Layer-averaged Euler and Navier-Stokes equations

Abstract : In this paper we propose a strategy to approximate incompressible free surface Euler and Navier-Stokes models. The main advantage of the proposed models is that the water depth is a dynamical variable of the system and hence the model is formulated over a fixed domain. The proposed strategy extends previous works approximating the Euler and Navier-Stokes systems using a multilayer description. Here, the needed closure relations are obtained using an energy-based optimality criterion instead of an asymptotic expansion. Moreover, the layer-averaged description is successfully applied to the Navier-Stokes system with a general form of the Cauchy stress tensor.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

https://hal.inria.fr/hal-01202042
Contributeur : Jacques Sainte-Marie <>
Soumis le : lundi 21 septembre 2015 - 21:49:42
Dernière modification le : mercredi 4 janvier 2017 - 01:06:56
Document(s) archivé(s) le : samedi 2 janvier 2016 - 22:51:41

Fichiers

ns_hydro.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01202042, version 2
  • ARXIV : 1509.06218

Collections

Citation

Marie-Odile Bristeau, Bernard Di Martino, Cindy Guichard, Jacques Sainte-Marie. Layer-averaged Euler and Navier-Stokes equations. 2015. 〈hal-01202042v2〉

Partager

Métriques

Consultations de
la notice

281

Téléchargements du document

58