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Abstract
& Context Taper equations predict the variation in diameter
along the stem, therefore characterizing stem form. Several
recent studies have tested mixed models for developing taper
equations. Mixed-effects modeling allow the interindividual
variation to be explained by considering both fixed-effects
parameters (common to the population) and random-effects
parameters (specific to each individual).
&Aims The objective of this study is to develop a mixed-effect
variable exponent taper equation for birch trees in northwest-
ern Spain by determining which fixed-effects parameters
should be expanded with random-effects parameters.
& Methods All possible combinations of linear expansions
with random effects in one and in two of the fixed-effects
model parameters were tested. Upper stem diameter mea-
surements were used to estimate random-effects parameters
by the use of an approximate Bayesian estimator, which
calibrated stem profile curves for individual trees.
& Results Parameter estimates for more than half of the mixed
models investigated were nonsignificant. A first order
autoregressive error structure was used to completely remove

the autocorrelation between residuals, as mixed-effects modeling
were not sufficient for this purpose.
& Conclusion The mixed model with the best fitting statistics
did not provide the best calibration statistics for all upper
stem diameter measurements. From a practical point of view,
model calibration should be considered an essential criterion
in mixed model selection.

Keywords Betula pubescensEhrh . Taper equation .Mixed-
effects modeling . Autocorrelation . Calibration . Galicia

1 Introduction

Taper equations predict the variation in diameter along the
stem, and they therefore characterize stem form (Clutter et al.
1983; Avery and Burkhart 2002; Kozak 2004). They are
especially useful when product demand is expressed in terms
of tree dimensions or assortments and allows for predictions
of product mixes and hence the economic value of the tree
(Fonweban et al. 2011). Taper equations provide estimates of
the following variables (Kozak 2004): (1) diameter at any
height along the stem, (2) total stem volume, (3) merchant-
able volume and height to any top diameter and from any
stump height, and (4) volumes of logs of any length at any
height from the ground.

Taper functions are usually classified as single, segment-
ed, or variable–exponent; the latter of these usually involve
less bias and greater precision in estimating diameters at
different heights (e.g., Kozak 1988, 2004; Pérez et al.
1990; Newnham 1992; Muhairwe 1999). Assuming that
stem form varies continuously with stem height, variable–
exponent models describe stem shape with a changing ex-
ponent or variable from ground to top to represent the
neiloid, paraboloid, conic, and several intermediate forms
(Kozak 1988; Newnham 1988).
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Since the end of the twentieth century, several studies
have used mixed models to develop taper equations (e.g.,
Tasissa and Burkhart 1998; Valentine and Gregoire 2001;
Garber and Maguire 2003; Leites and Robinson 2004;
Trincado and Burkhart 2006; Yang et al. 2009; Fonweban
et al. 2011). Mixed models allow for both mean and subject-
specific responses (Davidian and Giltinan 1995; Littell et al.
2006). The mean response considers only fixed-effects pa-
rameters, common to the population, while the subject-
specific response considers both fixed- and random-effects
parameters common to each subject. Mixed models have
been used to deal with correlated errors associated with
longitudinal data (Lindstrom and Bates 1990), such as suc-
cessive measurements of diameter along the stem. An addi-
tional advantage of these models is that they can use prior
information about a new individual (one or more comple-
mentary diameter measurement) to estimate the random-
effects parameters, therefore providing a calibrated response.
This technique enables calibration of taper equations for
trees growing in sites of different quality and under different
silvicultural regimes (Trincado and Burkhart 2006).

Garber and Maguire (2003) used mixed models to fit
variable–exponent taper equations for three species in Ore-
gon (USA), although they did not demonstrate the utility of
using other diameters for calibration. Trincado and Burkhart
(2006) used mixed models to fit a segmented taper equation
and evaluated the use of one and two upper stem diameter
measurements to obtain the random-effects parameters; how-
ever, they did not analyze the calibration performance of
different random-effects expansion options. In both of these
studies, mixed models were unable to completely eliminate
the autocorrelation, for which they used continuous
autoregressive error structures. Yang et al. (2009) used
mixed models to fit variable–exponent taper equations but
did not fully correct the autocorrelation and evaluated model
calibration in a similar way as Trincado and Burkhart (2006),
although for total and log volume prediction.

Birch (Betula pubescens Ehrh., also referred to as Betula
alba L. and B. pubescens subsp. celtiberica Rothm. & Vasc.,
Castroviejo et al. 1990) is one of the main forest species in
Galicia (NW Spain). In this region, the species grows be-
tween 0 and 1,700 m above sea level, although it is more
abundant in the northeastern areas at altitudes above 400–
500 m; in the south of the region, it only appears naturally
near streams or in wet locations. The species is considered a
fast-growing pioneer species, which rapidly colonizes open
ground derived from human activity (burning, cutting, or
grazing) or natural disturbance. At the beginning of this
century, 32,000 ha of forest stands included birch as the main
tree species in Galicia (Xunta de Galicia 2001).

The objective of the present study was to develop a
mixed-effects variable–exponent taper equation for birch
trees in Galicia, based on the Kozak (2004) taper model, by

investigating which fixed-effects parameters should be ex-
panded with random-effects parameters. For this purpose,
fitting statistics and practical use of the model by calibration
based on an upper stem diameter measurement were consid-
ered. The error structure of the data due to residual correla-
tion was also considered.

2 Materials and methods

2.1 Data

A total of 304 birch trees in 130 research plots were destruc-
tively sampled as part of a region-wide study carried out in
Galicia by the Sustainable Forest Management Unit of the
University of Santiago de Compostela. Diameter at breast
height (d in centimeters, 1.3 m above ground) was measured
to the nearest 0.1 cm in each of the trees. The trees were later
felled, leaving stumps of average height 0.16 m, and total
bole length was measured to the nearest 0.01 m to calculate
the total tree height (h, in meters). The bole was then cut into
logs at 1-m intervals until reaching a diameter of 7 cm. Two
perpendicular diameters over bark were measured in each
cross section (at height hi in meters from ground level), to the
nearest 0.1 cm, and were then averaged (di, in centimeters).

The scatter plot of relative diameter (di/d) against relative
height (hi/h) was visually examined to detect any possible
anomalies in the data. As the data included extreme data
points, a systematic procedure for detecting abnormal data
points (Bi 2000) was applied to increase the efficiency of the
process. This involved local quadratic nonparametric fitting
(LOESS) with a smoothing factor of 0.3, which was selected
after iterative fitting and visual examination of the smoothed
taper curves overlaid on the data. This approach removed
1.04 % of the initial data. Some of the outliers may represent
mistakes in measuring the bole sections or in transcription of
field notes, but some others may represent deformations
brought about by fire damage, large knots, and other types
of physical damage such as partial death, growth deforma-
tions, etc. These data points were excluded from further
analysis. Summary statistics of the data finally used are
shown in Table 1.

2.2 Models analyzed

Firstly, the models developed by Max and Burkhart (1976),
Bi (2000), Fang et al. (2000), and Kozak (2004) (with the
modification proposed by Yang et al. 2009) were fitted by
ordinary nonlinear least squares (ONLS) in order to evaluate
their performance for birch in Galicia. The variable–expo-
nent model of Kozak (2004) was the most accurate for
predicting diameters at different heights (based on fitting
statistics), and it was therefore chosen for further analysis.
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This model has been used successfully in numerous studies
and has shown to be highly flexible and can be adapted to
different trees and species (e.g., Diéguez-Aranda et al. 2006;
Corral-Rivas et al. 2007; Yang et al. 2009).

Yang et al. (2009) used mixed models to analyze four
variable–exponent taper equations and concluded that Eq. 1
performed best for lodgepole pine (Pinus contorta var.
latifolia Engelm.) in Alberta. This equation is a modification
of the original model of Kozak (2004) by adding parameter
b0 to the variable–exponent:

di ¼ a0d
a1ha2xb0þb1q4þb2 1=exp d=hð Þð Þþb3x0:1þb4 1=dð Þþb5h

wþb6x ð1Þ
where

x ¼ w

1− 1:3=hð Þ1=3

w ¼ 1−q1=3

q ¼ hi=h

a0–a2 and b0–b6 are fixed-effects parameters to be
estimated.

2.3 Mixed-effects modeling

A mixed model includes both fixed (common to the popula-
tion) and random (subject-specific) effects. A key question
when developing mixed models is which parameters should
be considered as fixed and which as mixed (both fixed and
random effects). One possible approach is to fit each individ-
ual independently, without considering the random effects,
and then to expand the most variable parameters by use of
random effects (Fang and Bailey 2001). However, this ap-
proach requires sufficient observations for each individual for
the estimated parameters to be significant in each individual
fit, which is not the case in the present study (the fitted fixed-
effects model includes ten parameters). Another possible ap-
proach is to fit different combinations of fixed- and random-
effects parameters and to choose the best fitted mixed model.
Akaike's information criterion (AIC) and Schwarz's Bayesian
information criterion (BIC) are often used to determine the

best combination of fixed and random effects.

AIC ¼ −2ln Lð Þ þ 2λ ð2Þ

BIC ¼ −2ln Lð Þ þ λln mð Þ ð3Þ
Where L is the maximum likelihood (ML) value; λ is the

number of effective parameters, calculated by adding the
number of fixed-effects parameters, p, and the number of
variance and covariance parameters estimates; and m is the
number of trees for mixed models and the total number of
observations for fixed-effects models.

Although some studies have indicated that the correla-
tions within each tree can be largely overcome by modeling
random effects with an unstructured variance–covariance
matrix (e.g., Vonesh and Chinchilli 1997; VanderSchaaf
and Burkhart 2007; Yang et al. 2009), other studies have
shown that this is not always possible (e.g., Garber and
Maguire 2003; Trincado and Burkhart 2006). A first order
autoregressive covariance structure (AR (1)), because the
measurements were made at a constant distance, was used
to completely remove autocorrelation between residuals
from the same tree. This structure assumes that the errors
are correlated, and it models the variance–covariance matrix
for the error term (Rk) as follows: σ

2 × Γk(ρ), where σ
2 is the

error variance, and Γk(ρ) is a (nk x nk) matrix describing the
pattern of correlation between the measurements of the indi-
vidual k. AR (1) assumes that for the ki-th element, the
covariance structure is ρ|ki−ki ′ |.

2.4 Parameter estimation

The SAS %NLINMIX macro (SAS support 2011) was used
to estimate the fixed-effects parameters and the variance–
covariance parameters associated with random-effects pa-
rameters. Two methods of expansion can be used in this
macro as follows: expansion around zero, which is the
expected value for random-effects parameters, or expansion
around the empirical best linear unbiased predictor (EBLUP)
of the random-effects parameters (Littell et al. 2006). Both
approaches produce reliable estimates (Davidian and
Giltinan 1993; Pinheiro and Bates 1995; Wolfinger and Lin
1997). Although the EBLUP method sometimes generates
slightly better results, it requires more computation time, is
less stable, and is very sensitive to model specification
(Hartford and Davidian 2000). Moreover, Vonesh (1996)
showed that consistent estimates with the EBLUP expansion
method could only be obtained if the number of individuals
and observations per individual are infinite. For our data,
most of the models with various combinations of random-
effects parameters failed to converge when the EBLUP ex-
pansion method was used. Therefore, all results presented in
this study are based on the expansion around zero method.

Table 1 Descriptive statistics of the sample of trees used

Variable Mean Minimum Maximum Std. dev.

Nº sections 10.3 4 21 3.4

d 20.0 7.3 39.2 6.0

h 14.5 6.2 24.4 3.4

hst 0.16 0.0 0.5 0.08

d diameter at breast height (cm), h, total tree height (m), hst, stump
height (m)

Taper equation mixed model 709



A ML procedure or a restricted maximum likelihood
(REML) procedure can be used to fit the model. The former
was used to extract the AIC and BIC statistics for model
comparison because the ML values are comparable (unlike
in the REML procedure), and the AIC and BIC are based on
these values. However, the ML estimates of the variance
components do not take into account the degrees of freedom
lost in estimating the fixed-effects parameters and are therefore
biased downwards (Yang et al. 2009), in contrast to the REML
estimates (Laird andWare 1982; Littell et al. 2006). Therefore,
the REML procedure was used to obtain the final parameter
estimates of the models, which were then used for testing
calibrations with an upper stem diameter measurement.

2.5 Calibrated response

Estimation of the random-effects parameters of a new indi-
vidual (i.e., calibration) requires one or more complementary
diameter measurement. This was done by use of an approx-
imate Bayesian estimator (Vonesh and Chinchilli 1997;
Trincado and Burkhart 2006):

buk≅bDZT
k Zk bDZT

k þ bRk

� �−1beki ð4Þ

Where bD is the estimated variance–covariance matrix

for the random-effects parameters uk, bRk is the estimated
variance–covariance matrix for the error term, beki is the
error of diameter obtained with the mean response (only
fixed-effects parameters), and Zk is the partial derivatives
matrix with respect to random-effects parameters: Zk ¼
∂ f xk ;β; 0ð Þ=∂uk jbβ;0 . When the random-effects parame-

ters, uk, are introduced linearly in the parameters vector,
and when the nonlinear function is linearized by the zero
expansion method, the partial derivatives of the Zk matrix
are equivalent to the partial derivatives with respect to the
fixed-effects parameters (Yang et al. 2009).

A previous analysis showed similar accuracy in calibration
with one and two upper stem diameter measurements (as shown
by Trincado and Burkhart 2006), and therefore calibration with
only one diameter was evaluated in this study. This reduces the
cost involved in obtaining upper stem diameter measurements.
Similarly to Yang et al. (2009), the following statistics (Cochran
1963) were calculated to evaluate the calibration procedure:

e ¼
nX

i¼1

yi−byi� �
=n ð5Þ

e% ¼ 100� e=y ð6Þ

MSE ¼ e
2
þ s2 ð7Þ

Where yi and byi are the diameters outside bark (d) ob-
served and calibrated for the ith observation (i=1, 2,…, n), n

is the total number of diameters observed, y is the mean of
observed diameters, e is the mean prediction error, e% is the
mean prediction error expressed as a percentage of the mean
value, s2 is the variance of the prediction error, and MSE is
the mean square error of the predictions. The mean error and
the mean percentage prediction error provide an average
measure of the prediction bias, with e in absolute and e%
in relative terms. MSE combines the mean bias and the
variation in the biases, thus providing a better measure of
the accuracy of the model. The MSE was used as the main
criterion in evaluating the calibration.

To determine the best calibration height between 2 and 8 m,
diameters along the stemwere calculated every 0.5 m by linear
interpolation between the two nearest stemmeasurements. The
lower limit was selected because it is quite close to breast
height. The upper limit was chosen as a compromise between
use of the greatest number of trees taller than this threshold and
evaluation of as much length as possible along the stem for
calibration. Therefore, the number of observations used in
calibration was decreased from 3,146 to 2,432 diameter–height
pairs. Absolute height, rather than relative height, was evalu-
ated because it is easier to obtain in forestry operations.

2.6 Criteria for selection of the final mixed model

All possible expansion options of one and two fixed-effects
parameters with random-effects parameters in Eq. 1 were
evaluated. Fitting statistics (AIC and BIC) were calculated
for the mixed model, and calibration statistics (e , e% , and
MSE) were calculated for the calibrated mixed model. The
final selection of the best alternative was based on practical
use of the model, and therefore calibration statistics were the
main criteria used in the decision.

3 Results

When random-effects parameters were used to expand various
fixed-effects parameters in Eq. 1, for 35 out of the 55 possible
combinations (10 of one mixed-effects parameter plus 45 of
two), some of the fixed-effects parameters or the variance of a
random-effects parameter were not significant at a 5 % level.
When these parameters were removed and the models refitted,
the results were poorer (lower values of fitting statistics) than
for the remaining 20 combinations (see Table 2 for AIC and
BIC values). Equation 1, in which parameters b0 and b6 were
linearly expanded with random-effects parameters, was the
best mixed model as regards fitting statistics.

The 20 different combinations were then calibrated with
one diameter measurement at different heights along the
stem. The variations in MSE in diameter estimation with
calibration height for these models are shown in Fig. 1.
The mixed models were split into two groups that displayed
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similar trends. The best calibration results for heights up to
5 m were obtained with the models in group 1. In these
models, the slope of line MSE–calibration height was less
steep, and the variation in MSE ranged between 2.45 and
2.20 cm2 for heights of 2 to 8 m. For calibration heights
above 5 m, the MSE values were lower for some group 2
models than for group 1 models. However, the calibration
performance was less stable, with MSE values ranging from
approximately 2.70 to 2.05 cm2. From a practical point of
view, the greater effort (which increases with height) of
measuring an additional diameter for calibration should be
taken into account. Thus, the group 1 models are preferable
because they are less-dependent on the calibration height and
provide better results for calibration heights lower than 5 m.
Within group 1, the models that consider the expansion of
parameters a0, b0; a1, b0; and a2, b0 produced the lowest
MSE, and within these models, the a1, b0 model was slightly
superior. Therefore, the following mixed model was finally
proposed:

di ¼ a0d
a1þuk1ha2xb0þuk2þb1q4þb2 1=exp d=hð Þð Þþb3x0:1þb4 1=dð Þþb5h

wþb6x

ð8Þ
where

x ¼ w

1− 1:3=hð Þ1=3

w ¼ 1−q1=3

q ¼ hi=h

uk1 and uk2 are random-effects parameters.
Estimated fixed-effects parameters and the variance com-

ponents of the random-effects parameters, along with the
values of the approximate significance contrasts (all signifi-
cant at a 5 % level) for Eq. 8, are shown in Table 3. The use of
the mixed-effects approach did not completely remove the
autocorrelation (Fig. 2b). However, the use of a first order
autoregressive error structure AR (1) successfully removed

the autocorrelation (Fig. 2c). The autoregressive parameter (ρ)
was equal to 0.6656. The mean response (only with fixed-
effects parameters) of the selected mixed model (Eq. 8) pro-
vided a similar accuracy (MSE=2.44 cm2) as Eq. 1 fitted by
ONLS and correction for autocorrelation (MSE=2.41 cm2), as
shown in Fig. 1. The MSE of the mean response of the 20
models shown in Table 2 ranged from 2.43 to 2.55 cm2.

3.1 Mean response and calibration—an example

To illustrate the calibration process, upper stem diameters for
a tree of diameter at breast height d=33.3 cm and total height

Table 2 AIC and BIC values for
the mixed models with all fixed-
effects parameters and the vari-
ance of the random-effects pa-
rameters significantly different
from zero, at a probability level
of 5 % (in ascending order of
AIC and BIC)

Nº Expanded fixed-effects
parameters

AIC BIC Nº Expanded fixed-effects
parameters

AIC BIC

1 b0, b6 9,339 9,395 11 a1, b2 9,737 9,793

2 b6 9,506 9,551 12 a0, b2 9,743 9,798

3 b0, b3 9,518 9,574 13 b1, b3 9,843 9,899

4 a2, b3 9,678 9,734 14 b2, b3 9,848 9,904

5 a1, b3 9,681 9,737 15 b0, b1 9,887 9,943

6 a0, b3 9,687 9,743 16 b3 9,902 9,951

7 a2, b0 9,717 9,773 17 b1, b4 9,903 9,959

8 a1, b0 9,720 9,776 18 b1, b2 9,907 9,963

9 a0, b0 9,726 9,781 19 b2, b4 9,958 10,010

10 a2, b2 9,734 9,790 20 b2 9,968 10,016

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2 3 4 5 6 7 8

Calibration height (m)

M
S

E
 (

cm
2 )

b0-b6

a1-b0

Fig. 1 Variation in MSE of the calibrated mixed models with calibra-
tion height for the models shown in Table 2. Two different groups are
considered: group 1 (solid lines), expanding the following fixed-effects
parameters: a2, b2; a1, b2; a0, b2; a2, b0; a1, b0; a0, b0; a2, b3; a1, b3; a0,
b3; b6; and group 2 (dotted lines), expanding the following fixed-effects
parameters: b0, b1; b1, b3; b1, b2; b2; b3; b1, b4; b0, b3; b0, b6; b3, b4; and
b2, b3. The MSE of the fixed part of the “a1, b0” mixed model (i.e., the
mean response: horizontal solid line) and the MSE of Eq. 1 fitted with
ONLS and correction for autocorrelation (horizontal dashed line) are
also shown
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h=18.6 m were estimated. When only d and h are known, the
mean response (dipredfixed) for any height on the stem can be
calculated by the use of Eq. 1 and the fixed-effects parameter
estimates presented in Table 3. If there is an additional
measurement of an upper stem diameter (e.g., di=26.0 cm
at hi=6 m), the random-effects parameters can be estimated
by calibration. With this additional measurement and the
estimates of the components of the variance–covariance
matrix of the random-effects parameters (Table 3), the model
is calibrated as follows:

q relativeheight at6mð Þ ¼ hi=h ¼ 0:3226

p ¼ 1:3=h ¼ 0:06989

w ¼ 1−q1=3 ¼ 0:3142

x ¼ w=ð1−p1=3Þ ¼ 0:5342

dipredfixed6m=24.31 cm (this is calculated with only the
fixed-effects parameters, i.e., it is the mean response)

beki ¼ di−dipredfixed ¼ 26:0−24:31 ¼ 1:69cm

Zuk1 ¼ a0d
a1ha2xb0þb1q4þb2 1=exp d=hð Þð Þþb3x0:1þb4 1=dð Þþb5h

wþb6x log dð Þ
(partial derivative with respect to random-effect parameter uk1)

Table 3 Fixed-effects parameter
estimates, approximate signifi-
cance contrasts, and variance
components of Eq. 8 fitted by the
restricted maximum likelihood
procedure (REML)

Parameter Estimate Approx. std. error Approx. t value Approx. prob. > |t|

a0 0.9652 0.0537 17.96 <0.001

a1 0.9421 0.0198 47.53 <0.001

a2 0.08482 0.0266 3.19 0.001

b0 4.094 0.581 7.04 <0.001

b1 −0.3939 0.138 −2.85 0.004

b2 −0.4112 0.129 −3.18 0.001

b3 −4.153 0.660 −6.29 <0.001

b4 2.813 0.628 4.48 <0.001

b5 0.05345 0.00492 10.87 <0.001

b6 0.3332 0.0847 3.93 <0.001

Variance component Estimate Approx. std. error Approx. Z-value Approx. prob. > |Z|

var(uk1) 0.0003373 0.00004 7.50 <0.001

var(uk2) 0.007931 0.0011 7.47 <0.001

cov(uk1, uk2) 0.001166 0.0002 6.17 <0.001

σ2 (error variance) 1.837 0.120 15.37 <0.001

(a) (b) (c)
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Fig. 2 Diameter over bark residuals plotted against lagged residuals for Eq. 8 fitted a only with fixed-effects parameters, b with fixed- and random-
effects parameters, and c with fixed- and random-effects parameters plus an autoregressive error structure AR (1)
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Zuk2 ¼ a0d
a1ha2xb0þb1q4þb2 1=exp d=hð Þð Þþb3x0:1þb4 1=dð Þþb5h

wþb6x log xð Þ
(partial derivative with respect to random-effect parameter uk2)

bZk ¼ Zuk1 Zuk2½ � ¼ 85:24 −15:24½ �
bRk ¼ σ2 � Γk ρð Þ ¼ 1:837� 1½ � ¼ 1:837

bD ¼ 0:0003373 0:001166
0:001166 0:007931

� �

The random-effects parameters are estimated by the use of
Eq. 4: ûk=(0.005966 –0.01169)T. These estimates of the
random-effects parameters can be used in the specific model
for the tree in the example by using Eq. 8 with the random-
effects parameters uk1 and uk2 as follows:

dipred ¼ 0:9652d 0:9421þ0:005966ð Þh0:08482xc;

Where

c ¼ 4:094−0:01169ð Þ−0:3939q4−0:4112 1

exp
d

h

� �
0
BB@

1
CCA

−4:153x0:1 þ 2:813
1

d

� �
þ 0:05345hw þ 0:3332x

For this example, the mean response and the calibrated
response are shown in Fig. 3.

4 Discussion

Single taper models have been found to represent stem shape
quite accurately (e.g., Bruce et al. 1968; Kozak et al. 1969;

Goulding and Murray 1976), although more flexible models
were introduced (Max and Burkhart 1976; Kozak 1988) in
an attempt to provide a better description of the stem profile,
especially in the high-volume butt region (Cao et al. 1980).
Mixed models have also been used successfully in the de-
velopment of taper equations for several species throughout
the world (e.g., Garber and Maguire 2003; Leites and Rob-
inson 2004; Trincado and Burkhart 2006; Yang et al. 2009),
showing that estimates of the mean response (fixed-effects
model) can be significantly improved by including random-
effects parameters. This was confirmed in the present study
by using the modification of Kozak's (2004) model proposed
by Yang et al. (2009).

The mixed model in which the fixed-effects parameters a1
and b0 were expanded with the corresponding random-effects
parameters uk1 and uk2 was finally selected (Eq. 8) because it
had the lowest MSE up to 5 m of calibration height, and it
worked well for all calibration heights between 2 and 8 m.
When the diameter used in calibration was measured higher in
the stem, the MSE of the tested calibrated models was lower
(Fig. 1), but adequate calibration was achieved with a diam-
eter at a height between 4–6 m. Equation 8 was developed to
be calibrated, but the mean response provided similar accura-
cy (MSE) as Eq. 1 fitted by ONLS and correction for auto-
correlation (Fig. 1). The combination of expanded parameters
b0 and b6, which was the best as regarding fitting statistics,
showed the lowest MSE for calibration heights above 6.5 m
(Fig. 1). As already explained, this model is not recommended
from a practical point of view because if calibrations heights
lower than 6m are used, poorer results would be obtained than
with Eq. 8. Moreover, the MSE for the mean response of this
model was 2.46 cm2, greater than in the mixed model selected
(MSE=2.44 cm2).

Although some authors have tried to improve predictions
of taper equations by including variables related to the di-
mensions of the crown, tree age, and other individual tree or
stand variables (e.g., Burkhart and Walton 1985; Muhairwe
et al. 1994; Tasissa and Burkhart 1998), it was generally
concluded that as only slight improvements were achieved,
the additional effort required to measure these variables was
unjustifiable. For example, the d/h ratio (included in the
model of Kozak 2004) is closely related to crown size and
type and to stand variables (Burkhart andWalton 1985; Hann
et al. 1987) and the inclusion of random-effects parameters in
the model is an effective procedure for capturing the varia-
tion that can be explained by these variables.

Although mixed models can be used to model
heterocedasticity and autocorrelation (Pinheiro and Bates
2000; Yang et al. 2009), there is a trade-off between the
number of random effects incorporated in the model and
the complexity of the error covariance structure within each
tree (Jones 1990; Pinheiro and Bates 2000). Some studies
have shown that modeling the random effects with a
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Fig. 3 Observed diameters (circles), mean response (dashed line) and
calibrated response (solid line) for a tree with diameter at breast height
d=33.3 cm and total height h=18.6 m. The additional data used for
calibration (di=26.0 cm at hi=6 m) is represented by a black dot
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variance–covariance matrix structure can explain the corre-
lation between observations (Vonesh and Chinchilli 1997;
VanderSchaaf and Burkhart 2007). However, other studies
have shown that although the autocorrelation can be reduced
by the use of random-effects parameters, it cannot be
completely eliminated (Garber and Maguire 2003; Trincado
and Burkhart 2006; Yang et al. 2009). Therefore, in the latter
case, the autocorrelation within each individual must be
modeled directly. In the present study, the inclusion of ran-
dom effects in the model partly corrected the autocorrelation
(Fig. 2b), while the inclusion of a first order autoregressive
structure AR (1) in the mixed model completely removed the
autocorrelation (Fig. 2c). Accounting for autocorrelation
does not improve the predictive ability of the model, but it
prevents underestimation of the covariance matrix of the
parameters, thereby making it possible to carry out the usual
statistical tests (West et al. 1984), i.e., it improves interpre-
tation of the statistical properties. The model estimations
were not significantly different from those obtained with
models fitted without considering such correction. The au-
tocorrelation parameter is not used in practical applications
unless the model is calibrated with several diameter mea-
surements at different heights on the same tree.

Taper equations can provide volume estimates to
various top diameter limits when integrated. If the main
aim is to estimate tree volumes, it is preferable to
develop separate volume and volume ratio equations
(Burkhart 1977; Cao and Burkhart 1980) or to use taper
equations with d squared as the independent variable
(Gregoire et al. 2000). However, for estimating mer-
chantable volumes, the first step is to establish the
heights at which certain top diameter limits are reached,
which allows classification of the stem by merchantable
sizes or limits, according to different industrial destina-
tions (peeling, sawing, pulp wood, etc.). The best solution
is for the taper equation to have a close-form integral and a
generalized inverse, hi=f (di, d, h). However, the modified
model of Kozak (2004) fitted in this study cannot be directly
integrated and does not have a generalized inverse. Numerical
integration methods and iterative procedures for estimating
the height to any specific diameter are necessary for this
purpose.

Trees that do not have deformed stems are used in the
development of taper equations. However, the models
developed may provide less accurate estimates if applied
to trees with different stem types. Therefore, the use of
data from deformed trees (e.g., forked or lacking apical
dominance) is recommended for developing the most
appropriate taper equations for different stem types
(e.g., Adu-Bredu et al. 2008), in a similar way as done
in the Spanish National Forest Inventory (ICONA 1993;
DGCONA 2002).

5 Conclusions

Amixed-effects taper equation, based on the model of Kozak
(2004), was developed for Betula pubescens in Galicia. Both
the mean and the specific responses of each individual were
obtained. The mean response takes into account only fixed-
effects parameters, while the specific response for each indi-
vidual adds random-effects parameters. In a new individual,
the random-effects parameters can be estimated by the use of
an approximate Bayesian estimator to provide a calibrated
response, which needs a complementary diameter measure-
ment. Results showed that calibration improved model
estimations.

Almost two-thirds of the mixed models generated by ex-
pansion with one or two random-effects parameters were
rejected because they included nonsignificant parameters.
The autocorrelation was partly corrected by the use of the
mixed-effects approach, but an autoregressive error structure
AR (1) was required for the total elimination of autocorrelation.

Because the calibrated mixed model is intended for prac-
tical use, calibration should be taken into account in mixed
model selection. Selection of mixed-effects parameters
based only on fitting statistics may not provide the best
calibration statistics for all upper stem diameter measure-
ments. The methodology proposed in this study should be
evaluated with other species and different models for com-
parison of the results.
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