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! Institut de recherche en informatique de Toulouse, CNRS — Université de Toulouse
2 LORIA, CNRS - Université de Lorraine, France & IMSc, Chennai, India
3 Institute for Information Transmission Problems RAS & Higher School of
Economics, Moscow, Russia & Moscow Institute of Physics and Technology, Russia

Abstract. In this paper we introduce public announcements to Subset
Space Logic (SSL). In order to do this we have to change the original
semantics for SSL a little and consider a weaker version of SSL without
the cross axiom. We present an axiomatization, prove completeness and
show that this logic is PSPACE-complete. Finally, we add the arbitrary
announcement modality which expresses “true after any announcement”,
prove several semantic results, and show completeness for a Hilbert-style
axiomatization of this logic.

1 Introduction

Subset Space Logic (SSL) was introduced in [6] as logic of knowledge and efforts.
The language of SSL includes two modalities K (correspond to knowledge, K¢
reads as “the agent knows that ¢ is true”) and O (correspond to efforts, G =
—O- reads as “p is true after some efforts”). A formula in this setting evaluates
in a pair (z,U), where x is “the actual state of the world” and U is “the epistemic
state”: the set of states of the world indistinguishable from the real one by the
agent. In this context making an effort correspond to shrinking the epistemic
state.

Over the years several ways to extend this language were suggested. For ex-
ample multiple agents were introduced in [13], and the overlap operator in [12].
Another very natural way to extend SSL is with the public announcements op-
erators. The effect of public announcement that ¢ is that the subset space is
reduced to all pairs (x, U) that satisfy the formula ¢. In other words, this mod-
els some form of external information being provided to the system, that is
considered reliable (and thus taken to be true), which results in uncertainty re-
duction for the knowing agent, but also in uncertainty reduction for the amount
of effort needed to make a proposition true or get to know if after that effort:
public announcement affects both the K and the O formulas.

It is intriguing and somewhat of a challenge to distinguish the “0Q¢”, inter-
preted as “p is true after some effort”, from the quantifier '(!)¢’, interpreted
as “yp is true after some announcement”. Isn’t an announcement also a form of
effort? We do not have a conclusive answer to what the difference is, but two



suggestions. Firstly, note that the ¢ in Q¢ is interpreted in the same model, not
in a changed model, unlike the ¢ in (1) that is interpreted in a model restriction,
a changed model. Therefore, the ¢ has more the flavor of a conditional logical
interpretation (conditional on the agent doing some effort, ¢ is true), unlike the
public announcement version. Let “i)” incorporate the effort; as known, “p is
true conditional on " is very different from “p is true after announcement of
1)’ Secondly, we could imagine an application wherein the { in Q¢ represents a
form of agency in contrast to (!)¢ that represents the effects of externally driven
changes. As known, in public announcement logic there is no clear parallel for
agency.

Our main motivation for this logic was to demonstrate that one can fruit-
fully add a dynamic aspect similar to that in dynamic epistemic logic to a very
different logic, and “make it work”.

A first attempt to extend SSL with public announcements was by Can Bagkent
in his master thesis [3]. We think that this semantics for public announcement
in SSL is not well-defined; and also other intrinsic problems are not easy to
overcome (see Appendix). To address these issues we propose a weaker version
of SSL (wSSL) without the cross axiom; and to prove completeness we also
modified the semantics somewhat.

We further extended this public announcement SSL with the arbitrary/any
announcement operator of [2]. This models what can be known and which further
effort still needs to be taken (in the SSL setting) after any announcement, i.e.,
after any external information has been incorporated.

We should also mention the work of Agotnes and Wang [1] where they take
a different approach. Instead of adding public announcements operators to SSL
they give an alternative semantics for PAL, using subset spaces instead of model
updates.

2 Subset Space Logic

2.1 Syntax and Semantics

Let Var be a countable set of propositional variables (with typical members
denoted p, ¢, etc). The set For of all formulas over Var (with typical members
denoted ¢, 1, etc) is defined by the rule

pu=p|l L@ | (V)| Ke|Op.

It is usual to omit parentheses if this does not lead to any ambiguity. We shall say
that a formula ¢ is Boolean iff ¢ contains neither the modal connective K, nor
the modal connective 0. The notion of a subformula is standard. We adopt the
standard definitions for the remaining Boolean connectives. As usual, we define
f((p = 2 K-p and Op = -0O-p. We inductively define the degree of a formula
@ (denoted deg(p)) as follows: (i) deg(p) = 0; (ii) deg(L) = 0; (iii) deg(—¢) =
deg(y); (iv) deg(¢ V ¥) = max({deg(y), deg(¥)}); (v) deg(Kyp) = deg(Dy) =
deg(y) + 1.
Let || denote the length of ¢ and Var(y) be the set variables in (.



Definition 1. A (wSSL-)frame is a structure of the form F = (X, S, W) where
X is a nonempty set of states (denoted x, y, etc), S C P(X) is a nonempty set
of nonempty subsets of X (denoted U, V', etc) and W is a nonempty set of pairs
(x,U) such thatx € X,U € S andx € U. Given a frame F = (X, S, W), let =%
and —Z be the binary relations on W defined as follows: (i) (z,U) =% (y,V)
iffU=V; (ii) (z,U) =4 (y,V) iff t=y and U D V.

Note that in this definition set S does not play any significant role and can be
replaced with P(X) without any effect on validity.
We show first that

Lemma 1. 1. —>f( s an equivalence relation.
2. —i is reflevive and transitive.

Definition 2. Given a frame F = (X, S, W), a valuation on F is a function 0
assigning to each p € Var a subset 6(p) of X. We inductively define the satis-

faction of a formula ¢ in a frame F = (X, S, W) with respect to a valuation 6
on F at (x,U) € W (denoted F,0,(x,U) = ¢) as follows:

- ]:,9,(17,[]) ':p Zﬁz € 0(]));

— all logical connectives are treated as usual;

— F,0,(x,U) E Ko iff ¥(y,V) € W ((2,U) =% (v, V) = F,0,(y.V) F 9);
- F.0,(z,U) = Op iff V(y, V) e W ((z,U) =% (v, V) = F.0,(y,V) = ¢).

Remark. If for some S C 2% we take W = {(z,U) |z € X, 2 € U € S} then
frame (X, S, W) is equivalent to (validates the same formulas) the classical subset
space (X, S,0) (see [6]). So these models can be viewed at as a generalization
of subset spaces. Cousider the cross axiom (CA = OKp = K Op) which is valid
in any classical subset space and can be false in a wSSL-model. Indeed consider
two sets V' C U and two points z,y € V such that {(z,V), (z,U), (y,V)} =W
and (y,V) = p, then (z,U) = OKp A =K Op.

We shall say that a formula ¢ is universally satisfied in a frame F = (X, S, W)
with respect to a valuation 6 on F (denoted F,0 |= ) iff for all (x,U) € W,
F.0,(x,U) &= . A formula ¢ is said to be valid in a frame F = (X, S, W)
(denoted F |= ¢) iff for all valuations 6 on F, F,0 = ¢. We shall say that a
formula ¢ is valid (denoted |= ) iff for all frames F = (X, S, W), F = ¢. So,
by Lemma 1 and standard arguments we have

Proposition 1. 1. =Ko — ¢, ¢ — KKg and = Ko — KK,
2. EOp — ¢ and E Op — OOgp.

Proposition 2. If ¢ is a Boolean formula then = ¢ — Ogp.

2.2 Axiomatization and Completeness

The axioms of wSSL are all instances of Boolean tautologies plus the following
formulas: (i) K(p — ¢) = (Ke — Kv); (ii) O(p — ¢) — (Op — O);

(iii) Ko — ¢; (iv) ¢ = KKo; (v) Ko — KKyp; (vi) Op — ¢; (vii) Op —



OOgp; (viii) if ¢ is a Boolean formula then ¢ — Op. The rules of inference of

wSSL are: (i) modus ponens (from ¢ and ¢ — @ infer ¢); (ii) K-generalization

(from ¢ infer K); (iii) O-generalization (from ¢ infer Ogp). A formula ¢ is said

to be wSSL-provable iff ¢ belongs to the least set of formulas containing all

axioms of wSSL and closed with respect to all rules of inference of wSSL.
Using induction one can easily prove

Proposition 3. Let ¢ be a formula. If ¢ is wSSL-provable then = .
The following result is expected but more difficult to prove.
Proposition 4. Let ¢ be a formula. If | ¢ then ¢ is wSSL-provable.

We shall say that a set I" of formulas is a wS'S L-theory iff it satisfies the following
conditions: (i) I" contains the set of all wSS L-provable formulas; (ii) I" is closed
under the rule of inference of modus ponens. Obviously, the least wSS L-theory
is the set Pr(wSSL) of all wSS L-provable formulas whereas the greatest wSSL-
theory is the set of all formulas. A wSSL-theory I is said to be consistent iff
L & I'. Let us remark that the only inconsistent wSS L-theory is the set of all
formulas. We shall say that a wSSL-theory I' is maximal iff for all formulas
p, p € I'yor np € I'. Let I be a wSSL-theory. For all formulas ¢, let I" + ¢
be the set of all formulas 1 such that ¢ — ¢ € I'. It is a simple matter to
check that I' + ¢ is a wSSL-theory. Moreover, I + ¢ is consistent iff = & I.
The proposition below is a variant of well known Lindenbaum’s lemma. See [5,
Lemma 4.17] for the proof of a similar result.

Proposition 5. Let I' be a wSSL-theory. If I' is consistent then there exists a
mazximal consistent wSSL-theory A such that I' C A.

Let I' be a wSSL-theory. Let: (i) KI' be the set of all formulas ¢ such that
Ko € I'; (ii) O be the set of all formulas ¢ such that Op € I'. It is easy to
prove that KT is a wSSL-theory and O is a wSSL-theory using distribution
axioms and O- and K-generalization rules.

Our first task is to define the canonical model of wSSL. The canonical model
of wSSL is the structure M® = (S, R, Rg, §°) defined as follows: (i) S° is the
set of all maximal consistent wSSL-theories; (ii) RS is the binary relation on
S¢ defined by I'R§, A ifft KI' C A; (iii) R is the binary relation on S¢ defined
by I'RSA iff OI' C A; (iv) 0° is the function assigning to each p € Var the
subset 6¢(p) of S¢ defined by I" € 6¢(p) iff p € I'. It is worth noting at this point
the following:

Lemma 2. 1. R is an equivalence relation.
2. Rg is reflexive and transitive.

Considering M€ as a Kripke model where the modal connectives K and O are
interpreted by means of the binary relations R, and Rf, the proposition below
contains a result that can be proved by induction on . See [5, Lemma 4.21] for
the proof of a similar result.

Proposition 6. Let ¢ be a formula. For all I' € S¢, we have M, I" = ¢ iff
pel.



Let Iy be a maximal consistent wSSL-theory. Our second task is to unravel
ME around Ij. The unraveling of M¢ around I is the structure M* =
(S*, RY%, R%,0") defined as follows: (i) S™ is the set of all finite sequences
(i1, 11, ..., im, ;) such that m is a nonnegative integer, i1,...,i, € {K,0}
and I,...,Iy € S¢ are such that I[oR§ I', ..., I'm— 1R Iy; (ii) Rj is the
binary relation on S* defined by (i1, I, ..., 0m, Im)R%(j1, A1, ..., Jn, Ap) iff

there exists a nonnegative integer o such that o <m, o < n, (i1,11,...,%0, 1) =
(j17A1,...,jO,AO)7 io+1 =...= ’im =K andjo+1 = ... :]n = K; (lil) Rg‘ is
the binary relation on S* defined by (i1, 1, ..., im, Lm)RE(G1, A1y -2y Jn, An)
1ffm§n, (i17F1,...,im7Fm):(jl,Ah...,jm,Am) andjm+1 ::]n: D;

(iv) 6" is the function assigning to each p € Var the subset 0%(p) of S* de-
fined by (i1, 1, .. im, Im) € 0%(p) iff p € I},,. We adopt the convention that
an empty sequence (say, when m = 0, or n = 0 above) has value Ij. For all
(i1, Iy ey iy ) € S™, let 80 (i1, Iy ooy, i) = Card({a: « is a positive
integer such that & < m and i, = O}). By Lemma 2, we infer immediately the
following.

Lemma 3. 1. R} is an equivalence.
2. RY is reflexive and transitive.

Considering M" as a Kripke model where the modal connectives K and O are
interpreted by means of the binary relations R} and Rf, the proposition below
contains a result that can be proved by induction on ¢.

Proposition 7. Let ¢ be a formula. For all (i1, I, ... 0m, Im) € S, we have
Muu(ZhFlauzmaFm) ':SO ZﬁMc7Fm ':SO

Proof. See [5, Lemma 4.52] for the proof that M€ is a bounded morphic image
of M* and [5, Proposition 2.14] for the proof that modal satisfaction is invariant
under bounded morphisms.

Let =" be the symmetric and transitive closure of Rf and <* be the transitive
closure of RY% o RY. Obviously, =" is reflexive, symmetrical and transitive and
<" is reflexive and transitive. Let I' € S*. The equivalence class modulo ="
with I' as its representative is denoted [I']=z«. The set of all equivalence classes
of S* modulo =" is denoted S*/ =". Let us define function f : S* — P(S*/ =)
defined as follows

f(I) = {[T)=. | T <" A}.

To continue, another technical lemma is necessary.
Lemma 4. Let I') A € S™.

1. If f(I') = f(A) then I’'R% A.
2. If ' =* A and f(I') O f(A) then TREA.

Our third task is to spatialize M*. The spatialization of M" consists of the
frame F* = (X*,5° W*) and the valuation 6° on F* defined as follows:
(i) X° = S"/ ="; (ii) S® is the range of f; (iii) W* = {([[=«, f(I")) | " € S"};
(iv) valuation 6° is as follows 0°(p) = {[I'|=z« | I" € 0*(p)}. The interesting result
is the following



Proposition 8. Let ¢ be a formula. For all I' € S* we have
IS,GS,([F]Eu,f(F)) ':90 ZﬁMu7F ): P

Now, we can proceed to the

Proof of Proposition 4. Suppose  is not wSS L-provable. Hence, Pr(wSSL)+-p
is a consistent wSSL-theory. Thus, by Proposition 5, there exists a maximal
consistent wSSL-theory Iy such that Pr(wSSL) + —¢ C Iy. Obviously, ¢ &
Iy. Therefore, by Proposition 6, M€ Iy |~ ¢. Consequently, by Proposition 7,
MY, Ty = . Hence, by Proposition 8, F%,0°, ([Io]=«, f(I1)) & . Thus, £~ ¢.
_|

2.3 Decidability and Complexity

Fix a formula ¢ with deg(¢) = k. Let ©* be the conjunction of the following
formulas: (i) —; (ii) for all p € Var(p), (KO)*(p — Op); (iii) for all p €
Var(y¢), (KO)¥(—=p — O-p). In the above formulas, (KO0)* means KO repeated
k times. We first prove a simple lemma.

Lemma 5. The following conditions are equivalent:

1. @* is satisfied in a Kripke model of the form M = (S, Rk, Ra,0) where Ry
is reflexive, symmetrical and transitive, Rg is reflexive and transitive and the
modal connectives K and O are interpreted by means of the binary relations
Ry and Rp.

2. [ .

Proposition 9. The membership problem in the set of all valid formulas is in
PSPACE.

Proof. By Lemmas 5, the membership problem in the set of all valid formulas is
reducible to the membership problem in S5® S4. Since the membership problem
in S5® S4 is in PSPACE [14, Theorem 7|, then the membership problem in
the set of all valid formulas is in PSPACE.

Let Q1p1...Qnpne(p1,-..,pn) be a QBF and consider the new propositional
variables qo,q1, ..., qn. Let [Q1p1...Qupn@(p1,...,pn)] be the conjunction of
the following formulas: (i) qo; (i) KO(gi—1 — KO (qs A Kps) A KO (qi A K—p;))
for each positive integer ¢ such that ¢ < n and Q; = V; (iii) KO(gi—1 —
IA(<>(ql- A Kp;) V KO(qi A K—p;)) for each positive integer ¢ such that i < n
and @Q; = 3; (iv) K(gn, — ¢). The next lemma explains the relationship be-
tween [lel s annsp(ph oo 7pn)] and lel cee annsp(ph ce upn)'

Lemma 6. 4 Q A= Q1p1...Qupne(P1,-..,0n) holds iff [A] is satisfied.

Proposition 10. The membership problem in the set of all valid formulas is
PSPACE-hard.

Proof. By Lemma 6, the QBF-validity problem is reducible to the member-
ship problem in the set of all valid formulas. Since the QBF-validity problem is
PSPACE-hard [16, Theorem 19.1], then the membership problem in the set of
all valid formulas is PSPAC E-hard.



3 Subset Space Logic with Announcements

3.1 Syntax and Semantics

We consider an extension wSSL, of wSSL with announcements operators.
The set For, of all formulas with announcements over Var (with typical
members denoted ¢, 1, etc) is defined by the rule

pu=p|L]l-p|(eVy)| Ke|DOp| ¢

We define (o)1) 1= —[p]—p.

The definition of the satisfiability of the formula [¢]y in a frame F =
(X, S, W) with respect to a valuation § on F at (z,U) € W is defined as fol-
lows: F,0, (z,U) | [¢ly iff if F,0,(x,U) = ¢ then (X,S,W,),0,(z,U) = ¢
where W, = {(y,V): (y,V) € W is such that F,0,(y,V) |= ¢}. The following
propositions are basic.

Proposition 11. The following formulas are valid: [plp < (p — p), [¢]L +
= [p]= < (@ = =elY), [Pl VX) © ([Pl VIelX), [PIEY < (¢ = Klpl),
(P10 < (¢ = Dlpl), [¢llv]x < [{e¢]x-

Let tr: For, — For be the standard meaning-preserving translation from For,,
to For. It can be defined inductively in a standard way using equivalences from
Proposition 11. This translation has been considered in several places (cf. [7]).

Proposition 12. For all formulas ¢ in For,, there exists a formula ¥ (= tr(p))
in For such that = ¢ < 1.

3.2 Axiomatization/Completeness

The axioms of wSSL, are all axioms of wSSL plus all the formulas from Propo-
sition 11. The rules of inference of wSSL, are all rules of inference of wSSL
plus the following rule of inference: [p]-generalization (from v infer [p])).

For our purpose, the following crucial property of the translation ¢r can be
proved by induction.

Proposition 13. Let ¢ be a formula in For,. tr(yp) < ¢ is wSSL,-provable.
And if ¢ is wSSL,-provable then = .

Referring to Proposition 4, we obtain the

Proposition 14. Let ¢ be a formula in For,. If = ¢ then ¢ is wSS L, -provable.

Proof. Suppose ¢ is not wSSL,-provable. Hence, by Proposition 13, tr(y) is
not wSSL,-provable. Thus, tr(¢) is not wSSL-provable. Therefore, by Propo-
sition 4, £ tr(y). Consequently, by Proposition 12, | .



3.3 Decidability and Complexity
We will following the line of reasoning suggested in [15]. Proof details are omitted.

Proposition 15. The membership problem in the set of all valid formulas is in
PSPACE.

Proposition 16. The membership problem in the set of all valid formulas is
PSPACE-hard.

Proof. By Proposition 10.

4 Subset Space Logic with Arbitrary Announcements

4.1 Syntax and Semantics

We consider an extension wSS Ly, of wSSL, wherein we can express what be-
comes true without explicit reference to announcements realizing that.

The set For,, of all formulas with arbitrary announcements over Var (with
typical members denoted ¢, 1, etc) is defined by the rule

pu=plLl-p|(pVY)| Ke|Op| el | Ne.

We define ()¢ ::= —[!]=p. For the definition of the [!]-special rule of inference in
section 4.2, we will need formulas of a special form, called admissible forms. Let
f be a new propositional variable. The set AF(Var) of all admissible forms over
Var (with typical members denoted A, B, etc) is defined by the rule

A== A| KA|OA.

Note that in each admissible form A, § has a unique occurrence. Given an admis-
sible form A(f#) and a formula ¢, let A(¢) be the result of the replacement of £ in
its place in A with . The definition of the satisfiability of the formula [!]y in a
frame F = (X, S, W) with respect to a valuation 6 on F at (z,U) € W is defined
as follows: F,0, (x,U) | ¢ iff for all formulas ¢ in For,, if F,0,(z,U) = ¢
then (X, S, W)y),0,(z,U) = 1. The following propositions are basic.

Proposition 17. The following formulas are valid: [l — », [l — [[e,
e = Ole, Oe = [{e.

The following proposition can be proved similar to Proposition 3.9 in [2].
Proposition 18. = K[l — [[| K.

Although for all formulas ¢, K[!|p — [|Kp is valid, there exists formulas ¢ such
that [!|K¢ — K[!]¢ is not valid.

Ezxample 1. For example, one may consider the formula ¢ = Okp. In the
frame F = (X,S,W) where X = {z,y}, S = {{z},{z,y}} and W =
{(z,{z}), (x,{z,y}), (y, {z,y})}, with respect to a valuation ¢ on F such that
0(p) = {x}, (z,{z,y}) does not satisty [[|Kyp — K[!]e.



Let us show that there exists a formula that is equivalent to no formula in For,.

Ezample 2. To illustrate the truth of this, take the case of the formula ¢ =
[(OKCKp — ©Kp) and assume that [!]-free formula ¢ is equivalent to ¢ and
let ¢ is a new variable ¢ ¢ Var(¢y). Consider the frame F = (X, S, W) where
X ={x,y}, S ={{z,y}} and W = {(, {x,y}), (v, {z,y})}, the valuation 6 on
F such that 6(p) = {z}, 0(q) = 0 and 6(r) = 0 for each propositional variable
r # p,q, the frame F' = (X', 5", W') where

X' = {xllﬂwéﬂyi7yé}7
S = {{xllﬂyll}ﬂ {xll7x/27yllay/2}}ﬂ
W’ = {(@], {21, y1}), (21, X7), (v1, {21, 91 }), (w1, XD, (23, X)), (v, X))

and the valuation ¢ on F’ such that 0'(p) = {z}, 2%}, 0'(q) = {«},v}} and
6(r) = 0 for each propositional variable r # p, q.

It easy to check that M and M’ = (F’,0') are bisimilar in the language with-
out ¢ (bisimilation connects elements without prime and corresponding elements
with prime and an index). So 1 is true or false at all bisimilar pairs simultane-
ously. Formula OKOK p — OKpistrue in M and after any restriction and hence
M, (z,X) = ¢ and M, (2, X) = ¢ and M', (2}, X’) = . But M', (2}, X’) E 9
because M', (4, X') ¥ [pV —q|(OKOKp — OKp).

4.2 Axiomatization and Completeness

The axioms of wSSL,, are all axioms of wSSL, plus the following formulas:
[ — []p for all formulas ¢ in For,. The rules of inference of wSSL,, are all
rules of inference of wSSL, plus the following rule of inference: [!]-special rule
(from {A([¢]p): ¢ is a formula in For,} infer A([!]¢)). A formula ¢ is said to be
wS'S Lyq-provable iff ¢ belongs to the least set of formulas containing all axioms
of wSSL,, and closed with respect to all rules of inference of wSSL,,. Here,
the first result is

Proposition 19. Let ¢ be a formula. If ¢ is wSSLg,-provable then = ¢.

Proof. Tt suffices to demonstrate the following properties: (i) the axioms of
wSS Ly, are valid; (ii) the rules of inference of wSSL,, preserve validity. The
proof is left to the reader, we only describe the case of the [!]-special rule of
inference. Let A be an admissible form and ¢ be a formula such that & A([!]e).
Hence, there exists a frame F = (X, S, W) such that F = A([!]¢). Thus, there
exists a valuation 6 on F such that F,0 = A([!]¢). Therefore, there exists
(x,U) € W such that F,0,(z,U) K= A([!]¢). By induction on A, one easily
sees that there exists a formula ¢ in For, such that F,0, (z,U) ¥~ A([¢]e).
Consequently, F,0 [~ A([¢]y). Hence, F = A([¥]p). Thus, = A([4]e).

Proposition 20. Let ¢ be a formula. If |= ¢ then ¢ is wSS Lyq-provable.



Proposition 20 is more difficult to establish than Proposition 19 and we defer
proving it till the end of the section. In the meantime, we present some useful
results. We shall define wSSL,,-theories as sets I' of formulas satisfying the
following conditions: (i) I" contains the set of all wSSLgq-provable formulas;
(ii) I' is closed under the rule of inference of modus ponens; (iii) I" is closed
under the [!]-special rule. Of course, the analogue for wSS L,,-theories of Propo-
sition 5 holds. See [2, Lemma 4.12] for the proof of a similar result. We shall
define the canonical model of wSSL,, in the same way as we have defined the
canonical model of wSSL. Of course, the analogue for the canonical model of
wSSLg, of Lemma 2 holds. Let M® = (5S¢, RS, Rg,6°) be the canonical model
of wSSLy,. Considering M€ as a Kripke model where the modal connectives K
and O are interpreted by means of the binary relations R} and Rf and where
the modal connective [!] is interpreted as in APAL (PAL with arbitrary an-
nouncements) [2], the proposition below contains a result that can be proved by
induction on . See [2, Lemma 4.13] for the proof of a similar result.

Proposition 21. Let ¢ be a formula. For all I' € S¢, we have for all finite
sequences (Y1, ..., n) of formulas, M®, I' = [1] ... [Yn]e iff 1] ... [Wn]p € T.

We shall define the unraveling of the canonical model of wSSL,, in the same way
as we have defined the unraveling of the canonical model of wSSL. Of course, the
analogue for the unraveling of the canonical model of wSSL,, of Lemma 3 holds.
Let Iy be a maximal consistent wSSLy,-theory and M"* = (S*, R}, R, 0") be
the unraveling of M€ around Iy. Considering M" as a Kripke model where the
modal connectives K and O are interpreted by means of the binary relations R
and R% and where the modal connective [!] is interpreted as in APAL [2], the
proposition below contains a result that can be proved by induction on ¢.

Proposition 22. Let ¢ be a formula. For all (i1, I1,...,tm, ) € S*, we
have for all finite sequences (Y1, ..., ¢n) of formulas, M™, (i1, I, ... im, Im) =
(V1] [n]e iff M, D b= [1] . [thn] e

Let =" be the symmetric and transitive closure of Rf and <* be the transitive
closure of RY% o Rf. Obviously, =" is reflexive, symmetrical and transitive and
<" is reflexive and transitive. Let I' € S*. The equivalence class modulo =" with
T as its representative is denoted [I']=«. The set of all equivalence classes of S“
modulo =" is denoted S*/ =". Let f be the function assigning to each I" € S“
the subset f(I') of S*/ =" defined by [A]z« € f(I') iff I' <* A. Since <" is
reflexive, then [z« € f(I"). We shall spatialize M™ in the same way as we have
spatialized the unraveling of the canonical model of wS.SL. The spatialization of
M consists of the frame F* = (X*,5% W#) and the valuation 6% on F* defined
as follows: (i) X* is the set of all equivalence classes of S* modulo =%; (ii) S*
is the range of f; (iii) W* is the set of all pairs ([I'|z«, f(I")) such that I € S%;
(iv) 6° is the function assigning to each p € Var the subset 6°(p) of X defined
by [[Mzv € 0°(p) iff I' € 6" (p). The interesting result is the following

Proposition 23. Let ¢ be a formula. For oll I' € S“, we have for all fi-
nite sequences (i1, .., ) of formulas, F*,0°, (([)=u, f(I)) = [n]... [n]e
iff M, T =[] .. [l



4.3 Decidability /Complexity

As for the membership problem in the set of all valid formulas, we do know
whether it is decidable or not. Remark that the membership problem in the set
of all valid formulas defined in the Section 4 of [2] was proved to be undecidable
by French and van Ditmarsch [9].

5 Variants and Open Problems

There are several ways to continue this research. One way is by adding overlap
operator or (and) by considering multiple agents, as in the interesting recent [1].
The other way is to try to return to the classical subset spaces, in particular we
can ask what formulas can be announced so that the restricted model would still
be a classical subset space.
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Appendix

A Counterexample to PAL SSL

In the original text [3] by Can Bagkent the definition is inconsistent. In a more
recent text (see [4]) this definition has been corrected, but unfortunately other
problems remain. In the following text we will try to present the intrinsic diffi-
culties of introducing public announcements to SSL.

Let us consider the following subset space (in classical sense, see [6]) M =
(X,0,V), where X = {z,y}, O = P(X) — all subsets of X, and the valuation
is such that V(p) = {y}. Then consider formula ¢ = K—p Vv Op. The list of all
neighborhood situations where ¢ is true is following

(0) ={(z,{z}), (v, X), (v, {y})}

So as suggested in [3] to construct the restricted model M, = (X, 0, V,) we
need to take

Xo =(ph ={z[3U((x,U) € (¥))}, Op ={UN X, |Tz((2,U) € ()}

In our case

X, =X O, =0 and M, = M.

So the restricted model after the announcement of formula ¢ which is not valid in
M is M, = M. This is a problem because formula [¢]K¢ < (¢ — K[p]|e which
should be an axiom of PAL is not universally true. In particular (y, X) ¥ [¢]| K¢
and (y, X) F K[g]ep.

The problem as we see it is that subset space frame has inner structure sim-
ilar to product of frames and the set of situations where a formula is true not
always preserves this structure. One way to confront this problem is to consider
generalized subset spaces. In this paper we explore this way.





