (Vincent Nivoliers), bruno.levy@inria.fr (Bruno Lévy), cgeuzaine@ulg.ac.be
(Christophe Geuzaine)

Preprint submitted to Journal of Computational and Applied Mathematics April 27, 2015

As compared to other state of the art methods, we emphasize that we do not use any preprocessing on the input mesh,18

and do not require any parameterization of the object. Our method can therefore be applied in cases when other fast19

and reliable meshing algorithms are not able to handle the input. We however do not prove guarantees on the quality20

of the elements upon termination.21

A full summary of mesh generation techniques is outside the scope of this paper, and several overviews already22

exist on the field [4, 11]. We here review several techniques related to our approach.23

1.1. Advancing front algorithms24

Advancing front algorithms are very fast and reliable to generate surface and volume meshes. For surface remesh-25

ing, the method requires a parameterization of the surface in one or several user defined patches. The boundary of26

the patches is first sampled, and from this boundary, nicely shaped triangles are generated one by one towards the27

interior of the patch, given a prescribed edge length. When the meshed region starts to overlap itself, a final procedure28

is triggered to sew the front curve and close the mesh. Recent advances consider an additional metric field in the29

parametric space to define how the edge lengths of the generated triangles are computed [27, 16], and the gradation30

control, avoiding abrupt transitions between large and small elements [1].31

These methods are very efficient, but require the input object to be split into parametric patches. This is sometimes32

not a limitation since CAD objects are often defined as a set of parametric spline patches. However the mesh is gener-33

ated per patch, which can be problematic when many patches are use to describe the shape of the object in complicated34

regions. Marcum [22] propose a volumetric method to merge multiple patches with a unique parameterization while35

Attene et al. [3] define an advancing front method robust to the quality of the parameterization. Marchandise et al.36

[21] especially target the remeshing of STL meshes, and study various automatic parameterization techniques. While37

automatic parameterization methods exist, the topology of the input mesh needs to be properly defined, and gaps38

cannot be handled. In addition, the parameterization is stored and thus sampled on the vertices of a background mesh.39

While this is not a problem for dense STL meshes obtained from 3D scanning devices or extracted from voxel data,40

the STL triangulation automatically generated from CAD data is usually too bad for automatic parameterization.41

1.2. Mesh adaptation42

An other family of remeshing methods is based on the progressive modification of a bad input mesh. These meth-43

ods are therefore directly applicable to STL meshes, but require a preprocessing of the input mesh to be able to handle44

gaps and connectivity problems. The input mesh is generally modified via edge splitting [5], collapsing or swapping,45

and vertex relocation [28]. Once all the triangles respect some desired quality criterion, a final smoothing step is46

applied, relocating the vertices. Rassineux et al. [25] study various configurations of edge splitting to simultaneously47

adapt the surface triangular mesh and the volume tetrahedral mesh. With respect to these methods, our approach48

replaces the introduction of new mesh vertices using edge splits by a random uniform sampling of the mesh, and our49

objective function minimization behaves similarly to the final vertex smoothing step.50

1.3. Delaunay refinement and optimization51

Delaunay refinement techniques are closer to our approach, since the connectivity of the final mesh is obtained via52

a Delaunay triangulation and is therefore automatically handled through the vertex insertion phase. Borouchaki et al.53

[7] combine the Delaunay triangulation with an advancing front method for vertex insertion given a certain metric.54

The connectivity of the mesh is therefore automatically updated during the algorithm. Dey and Ray [9] follow the55

approach of mesh adaptation by inserting vertices one by one in an existing mesh, updating the connectivity using56

a restricted Delaunay triangulation. The authors prove guarantees on the quality of the output mesh. Both methods57

however still require a correct input connectivity to be applied to be able to either parameterize the object, or recover58

its topology properly.59

Chen et al. [8] use the concept of optimal Delaunay triangulation to generate volume meshes, which is somehow60

dual to our approach. An objective function is defined over the restricted Delaunay triangulation of a set of samples,61

measuring the quality of the output elements. The optimization of the objective function leads to nicely shaped62

elements. Although the input requirements are as weak as ours for this method, the continuity of the objective function63

is only C0, and the optimization procedure requires the use of simulated annealing, whereas our objective function is64

almost C2 and can be optimized with a quasi-Newton solver. The objective function however is directly defined on65

the shape of the output triangles, and can be directly related to the final element quality.66

2

2. Background67

We here detail the basic tools we rely on. Our method is based on the minimization of an objective function defined68

on a restricted Voronoï diagram. From a random initial set of samples, this minimization produces a regular sampling69

of the input mesh. Using the restricted Delaunay triangulation of this sampling, we then generate a triangulation70

automatically. Algorithm 1 outlines this pipeline : from an initial random sampling, the restricted Voronoï diagram71

of the samples in computed, to extract the objective function value and its gradient. These are provided to the solver,72

which generates a new set of samples. Each time the samples change, the restricted Voronoï diagram has to be73

recomputed. This process is then iterated until the solver reaches convergence, or the desired number of iterations is74

reached.75

input : S, a bad triangular mesh
output: T , a mesh with good quality triangles

1 algorithm
2 V← random site initialization on S
3 while a minimum is not reached do
4 Compute the restricted Voronoï diagram of V and S
5 Compute the objective function F

6 Compute the gradient dF
dV of F

7 V← lbfgs(V,F , dF
dV) // Liu and Nocedal [19]

8 T ← restricted Delaunay triangulation of V and S
9 return T

Algorithm 1: Outline of a centroïdal Voronoï tesselation based remeshing method.

This algorithm is a generalization of Lloyd’s algorithm [20] and was introduced by Yan et al. [29]. Lévy and Liu76

[18] then modified it for applications in quadrangular and hexahedral remeshing and to introduce feature sensitiveness.77

Lévy and Bonneel [17] finally propose an other variation for anisotropic remeshing. We here summarize these methods78

on which our work is based.79

2.1. Meshes and sites in d dimensional space80

Throughout this article, we will deal with samples and meshes both in R3 and R6. Whatever the dimension, the81

meshes are always triangular meshes. A mesh S can therefore always be defined by a set of vertices X = {xi}i ⊂ Rd
82

and a set of triangles T = {Tp}p ⊂ X3. Given a triangle Tp = (x1, x2, x3), whatever the dimension, the surface of the83

triangle can always be defined as84 {
x ∈ Rd, x = ux1 + vx2 + wx3, {u, v,w} ⊂ R+, u + v + w = 1

}
. (1)

As an abuse of notation, we will use Tp both to refer to the triplet of vertices in X defining the triangle and the surface85

of that triangle defined by Equation 1.86

2.2. Restricted Voronoï Diagrams87

2.2.1. Definition88

Given a set of sites V = {vk}k ⊂ Rd and a triangular mesh S embedded in Rd, a restricted Voronoï diagram89

associates with each site vk a (possibly empty) piece of S. The Voronoï cell of vk is defined as90

Ωk =
{
p ∈ Rd, ‖p − vk‖ ≤ ‖p − v`‖, v` , vk ∈ V

}
. (2)

From this definition, the restricted Voronoï cell Ωk|S of vk is the intersection between the classical Voronoï cell Ωk and91

the surface S, defined as92

Ωk|S = {x ∈ S, ‖x − vk‖ ≤ ‖x − v`‖, v` , vk ∈ V} . (3)

3

(a) restricted Voronoï diagram (b) restricted Delaunay triangulation

Figure 1: Restricted Voronoï diagram and Delaunay triangulation, with S being a sphere in R3.

In other words, each point x ∈ Ωk|S belongs to S and the nearest site from x is vk.93

The set
{
Ωk|S

}
k of restricted Voronoï cells forms a partition of S : each point of S belongs to a restricted Voronoï94

cell. The converse is however not true: a site located too far from S may have an empty restricted Voronoï cell.95

Figure 1 shows an example of a restricted Voronoï diagram.96

2.2.2. Computation97

Several algorithms were designed to compute a restricted Voronoï diagram. We use the approach of Lévy and98

Bonneel [17], which handles meshes embedded in Rd. This method replaces the traditional Voronoï diagram compu-99

tation by nearest neighbor queries [23], which can be performed efficiently in any dimension. In terms of complexity,100

although worst case scenarios exist, the experienced complexity we encountered in our work for this computation is101

O(n + m), where n is the number of sites and m the number of triangles in S. This is mainly due to the fact that the102

sets of sites we consider are located on S or very close to it, and optimized to form a regular sampling of S.103

2.2.3. Restricted Delaunay triangulation104

From the restricted Voronoï diagram, a triangulation of the surface can be derived. This triangulation is our output105

mesh T and is the dual of the diagram: each site of the diagram is a vertex of T . The triangles D ⊂ V3 of T are106

defined as107

D =
{
(v1, v2, v3) ∈ V3,Ω1|S ∩Ω2|S ∩Ω3|S , ∅

}
. (4)

In other words, each time three restricted Voronoï cells meet at one point, a triangle connects the three corresponding108

sites. These triangles are the restricted Delaunay triangles of V with respect to S, and the corresponding triangulation109

is the restricted Delaunay triangulation, used in Algorithm 1. Figure 1 provides an example of a restricted Delaunay110

triangulation.111

Edelsbrunner and Shah [10] provide conditions on the set of sites V with respect to S to ensure that T is a valid112

remeshing of S, or more formally that T is homeomorphic to S. Problems may happen if the number of samples is113

insufficient, in regions where S is thin for instance.114

2.3. Objective function115

2.3.1. Definition116

The objective function measures the quality of the sampling of S by the set of samples V. The underlying idea is117

that the sampling is good if every point x ∈ S is close to a site vk ∈ V. Formulating this idea in a least-squares fashion,118

we obtain119

F (V) =

∫
S

min
vk∈V
‖x − vk‖

2dx.

Using the restricted Voronoï diagram of V and S, this integral can be split into120

F (V) =
∑
vk∈V

∫
Ωk|S

‖x − vk‖
2dx, (5)

4

centroid

Figure 2: Remeshing a cube by the minimization of Equation 5. The sharp features are smoothed. This behavior is due to the fact that on sharp
features the centroid of restricted Voronoï cells is not located on the surface.

which is the basic formulation for all the objective functions variations we will define. This objective function was121

proved to be C2 almost everywhere in the case of restricted Voronoï diagrams [24], and is therefore suitable for122

a quasi-Newton minimization procedure like LBFGS [19]. As a comparison, Lloyd’s algorithm can be seen as a123

steepest descent algorithm for the minimization of the same objective function. The result is a centroïdal restricted124

Voronoï diagram, where every site vk is located at the centroïd of its restricted Voronoï cell Ωk|S. The diagram depicted125

on Figure 1 is centroïdal.126

Triangulating each restricted Voronoï cell, the objective function sums polynomial integrals over triangles. Its127

value is computed using the formulas of Lasserre and Avrachenkov [15] as128

F (V) =
∑
vk∈V

∑
T∈Ωk|S

|T |
6

∑
(ci,c j)∈T 2

(vk − ci).(vk − c j), (6)

where ci and c j are (potentially identical) vertices of the triangle T in a triangulation of Ωk|S.129

2.3.2. Gradient130

The derivatives of this objective function with respect to the set of sites are provided by Iri et al. [14], and a more131

detailed explanation of their formulas is given by Asami [2]. The derivative of F with respect to a site vk ∈ V is given132

by133

dF

dvk
(V) = 2|Ωk|S|(vk − gk|S)t, (7)

where |Ωk|S| is the area of the restricted Voronoï cell and gk|S is its centroid. The gradient is the transpose of this134

derivative. This equation shows that Lloyd’s algorithm, by moving sites towards the centroid of their restricted cell,135

is a steepest descent algorithm.136

2.4. Feature sensitiveness137

2.4.1. Objective function138

Minimizing the basic objective function as defined by Equation 5 works well for the remeshing of smooth surfaces.139

For surfaces with sharp features however, the result is smoothed. This behavior is due to the fact that the sites end up140

at the centroid of their restricted cell, which is not located on the surfaces at sharp features (Figure 2).141

When S is in R3, Lévy and Liu [18] propose a modification of the objective function to address this problem. Their142

idea is to bring back the sites on the surface, by increasing the importance of the normal component in the distance143

between a site and a point x on the surface. Let nx be the normal of S at x ∈ S and vk ∈ V, the normal component of144

x − vk at x is given by145

[(x − vk).nx]nx = nxnt
x(x − vk). (8)

From this, Lévy and Liu [18] modify the distance used in Equation 5 as146

‖x − vk‖x = ‖Mx(σ)(x − vk)‖ , with Mx(σ) = (σ − 1)nxnt
x + I3, (9)

where σ is a parameter corresponding to the additional weighting of the normal component and I3 is the identity147

matrix in R3. Inserting this into Equation 5, and noticing that the normal nx is constant over each triangle Tp ∈ T of148

5

Figure 3: Isovalues of the feature sensitive objective function given by Equation 10 for different values of the feature sensitivity σ. The fat gray lines
in the middle correspond to a simple 1D mesh embedded in 2D. The objective function is computed for one single site. The black dot corresponds
to the optimal position of the site. With σ = 1, no feature sensitivity is used, the optimal site is far from the corner, which is the feature we are
willing to preserve. Increasing σ moves the optimal site position towards the corner.

S, we obtain149

F (V, σ) =
∑
vk∈V

∑
Tp∈T

∫
Ωk|Tp

∥∥∥MTp (σ)(x − vk)
∥∥∥2

dx, (10)

where Ωk|Tp = Ωk ∩ Tp. Algorithmically, these intersections are obtained during the restricted Voronoï diagram150

computation. The effect of this modification of the objective function is shown on Figure 3.151

2.4.2. Value152

Using a similar development as for Equation 6, the value of this objective function is obtained as153

F (V) =
∑
vk∈V

∑
T∈Ωk|S

|T |
6

∑
(ci,c j)∈T 2

(vk − ci)t Mt
T (σ)MT (σ)(vk − c j). (11)

2.4.3. Gradient154

With F as defined in Equation 10 the expression of its gradient gets more complicated. The derivation used to155

obtained Equation 7 uses the fact that given two neighboring sites vk and v`, for x ∈ Ωk|S ∩ Ω`|S, ‖x − vk‖ = ‖x − v`‖156

since x is on the bisector of vk and v`. This is no longer the case using the modified distance of Equation 9, since157

the normal components of the two vectors are usually different. Lévy and Liu [18] therefore derive the gradient from158

Equation 6, which requires in particular to compute the Jacobians of the vertices ci and c j. We will not detail here159

their final equation since we provide in Section 3.2 a simpler formulation.160

2.5. Anisotropy through normal lifting161

The restricted Delaunay triangulation of a centroïdal restricted Voronoï diagram is made of triangles nearly equi-162

lateral. While this is a requirement for many finite element problems, it requires that many elements be used to mesh163

the geometry in highly curved regions. When the problem allows it, it might therefore be desirable to trade a bit of164

the element quality to be able mesh curved regions with fewer elements. This is anisotropic remeshing. The goal is165

therefore to mesh curved regions of the mesh with elements that are thin in the main curvature direction. Lévy and166

Bonneel [17] achieve this goal using normal lifting.167

Normal lifting consists in embedding the input mesh S in R6 by appending to each vertex xi ∈ X three new168

coordinates based on the average normal vector ni at xi. Introducing a parameter ν to scale the lifting, the new vertices169

X̂ are defined as170

X̂ =
{
x̂i ∈ R6, x̂i = xi ⊕ νni, xi ∈ X

}
, (12)

where ⊕ concatenates the coordinates of the two provided vectors. The remeshing is then performed on the lifted171

mesh Ŝ, producing a mesh T̂ in R6. This mesh is then projected orthogonally in R3 using the first three coordinates172

to obtain the final mesh T .173

By definition of the curvature, along the main curvature direction, the normal varies. This means that input trian-174

gles located in curved regions of S will get wider along the main curvature direction when they are lifted. Conversely,175

equilateral triangles on the lifted mesh, located in curved regions will get thin along the main curvature direction once176

projected. Hence the anisotropic triangles in the remeshing in curved regions shown on Figure 4.177

6

(a) input mesh (b) remeshing using normal lifting

Figure 4: The input mesh is first lifted in R6, remeshed. Projecting back in R3 yields the result, exhibiting thin triangles in curved regions.

Figure 5: Computing the normal component of a vector (v̂k − x̂). First an orthogonal basis (u1,u2) of the triangle containing x is computed. The
projection of (v̂k − x̂) in the normal space E⊥ is computed by removing from (v̂k − x̂) its projection in the tangent space (Equation 13).

3. Generalizing feature sensitiveness178

We now detail our first contribution, which allows users to benefit from both feature sensitivity and anisotropic179

remeshing. In its current definition in Section 2.4, feature sensitiveness is not compatible with normal lifting, since180

it uses the normal of a point x ∈ S. In this section, we reformulate Equation 10 to make it compatible with normal181

lifting. We also provide new formulas to compute efficiently the gradient of F with our formulation.182

3.1. Using the tangent space183

The problem of the formulation of feature sensitivity by Lévy and Liu [18] is that is relies on the normal of the184

surface. Using normal lifting, the normal space is no longer 1D, and the computation of the normal component of185

a vector has te be reformulated. To provide feature sensitivity when using normal lifting, our key idea is to use the186

tangent space at a point x̂ ∈ Ŝ rather than the normal space. Whatever the dimension, the tangent space remains 2D,187

which allows us to use the same formulation, whatever the lifting used. Given a surface S lifted as Ŝ ⊂ Rd, and a188

point x̂ ∈ Ŝ, we define a basis (u1,x̂,u2,x̂) ∈ (Rd)2 of the tangent space of Ŝ at x̂. Given a site v̂k ∈ V̂, the tangent189

component of x̂ − v̂k is given by190

(x̂ − v̂k).u1,x̂u1,x̂ + (x̂ − v̂k).u2,x̂u2,x̂ = (u1,x̂ut
1,x̂ + u2,x̂ut

2,x̂)(x̂ − v̂k). (13)

The normal component can now be expressed as (Id −u1,x̂ut
1,x̂ −u2,x̂ut

2,x̂)(x̂− v̂k), where Id is the identity matrix in Rd.191

Let Πx̂ = (Id − u1,x̂ut
1,x̂ − u2,x̂ut

2,x̂). This matrix encodes the orthogonal projection of any vector onto the normal space192

of Ŝ at x̂ (see Figure 5). We can now use this expression to provide a new formulation of the matrix Mx̂(σ) defined in193

Equation 9, as194

Mx̂(σ) = Id + (σ − 1)Πx̂. (14)

This formulation applies in any dimension d, and can therefore be used in conjunction with normal lifting.195

For each triangle T̂p = (x̂1, x̂2, x̂3) of Ŝ, we compute an orthogonal basis (Figure 5) as196

u1,T̂ =
x̂2 − x̂1

‖x̂2 − x̂1‖
, u2,T̂ =

(x̂3 − x̂1) − u1,T̂ ut
1,T̂

(x̂3 − x̂1)∥∥∥∥(x̂3 − x̂1) − u1,T̂ ut
1,T̂

(x̂3 − x̂1)
∥∥∥∥ . (15)

7

In the case when one of the denominators is null, the considered triangle is flat. Any integral on this triangle yields197

a null result, and this triangle can be ignored in the minimization process. The value of the objective function is198

computed using Equation 11, using the above orthogonal basis to define MT̂p
(σ) on each lifted triangle T̂p.199

3.2. Objective function gradient200

We compute the gradient of F using the technique of Nivoliers and Lévy [24], with Reynolds’ transport theorem.201

This theorem states that202

d
dt

[∫
Ω(t)

f (x, t)dx
]

=

∫
Ω(t)

∂ f
∂t

(x, t)dx︸ ︷︷ ︸
inner term

+

∫
∂Ω(t)

f (x, t)
dx
dt
.n∂Ω(t)(x)dx︸ ︷︷ ︸

boundary term

, (16)

where ∂Ω(t) is the boundary of Ω(t) and n∂Ω(t)(x) is the outward normal of ∂Ω(t) at x. In our case the variable t is a203

site v̂k. At the simplest level, the domain Ω considered is the intersection Ω̂k|T̂p
between the Voronoï cell of v̂k in the204

lifting space and a triangle T̂p of the lifted input mesh Ŝ. This domain is a convex polygon, and varies with respect to205

v̂k. We will now study the inner term and the boundary term separately.206

3.2.1. Inner term207

The inner term in Equation 16 considers that the domain is static. It simplifies nicely to provide an expression208

similar to Equation 7 :209 ∫
Ω̂k|T̂p

∂

∂v̂k

[∥∥∥∥MT̂p
(σ)(x̂ − v̂k)

∥∥∥∥2]
dx̂ =

∫
Ω̂k|T̂p

−2Mt
T̂p

(σ)MT̂p
(σ)(x̂ − v̂k)dx̂

= 2
∣∣∣∣Ω̂k|T̂p

∣∣∣∣ (v̂k − ĝk,p)t Mt
T̂p

(σ)MT̂p
(σ), (17)

where ĝk,p is the centroid of Ω̂k|T̂p
and

∣∣∣∣Ω̂k|T̂p

∣∣∣∣ its area. In the case when σ = 1, this equation falls back to the result of210

Equation 7.211

3.2.2. Boundary term212

From the study of the boundary term by Nivoliers and Lévy [24], it turns out that the boundary of Ω̂k|T̂p
is made213

out of two kinds of edges :214

internal edges are pieces of the edges of T̂p. On these edges, the integral of Equation 16 is null, since the normal215

derivative of x̂ is null.216

bisector edges are the intersection between T̂p and the bisector of v̂k with some other site v̂`. Let nk,`,p be the normal217

of the edge in the plane of T̂p, oriented outside of Ω̂k|T̂p
. On these edges, the integral is not null, and the normal218

derivative of x̂ is given by219

dx̂
dv̂k

.nk,`,p =
(v̂k − x̂)t

nk,`,p.(v̂k − v̂`)
. (18)

Given a segment ek,`,p = ∂Ω̂k|Ŝ ∩ ∂Ω̂`|Ŝ ∩ T̂p, this segments is a bisector edge and yields two terms in the gradient220

of F with respect to v̂k: one for each of the Voronoï cells containing ek,`,p, since both cells vary with v̂k. An example221

of such a segment is illustrated on Figure 6. Denoting dFk,`,p

dv̂k
the sum of these two terms, we have222

dFk,`,p

dv̂k
=

∫
ek,`,p

(∥∥∥∥MT̂p
(σ)(x̂ − v̂k)

∥∥∥∥2
−

∥∥∥∥MT̂p
(σ)(x̂ − v̂`)

∥∥∥∥2) (v̂k − x̂)t

nk,`,p.(v̂k − v̂`)
dx̂. (19)

From Equation 14, we have223 ∥∥∥∥MT̂p
(σ)(x̂ − v̂k)

∥∥∥∥2
=

∥∥∥∥(x̂ − v̂k) + (σ − 1)ΠT̂p
(x̂ − v̂k)

∥∥∥∥2
.

8

(a) two restricted Voronoï cells
(b) closeup on a segment ek,`,p

Figure 6: A segment ek,`,p = ∂Ω̂k|Ŝ ∩ ∂Ω̂`|Ŝ ∩ T̂p.

Since ΠT̂p
is an orthogonal projection matrix, we have Πt

T̂p
ΠT̂p

= ΠT̂p
. Using this relation we can develop further into224 ∥∥∥∥MT̂p

(σ)(x̂ − v̂k)
∥∥∥∥2

= ‖x̂ − v̂k‖
2 + (σ2 − 1)(x̂ − v̂k)tΠt

T̂p
ΠT̂p

(x̂ − v̂k) = ‖x̂ − v̂k‖
2 + (σ2 − 1)

∥∥∥∥ΠT̂p
(x̂ − v̂k)

∥∥∥∥2
.

The vector ΠT̂p
(x̂ − v̂k) is actually constant, whatever the point x̂. Indeed, if ĉ1 and ĉ2 are the endpoints of ek,`,p, x̂ can225

be rewritten as ĉ1 + αx̂(ĉ2 − ĉ1). Since the vector (ĉ2 − ĉ1) is in the plane of T̂p, we have ΠT̂p
(ĉ2 − ĉ1) = 0, and thus226

ΠT̂p
(x̂ − v̂k) = ΠT̂p

(ĉ1 − v̂k). We finally obtain227 ∥∥∥∥MT̂p
(σ)(x̂ − v̂k)

∥∥∥∥2
= ‖x̂ − v̂k‖

2 + (σ2 − 1)
∥∥∥∥ΠT̂p

(ĉ1 − v̂k)
∥∥∥∥2
,

where c1 is an endpoint of ek,`,p, and can be replaced by any point of ek,`,p. Similarly, we have228 ∥∥∥∥MT̂p
(σ)(x̂ − v̂`)

∥∥∥∥2
= ‖x̂ − v̂`‖2 + (σ2 − 1)

∥∥∥∥ΠT̂p
(ĉ1 − v̂`)

∥∥∥∥2
.

The segment ek,`,p is included in the bisector of v̂k and v̂`. Therefore, for any x̂ ∈ ek,`,p, we have ‖x̂ − v̂k‖ = ‖x̂ − v̂`‖ .229

Replacing in Equation 19, we finally obtain230

dFk,`,p

dv̂k
=

∫
ek,`,p

(σ2 − 1)
(∥∥∥∥ΠT̂p

(ĉ1 − v̂k)
∥∥∥∥2
−

∥∥∥∥ΠT̂p
(ĉ1 − v̂`)

∥∥∥∥2) (v̂k − x̂)t

nk,`,p.(v̂k − v̂`)
dx̂

=
(σ2 − 1)

nk,`,p.(v̂k − v̂`)

(∥∥∥∥ΠT̂p
(ĉ1 − v̂k)

∥∥∥∥2
−

∥∥∥∥ΠT̂p
(ĉ1 − v̂`)

∥∥∥∥2) ∫
ek,`,p

(v̂k − x̂)t dx̂

=
(1 − σ2)

∣∣∣ek,`,p

∣∣∣
nk,`,p.(v̂k − v̂`)

(∥∥∥∥ΠT̂p
(ĉ1 − v̂k)

∥∥∥∥2
−

∥∥∥∥ΠT̂p
(ĉ1 − v̂`)

∥∥∥∥2) (
ĝk,`,p − v̂k

)t
, (20)

where
∣∣∣ek,`,p

∣∣∣ is the length of ek,`,p, and ĝk,`,p its center point.231

3.2.3. Continuity232

From the study of Nivoliers and Lévy [24], our objective function F is C2 almost everywhere. The matrix233

MT̂p
(σ) changes on every triangle, and is therefore a piecewise constant function, with discontinuities on every edge234

of Ŝ. The gradient of F therefore has discontinuities when edges of Ŝ intersect non generically bisectors of the235

Voronoï diagram. In Equation 20, this corresponds to the case when ek,`,p coincides with an edge of the triangle T̂p.236

3.3. Objective function computation237

The computation of the restricted Voronoï diagram produces all the polygons Ω̂k|T̂p
to be considered. On each238

polygon, a piece of the value and gradient of the objective function is computed. This computation is formalized in239

Algorithm 2. This algorithm uses simplifications similar to those of Section 3.2, in particular the fact that ΠT̂p
(x̂ − v̂k)240

is constant over the whole triangle T̂p, and that Πt
T̂p

ΠT̂p
= ΠT̂p

.241

9

input : a site v̂k, a triangle T̂p, the polygon Ω̂k|T̂p
, and the parameter σ.

data : the value F of the objective function and its gradient array ∆F .
1 algorithm
2 ĝk,p ← 0,

∣∣∣∣Ω̂k|T̂p

∣∣∣∣← 0

3 foreach triangle T̂ = (ĉ1, ĉ2, ĉ3) in a triangulation of Ω̂k|T̂p
do // Gradient as if no feature sensitiveness

4 ĝk,p ← ĝk,p + |T̂ | ĉ1+ĉ2+ĉ3
3 ,

∣∣∣∣Ω̂k|T̂p

∣∣∣∣← ∣∣∣∣Ω̂k|T̂p

∣∣∣∣ +
∣∣∣T̂ ∣∣∣

5 ŵ1 ← ĉ1 − v̂k, ŵ2 ← ĉ2 − v̂k, ŵ3 ← ĉ3 − v̂k

6 F ← F +
|T̂ |
6

(∑3
i=1

∑3
j=1 ŵi.ŵ j

)
// Equation 6

7 ∆F [k]← ∆F [k] + 2
(∣∣∣∣Ω̂k|T̂p

∣∣∣∣ v̂k − ĝk,p

)
// Equation 7

8 if σ > 1 then // Feature sensitiveness.
9 u1,p,u2,p ← orthogonal basis of T̂p // Equation 15

10 ĉ← any point of Ω̂k|T̂p

11 ŵ⊥k ← ĉ − v̂k − u1,put
1,p(ĉ − v̂k) − u2,put

2,p(ĉ − v̂k)

12 F = F + 2
∣∣∣∣Ω̂k|T̂p

∣∣∣∣ (σ2 − 1)ŵ⊥k .ŵ
⊥
k // missing term for Equation 11

13 ∆F [k]← ∆F [k] + 2
∣∣∣∣Ω̂k|T̂p

∣∣∣∣ (σ2 − 1)ŵ⊥k // missing term for Equation 17

14 foreach bisector edge ek,`,p of Ω̂k|T̂p
do // Boundary term of the gradient

15 ĉ1, ĉ2 ← vertices of ek,`,p

16 nk,`,p ← outward normal of ek,`,p in the plane of T̂p

17 ŵ⊥` ← ĉ − v̂` − u1,put
1,p(ĉ − v̂`) − u2,put

2,p(ĉ − v̂`)

18 ∆F [k]← ∆F [k] +
(σ2−1)|ek,`,p|
nk,`,p.(v̂k−v̂`)

(
ŵ⊥k .ŵ

⊥
k − ŵ⊥` .ŵ

⊥
`

) (
v̂k −

ĉ1+ĉ2
2

)
// Equation 20

Algorithm 2: Computing a piece of the value and gradient of F on Ω̂k|T̂p
. Once the restricted Voronoï diagram is

computed and triangulated, the first portion (lines 4 to 7) computes the inner part of the gradient, as if no feature
sensitivity was used : the area and centroids of the cells are computed. In case of feature sensitivity (line 8), we
first compute an orthonormal basis for the triangle plane (line 9) to be able to compute the tangent and normal
components of vectors for this triangle. The normal component of the vector between any point of the triangle and
the site is computed using this basis (line 10 and 11). The value and the inner term of the gradient are then updated
to take it into account the feature sensitivity (line 12 and 13). Finally, on each edge of the triangle, the boundary
terms of the gradient are computed and accumulated in the final gradient (lines 14 to 18). This term only exists on
edges at the interface between two cells, and to compute it, the normal component for the site of the neighboring
cell is computed.

10

4. Local scaling242

Depending on the problem to be solved and the operators to be discretized on the mesh, the definition of a good243

element may differ [26]. One may therefore still desire isotropic elements. We derive a local density of elements from244

the lifting, such that smaller elements can be generated in curved regions. This density is solely based on the lifting,245

and does not require any parameterization as well. As described in Section 5.1, this user is then provided with a new246

parameter to control the desired amount of local scaling.247

4.1. Setup248

To obtain isotropic small elements in curved regions, we compute a density factor ρp for every triangle Tp of the249

input surface. This factor ρp is then introduced in Equation 10 to weight the integrals on every triangle :250

F (V, σ, δ) =
∑
vk∈V

∑
Tp∈T

∫
Ωk|Tp

∥∥∥MTp (σ)(x − vk)
∥∥∥2
ρδpdx, (21)

where δ ≥ 0 is a parameter controlling the amount of local scaling desired.251

4.2. Gradient of the lifting252

Our goal is to transform the anisotropic scaling obtained through the lifting into an isotropic scaling. Using the253

lifting, the anisotropic scaling is due to the difference in length between triangle edges on the lifted remeshing and254

their projection pack in R3. This difference comes from the variations of the lifting. Given a triangle Tp = (x1, x2, x3)255

of S and the smooth vertex normals n1, n2, and n3 of its vertices, we compute the Jacobian of the lifting n at any point256

x ∈ Tp. Expressing x in barycentric coordinates as x = ux1 + vx2 + wx3 with (u, v,w) ∈ (R+)3 and u + v + w = 1, the257

lifting n at x is obtained as n = un1 + vn2 + wn3. Its Jacobian dn
dx is expressed as258

dn
dx

= n1
du
dx

+ n2
dv
dx

+ n3
dw
dx
. (22)

The derivative of the barycentric coordinate u is given by259

du
dx

=
ht

1

‖h1‖
2 , with h1 = (x1 − x2) −

(x1 − x2).(x3 − x2)(x3 − x2)
‖x3 − x2‖

2 . (23)

Here h1 is the height of Tp through x1. The matrix dn
dx is constant over Tp, and each of its rows is the derivative of260

one of the coordinates appended in the lifting. Denoting dni with i ∈ {1, 2, 3} these rows, we finally define the local261

density ρp as262

ρp = 1 + max
i∈{1,2,3}

‖dni‖ . (24)

5. Implementation263

5.1. Parameters264

Our final objective function is defined as265

F (V, σ, δ) =
∑
vk∈V

∑
Tp∈T

∫
Ω̂k|T̂p

∥∥∥∥MT̂p
(σ)(x̂ − v̂k)

∥∥∥∥2
ρδpdx̂. (25)

This objective function has two parameters, σ controlling the feature sensitivity and δ controlling the local scaling. In266

addition, the lifting applied to the input surface S uses an additional parameter ν, controlling the scaling of the normal267

in the lifting, and therefore the amount of anisotropy. To make these parameters independent to the mesh initial scale,268

we start by centering the mesh to its centroid, and scaling it so that it fits in a ball of radius 1. These modifications can269

be undone once the remeshing is performed.270

11

5.2. Handling gaps in the input mesh271

To make our method more robust, we implemented a few classical techniques in order to handle gaps in the input272

mesh.273

5.2.1. Computing the normal for the lifting274

We cannot rely on the sole connectivity to compute the average normals at the mesh vertices. We therefore275

compute these normals on the geometrical neighborhood of the vertices. Given a radius η, for each vertex of the mesh276

we compute the set of triangles intersecting an axis-aligned cube of side 2η centered at the vertex. We then compute277

the area of the intersection between these triangles and a sphere of radius η centered at the vertex, and use this area278

to weight the normal of the triangle in the average normal of the vertex. To implement efficiently the construction of279

these geometric neighborhoods, we used a classical kd-tree space decomposition technique [13, chapter 39].280

5.2.2. Filling gaps in the restricted Delaunay triangulation281

Gaps may also create holes in the restricted Delaunay triangulation. Dy definition, a triangle of this triangulation282

is generated only if the Voronoï cells of the corresponding sites intersect as a segment, and this segment intersects the283

surface. In practice, this intersection may fall into a gap in the input surface, and the corresponding triangle will not284

be generated. To fix these artifacts, we use a final hole filling procedure. Whenever a hole is detected, we compute285

the best plane to project its boundary vertices using principal component analysis, and fill the hole using a constrained286

Delaunay triangulation [6].287

5.3. Final algorithm288

Our final algorithm is described in Algorithm 3. After robustly computing the average normals at the vertices, the289

mesh is lifted in 6D and randomly sampled. Our objective function is then computed and the sampling optimized to290

minimize it. The final mesh is obtained by projecting the 6D restricted Voronoï diagram of the samples back in 3D291

space.292

input : S, a bad triangular mesh, parameters σ, δ, ν, η
output: T , a mesh with regular triangles

1 algorithm
2 {ni}i ← average vertex normals based on geometric neighborhoods of size η
3 {ρp}p ← triangle local scaling factors // Equation 24
4 Ŝ ← lifting of S using {xi ⊕ νni}i as vertices
5 V̂← random site initialization on Ŝ
6 while a minimum is not reached do
7 Compute the restricted Voronoï diagram of V̂ and Ŝ
8 Compute the objective function F and its gradient dF

dV̂
at (V̂, σ, δ) // Algorithm 2

9 V̂← lbfgs(V̂,F , dF
dV̂) // Liu and Nocedal [19]

10 T̂ ← restricted Delaunay triangulation of V̂ and Ŝ
11 T ← orthogonal projection of T̂ in R3 using the first three coordinates
12 return T

Algorithm 3: Our remeshing technique. One normal per vertex is first computed, in order to lift the input mesh.
On this lifted mesh, our initial set of sites is generated randomly with a uniform probability. Then, a loop computes
the restricted Voronoï diagram of the samples, and our objective function value and gradient. Finally, once a stop
criterion is reached (minimum reached or maximum iterations), the final triangulation is computed in 6D using the
restricted Delaunay triangulation of the sites. This triangulation is projected back in 3D orthogonally, to provide our
result.

12

(a) input mesh (b) random initialization (projected in R3)

(c) optimized sites (projected in R3) (d) final mesh

Figure 7: Our algorithm : the input surface is lifted, and randomly sampled. The sampling is optimized by minimizing our objective function,
and the result is obtained using the restricted Delaunay triangulation. The anisotropy shown on the result comes from the lifting. The input model
has 49k elements and is remeshed with 1000 sites, leading to 2000 elements. The optimization was limited to 40 iterations and the whole process
(including normal computation and restricted Delaunay triangulation extraction) took 8.5 seconds.

6. Discussion and future work293

6.1. Results294

This section illustrates our results on various test cases. After showing the basic steps of the algorithm, we295

demonstrate the robustness of our method, and its feature sensitivity. All the meshes were generated with a single296

thread implementation, running on an Intel Core i7-M2620 (2.GHz to 3.4GHz) processor, and 8GB RAM. Anisotropic297

meshes were generated using a parameter ν = 0.05. Locally scalled meshes were generated using ν = 0.01 and δ = 0.4.298

The feature sensitivity in all the results was set to σ = 5.299

6.1.1. Algorithm300

We start by illustrating our method on a real model, with Figure 7. Using the approach of Lévy and Bonneel [17],301

we obtain a new mesh with anisotropic elements in the curved regions of the input mesh. We emphasize here that302

using our method, no parameterization of the input mesh is used, our input is obtained from the CAD geometry by303

exporting the object as a mesh for rendering. The type of mesh obtained is a very coarse triangulation, solely meant304

to respect the shape of the objects, and approximate the spline patches with a given precision.305

6.1.2. Robustness306

We show on Figure 8 the results obtained by our algorithm on a mesh with bad connectivity information. This bad307

connectivity is due to file conversions and discretization of spline patches and patch boundaries: neighboring patches308

were discretized at different resolutions, causing a mismatch in the input mesh. Due to the lack of connectivity,309

classical parametric meshing methods like frontal methods, or methods using naive sharp feature detection to sample310

the sharp edges fail. The algorithm of Lévy and Bonneel [17] also fails in this case, since the normals used for the311

lifting are computed using the mesh connectivity. In contrast, using geometric neighborhoods to compute the normal,312

the connectivity missing in the input mesh is restored in the final mesh, and nice elements are produced.313

13

(a) input mesh (b) Lévy and Bonneel [17] (c) ours, local scaling (top) or anisotropy (bottom)

Figure 8: Robustness of our approach. The connectivity of the input surface is missing in some portions of the mesh. By computing normals using
the geometric neighborhoods, we can handle such degeneracies. The input model has 66k elements, and is remeshed with 30k sites, yielding 60k
elements. Using 100 iterations took 102 seconds for anisotropy and 130 seconds for local scaling. Model courtesy of Pedro Marins (GrabCAD).

6.1.3. Feature sensitivity and local density314

Figure 9 shows the results of our two major improvements, namely feature sensitivity and local density. Without315

using any heuristic algorithm to tag the sharp features, the minimization of our objective function captures these316

features. Using the normal variation to control the density of the elements, the curved regions of the mesh are well317

sampled, and fine details are correctly remeshed. The triangle aspect ratio is computed as [12]318

κ = α
inscribed radius

circumscribed radius
= 4

sin a sin b sin c
sin a + sin b + sin c

, (26)

where a, b and c are the angles of the measured triangle. In contrast, a frontal remeshing approach meshes each319

spline patch individually, and is constrained by the patch boundaries. When the boundary has very acute angles, bad320

triangles are generated, although the surface itself is almost flat. When the patches are not properly connected, holes321

also appear in the result.322

6.2. Limitations323

6.2.1. Efficiency324

Compared to state of the art method, our approach is usually slower. With respect to the approach of Lévy and325

Bonneel [17], our implementation is not parallel. However, our objective function calculation algorithm is very similar326

to theirs, and could be integrated in their framework to gain a speedup depending on the number of cores. Frontal327

meshing methods are usually much faster to handle heavy meshes, but have stronger requirements. We emphasize328

here that our method uses no parameterization of the input geometry. Our output mesh does not depend on surface329

patch boundaries, but we have to recompute a restricted Voronoï diagram at every iteration of the solver.330

6.2.2. Edge crunching331

An artifact can appear on sharp edges, due to a local minimum of the objective function. The Equation 10 favors332

sites in the tangent space of the triangles in their restricted Voronoï cells. On sharp features, this can be achieved in333

two ways : either move the site to the sharp feature, which is the usual behavior, or align restricted cell boundaries334

along sharp features, such that the two neighboring cells contain at most one single tangent space. The first case335

usually corresponds to the behavior of the algorithm, and the second case leads to artifacts as shown on Figure 10.336

To fix this issue, our current solution is to optimize the optimization in two phases. We start the optimization337

without feature sensitivity for the first 90% of the required iterations. We then switch the objective function intro-338

ducing feature sensitivity for the last 10% of the iterations. We use at least 10 feature sensitive iterations. Increasing339

the number of iterations usually decreases the number of artifacts, at the cost of a higher remeshing time. To obtain340

Figure 10 we solely used several feature sensitive iterations, and the diagram is clearly not centroïdal.341

14

(a) input spline model (b) automatically generated STL mesh (c) frontal remeshing of the spline patches [12]

(d) Lévy and Bonneel [17] (e) Our method

Figure 9: Feature sensitivity and local density on a CAD model (550 spline patches, 40k elements in the STL), remeshed with 100k elements. A
frontal remeshing of the spline patches [12] is constrained by the patch boundaries, and leads to bad triangles when these boundaries have acute
angles, or holes when the patches are not properly connected. The algorithm of Lévy and Bonneel [17] was applied using their automatic local
density, based on the local feature size. As compared to their result, our method captures well the sharp features and the density of the remeshing
increases in regions where the normal varies. As shown on the closeups, we capture small details with sharp features. The final mesh has desirable
angles, mostly around 60 degrees. The average triangle aspect ratio is 0.92 while the worst aspect ratio is 0.2. A peek appears around 0.5, because
of triangles in the transition areas between different densities, corresponding to an angle peek around 20 degrees. Our mesh was generated in 100
seconds using 100 solver iterations, while the method of Lévy and Bonneel [17] took 48 seconds for the same amount of iterations. The frontal
remeshing was done using Gmsh [12] in 51 seconds. Model courtesy of Peter Murárik (GrabCAD).

(a) edge crunching (b) input sensitivity

Figure 10: Limitations of our algorithm. Left : edge crunching appears when the boundary of Voronoï cells aligns with sharp features. Right :
when the input mesh contains flat triangles with different normals on its vertices, flat triangles can be generated in the output.

15

Figure 11: Remeshing problem due to the use of normal lifting on gaps with different resolutions on both sides. On the left, the input mesh is a
cube with its top face disconnected and meshed with a finer resolution. In the middle, the remeshing using normal lifting has gaps, due to the fact
that the normal is interpolated differently on both sides of the gap. At the middle of the edge, the gap disappears, since the interpolations match.
To show the gap, the hole filling procedure described in Section 5.2.2 was disabled. Otherwise the gap is filled, and the result is manifold. On the
right, the remeshing without using normal lifting provides a fine mesh.

An other solution would be to post-process the solution, however the detection of the artifacts can be difficult due342

to the quality of the input mesh, considering cases when the surface patches along the sharp features are not properly343

connected. We will explore this approach in future work.344

6.2.3. Input triangulation sensitivity345

Using normal lifting, the normal field of the surface is sampled on the vertices of the mesh. When the input mesh346

has triangles with very big angles, the gradient of the normal can be very large, and triangles that are nearly flat in 3D347

can become large in 6D. After remeshing, this may lead to flat triangles in the output, as shown on Figure 10.348

An idea to solve this issue would be to preprocess the input mesh, using an edge splitting strategy to remove big349

angles, without altering the shape of the object. We also plan on testing such a method in future work.350

6.2.4. Worsening gaps in the lifting351

When the input mesh exhibits a gap, and the resolution of the mesh on both sides of the gap is different, The lifting352

may worsen the gap. This is again due to the interpolation of the normal along the edges of the mesh. If a big edge353

has different normals on both ends, the normal along the edge is linearly interpolated by the lifting. When this edge354

corresponds to a gap, and the resolution on the other side is finer, the interpolation of the normal will be different,355

worsening the gap because of the normal dimensions. This is illustrated on Figure 11.356

7. Perspectives357

In its current state, our method can already prove useful in the remeshing of bad quality CAD models : we do not358

require any parameterization and most gaps in the input mesh are automatically handled. Sharp features are taken into359

account without any feature detection algorithm and thresholding.360

Apart from the future work related to the limitations, this work could be extended in several manners. In its current361

state, we do not control the gradation of the output mesh, which can lead to thiner triangles in transition areas as shown362

on Figure 9. In addition, the anisotropy or density is currently guided by the curvature of the input mesh, and cannot363

be easily user provided. We therefore plan on exploring the automatic generation of a lifting of the input mesh, given364

a user-provided metric for the mesh. Gradation control also requires the metric field to be sampled and interpolated on365

the input mesh, which could have insufficient quality for such a task. Existing mesh adaptation methods could prove366

useful as a preprocessing step to ensure a proper sampling of a user provided metric in the input mesh.367

References368

[1] Alauzet, F., 2010. Size gradation control of anisotropic meshes. Finite Elements in Analysis and Design 46 (1), 181–202.369

16

[2] Asami, Y., 1991. A note on the derivation of the first and second derivative of objective functions in geographical optimization problems.370

Journal of the Faculty of Engineering, The University of Tokyo (B) 41 (1), 1–13.371

[3] Attene, M., Falcidieno, B., Spagnuolo, M., Wyvill, G., 2003. A mapping-independent primitive for the triangulation of parametric surfaces.372

Graphical models 65 (5), 260–273.373

[4] Baker, T. J., 2005. Mesh generation: Art or science? Progress in Aerospace Sciences 41 (1), 29–63.374

[5] Béchet, E., Cuilliere, J.-C., Trochu, F., 2002. Generation of a finite element mesh from stereolithography (stl) files. Computer-Aided Design375

34 (1), 1–17.376

[6] Boissonnat, J.-D., Devillers, O., Teillaud, M., Yvinec, M., 2000. Triangulations in cgal. In: Proceedings of the sixteenth annual symposium377

on Computational geometry. ACM, pp. 11–18.378

[7] Borouchaki, H., Laug, P., George, P.-L., 2000. Parametric surface meshing using a combined advancing-front generalized delaunay approach.379

International Journal for Numerical Methods in Engineering 49 (1-2), 233–259.380

[8] Chen, Z., Wang, W., Lévy, B., Liu, L., Sun, F., 2014. Revisiting optimal delaunay triangulation for 3d graded mesh generation. SIAM Journal381

on Scientific Computing 36 (3), A930–A954.382

[9] Dey, T. K., Ray, T., 2010. Polygonal surface remeshing with delaunay refinement. Engineering with Computers 26 (3), 289–301.383

[10] Edelsbrunner, H., Shah, N., 1997. Triangulating topological spaces. International Journal of Computational Geometry and Applications 7 (4),384

365–378.385

[11] Frey, P., George, P.-L., 2010. Mesh generation. Vol. 32. John Wiley & Sons.386

[12] Geuzaine, C., Remacle, J.-F., 2009. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. International387

Journal for Numerical Methods in Engineering 79 (11), 1309–1331.388

[13] Goodman, J. E., O’Rourke, J., 2010. Handbook of discrete and computational geometry. CRC press.389

[14] Iri, M., Murota, K., Ohya, T., 1984. A fast voronoi-diagram algorithm with applications to geographical optimization problems. System390

Modelling and Optimization, 273–288.391

[15] Lasserre, J., Avrachenkov, K., 2001. The multi-dimensional version of
∫ b

a xpdx. The American Mathematical Monthly 108 (2), 151–154.392

[16] Laug, P., Borouchaki, H., 2003. Interpolating and meshing 3d surface grids. International Journal for Numerical Methods in Engineering393

58 (2), 209–225.394

[17] Lévy, B., Bonneel, N., 2012. Variational anisotropic surface meshing with voronoi parallel linear enumeration. In: IMR-21st International395

Meshing Roundtable.396

[18] Lévy, B., Liu, Y., 2010. Lp centroidal voronoi tesselation and its applications. ACM Transactions on Graphics 29, 4.397

[19] Liu, D., Nocedal, J., 1989. On the limited memory bfgs method for large scale optimization. Mathematical programming 45 (1), 503–528.398

[20] Lloyd, S., 1982. Least squares quantization in pcm. IEEE Transactions on Information Theory 28 (2), 129–137.399

[21] Marchandise, E., Remacle, J.-F., Geuzaine, C., 2012. Optimal parametrizations for surface remeshing. Engineering with Computers, 1–20.400

[22] Marcum, D. L., 2001. Efficient generation of high-quality unstructured surface and volume grids. Engineering with Computers 17 (3), 211–401

233.402

[23] Muja, M., Lowe, D. G., 2014. Scalable nearest neighbor algorithms for high dimensional data. Pattern Analysis and Machine Intelligence,403

IEEE Transactions on 36.404

[24] Nivoliers, V., Lévy, B., 2013. Approximating functions on a mesh with restricted voronoï diagrams. In: Computer Graphics Forum. Vol. 32.405

Wiley Online Library, pp. 83–92.406

[25] Rassineux, A., Breitkopf, P., Villon, P., 2003. Simultaneous surface and tetrahedron mesh adaptation using mesh-free techniques. International407

journal for numerical methods in engineering 57 (3), 371–389.408

[26] Shewchuk, J., 2002. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint). University409

of California at Berkeley 73.410

[27] Tristano, J. R., Owen, S. J., Canann, S. A., 1998. Advancing front surface mesh generation in parametric space using a riemannian surface411

definition. In: IMR. pp. 429–445.412

[28] Wang, D., Hassan, O., Morgan, K., Weatherill, N., 2007. Enhanced remeshing from stl files with applications to surface grid generation.413

Communications in numerical methods in engineering 23 (3), 227–239.414

[29] Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W., 2009. Isotropic remeshing with fast and exact computation of restricted voronoi diagram.415

In: Computer graphics forum. Vol. 28. Wiley Online Library, pp. 1445–1454.416

17

	1 Introduction
	1.1 Advancing front algorithms
	1.2 Mesh adaptation
	1.3 Delaunay refinement and optimization

	2 Background
	2.1 Meshes and sites in d dimensional space
	2.2 Restricted Voronoï Diagrams
	2.2.1 Definition
	2.2.2 Computation
	2.2.3 Restricted Delaunay triangulation

	2.3 Objective function
	2.3.1 Definition
	2.3.2 Gradient

	2.4 Feature sensitiveness
	2.4.1 Objective function
	2.4.2 Value
	2.4.3 Gradient

	2.5 Anisotropy through normal lifting

	3 Generalizing feature sensitiveness
	3.1 Using the tangent space
	3.2 Objective function gradient
	3.2.1 Inner term
	3.2.2 Boundary term
	3.2.3 Continuity

	3.3 Objective function computation

	4 Local scaling
	4.1 Setup
	4.2 Gradient of the lifting

	5 Implementation
	5.1 Parameters
	5.2 Handling gaps in the input mesh
	5.2.1 Computing the normal for the lifting
	5.2.2 Filling gaps in the restricted Delaunay triangulation

	5.3 Final algorithm

	6 Discussion and future work
	6.1 Results
	6.1.1 Algorithm
	6.1.2 Robustness
	6.1.3 Feature sensitivity and local density

	6.2 Limitations
	6.2.1 Efficiency
	6.2.2 Edge crunching
	6.2.3 Input triangulation sensitivity
	6.2.4 Worsening gaps in the lifting

	7 Perspectives

