Weierstrass models of elliptic toric K3 hypersurfaces and symplectic cuts

Abstract : We study elliptically fibered K3 surfaces, with sections, in toric Fano threefolds which satisfy certain combinatorial properties relevant to F-theory/Heterotic duality. We show that some of these conditions are equivalent to the existence of an appropriate notion of a Weierstrass model adapted to the toric context. Moreover, we show that if in addition other conditions are satisfied, there exists a toric semistable degeneration of the elliptic K3 surface which is compatible with the elliptic fibration and F-theory/Heterotic duality.
Type de document :
Article dans une revue
Advances in Theoretical and Mathematical Physics, International Press, 2013, 17 (4), pp.741-770. <10.4310/ATMP.2013.v17.n4.a2>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01202113
Contributeur : Vittorio Perduca <>
Soumis le : vendredi 18 septembre 2015 - 17:15:54
Dernière modification le : mardi 11 octobre 2016 - 14:59:37

Identifiants

Collections

Citation

Antonella Grassi, Vittorio Perduca. Weierstrass models of elliptic toric K3 hypersurfaces and symplectic cuts. Advances in Theoretical and Mathematical Physics, International Press, 2013, 17 (4), pp.741-770. <10.4310/ATMP.2013.v17.n4.a2>. <hal-01202113>

Partager

Métriques

Consultations de la notice

35