Weierstrass models of elliptic toric K3 hypersurfaces and symplectic cuts

Abstract : We study elliptically fibered K3 surfaces, with sections, in toric Fano threefolds which satisfy certain combinatorial properties relevant to F-theory/Heterotic duality. We show that some of these conditions are equivalent to the existence of an appropriate notion of a Weierstrass model adapted to the toric context. Moreover, we show that if in addition other conditions are satisfied, there exists a toric semistable degeneration of the elliptic K3 surface which is compatible with the elliptic fibration and F-theory/Heterotic duality.
Type de document :
Article dans une revue
Advances in Theoretical and Mathematical Physics, International Press, 2013, 17 (4), pp.741-770. 〈10.4310/ATMP.2013.v17.n4.a2〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01202113
Contributeur : Vittorio Perduca <>
Soumis le : vendredi 18 septembre 2015 - 17:15:54
Dernière modification le : jeudi 11 janvier 2018 - 06:19:45

Lien texte intégral

Identifiants

Collections

Citation

Antonella Grassi, Vittorio Perduca. Weierstrass models of elliptic toric K3 hypersurfaces and symplectic cuts. Advances in Theoretical and Mathematical Physics, International Press, 2013, 17 (4), pp.741-770. 〈10.4310/ATMP.2013.v17.n4.a2〉. 〈hal-01202113〉

Partager

Métriques

Consultations de la notice

58