Approximations in Sobolev spaces by prolate spheroidal wave functions

Abstract : Recently, there is a growing interest in the spectral approximation by the Prolate Spheroidal Wave Functions (PSWFs) ψ n,c , c > 0. This is due to the promising new contributions of these functions in various classical as well as emerging applications from Signal Processing, Geo-physics, Numerical Analysis, etc. The PSWFs form a basis with remarkable properties not only for the space of band-limited functions with bandwidth c, but also for the Sobolev space H s ([−1, 1]). The quality of the spectral approximation and the choice of the parameter c when approximating a function in H s ([−1, 1]) by its truncated PSWFs series expansion, are the main issues. By considering a function f ∈ H s ([−1, 1]) as the restriction to [−1, 1] of an almost time-limited and band-limited function, we try to give satisfactory answers to these two issues. Also, we illustrate the different results of this work by some numerical examples.
Type de document :
Article dans une revue
Applied and Computational Harmonic Analysis, Elsevier, 2015, 〈10.1016/j.acha.2015.09.001〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01202315
Contributeur : Abderrazek Karoui <>
Soumis le : samedi 19 septembre 2015 - 17:56:48
Dernière modification le : jeudi 7 mars 2019 - 11:34:08
Document(s) archivé(s) le : mardi 29 décembre 2015 - 08:49:12

Fichier

Paper2_ACHA_Bonami-Karoui.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Aline Bonami, Abderrazek Karoui. Approximations in Sobolev spaces by prolate spheroidal wave functions. Applied and Computational Harmonic Analysis, Elsevier, 2015, 〈10.1016/j.acha.2015.09.001〉. 〈hal-01202315〉

Partager

Métriques

Consultations de la notice

146

Téléchargements de fichiers

115