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Abstract Irrigation has a critical role for crop production
worldwide. In particular, irrigation is a major issue due to
the growing food demand and climate change. Irrigation
affects yields and the emission of greenhouse gases such
as CO2 and N2O by soils. Here, we review the effect of
irrigation on soil organic carbon and N2O emissions. We

analysed 22 investigations in various regions of the world.
Interactions between irrigation, soil and management factors
are described. The main points are: (1) The influence of
irrigation is strongly dependent on climate and initial soil
organic carbon content. For instance, irrigation of cultivated
desert soils led to an average increase of 90 % to over 500 %
of soil organic carbon. (2) Irrigation of semiarid regions
increases soil organic carbon by 11 % to 35 %. (3) No
consistent effects of irrigation were observed in humid
regions. In many cases, N2O emissions increase after pre-
cipitation or irrigation. (4) Comparison of N2O emissions
from irrigated and non-irrigated fields shows that availabil-
ity of reactive nitrogen compounds controls increased N2O
emissions under irrigation, in most cases. Here, increases of
about 50 % to 140 % in N2O emissions were reported.

Keywords Irrigation . Soil organic carbon . Nitrous oxide
emissions

1 Introduction

Agriculture today is facing unprecedented challenges. The
world population will grow from 6.9 billion people in 2010
to an estimated 9.15 billion people in 2050 (Alexandratos
and Bruinsma 2012). At the same time, the individual food
energy intake will increase from 2,850 to 3,130 kcal per
capita and day (Bruinsma 2009). These trends will apply
pressure on resources needed for agricultural production
such as land, water and energy, and increase greenhouse
gas emissions from agriculture. The situation is expected to
be aggravated further by climate change (Alexandratos and
Bruinsma 2012). Irrigation is an important means to ensure
water supply for crop production and to adapt agriculture to
increasing water scarcity due to climate change. On the
other hand, irrigation itself might affect climate by altering
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the capacity of soils to act as sinks or sources of greenhouse
gases, in particular, CO2 and N2O (Lal 2004). Hence, it is
desirable to understand the interactions between climate and
irrigation. Water availability is an important factor for crop
production (Fig. 1) and also for the amount of organic
residues in soils. In many regions of the world, water defi-
ciency is one of the most yield-restricting factors. Due to
drought and water deficiency, only 30 % of worldwide max-
imum attainable yields are approached (Deng et al. 2005). The
use of irrigation to overcome the lack of reliable rainfall is
growing worldwide. Around the world 306,247,000 ha of
agricultural land are irrigated. That is 22.1 % of the arable
land and 6.2 % of the worldwide agricultural area (FAO
Statistical Yearbook 2010). The importance of irrigation
is expected to grow further to meet the rising global
demand for agricultural products and to adapt to increas-
ing water scarcity due to climate change. Table 1 shows
the current distribution of area equipped for irrigation for
different continents and selected countries. Despite the
huge relevance for worldwide agricultural production, the
potential contribution of irrigation to net greenhouse gas
emissions is little investigated compared with other agro-
nomic activities (King et al. 2009).

The objective of this review is to compile results from 22
investigations about the impact of irrigation on soil organic
carbon contents and N2O emissions. Furthermore, the under-
lying processes and interactions of irrigation with other man-
agement factors such as tillage and fertilisation are discussed.
Conclusions on potential effects of irrigation on net green-
house gas emissions and necessary further research are drawn.

2 Basic effects of irrigation on CO2 and N2O emission
processes

Irrigation may influence the CO2 and N2O emissions of
arable land via several processes. Some processes make soil
a sink for CO2 while others may promote a release (Fig. 2).

An improved water supply leads, on the one hand, to an
increased biomass generation and therefore to a higher input
of carbon into the soil in the form of roots and dead plant
material (Entry et al. 2008; Kochsiek et al. 2009; Roldan et
al. 2005). On the other hand, the application of water and
consequently higher soil moisture enhances soil microbial
activity. This may result in an increased decomposition of
soil organic matter and therefore in rising CO2 emissions
(Jabro et al. 2008; Kochsiek et al. 2009; Liu et al. 2008).
The increased microbial decomposition of soil organic mat-
ter may lead to lower soil organic carbon contents (Dersch
and Bohm 2001; Getaneh et al. 2007).

The effects of irrigation on soil organic carbon content
not only depend on the decrease or increase in soil moisture.Fig. 1 Irrigation, an essential factor in crop production

Table 1 Irrigated area (data from FAO Statistical yearbook 2010)

Region Irrigated area, ha
(2008)

World 306,247,000

Asia 195,461,000

India 62,286,000

China 64,141,000

Pakistan 19,870,000

Afghanistan 3,199,000

Europe 29,564,000

Russia 4,346,000

Italy 3,950,000

Spain 3,800,000

Romania 3,157,000

North and Central America 31,968,000

USA 23,000,000

Mexico 6,300,000

Cuba 870,000

Canada 855,000

South America 12,082,000

Brazil 4,500,000

Argentinia 1,550,000

Peru 1,195,000

Colombia 900,000

Africa 13,576,000

Egypt 3,530,000

Sudan 1,863,000

South Africa 1,498,000

Morocco 1,457,000

Middle East 22,277,000

Iran 8,993,000

Turkey 5,215,000

Iraq 3,525,000

Saudi Arabia 1,731,000

Australia 2,550,000

734 B. Trost et al.



The interaction with other factors like fertilisation, tillage or
the activity of soil organisms may also influence the devel-
opment of soil organic carbon.

Another important greenhouse gas emitted from arable
land and influenced by irrigation is N2O. Nitrification and
denitrification are the main processes for N2O formation
(Bremner 1997; Phillips 2008), and both irrigation and
precipitation can influence these microbial processes.
Improved living conditions for microorganisms by in-
creased soil moisture may cause enhanced activity of nitri-
fying bacteria (Jha et al. 1996). An increase in water-filled
pore volume over 70 % may lead to reduced soil aeration
resulting in low oxygen concentrations to anaerobic condi-
tions which support denitrification (Amha and Bohne 2011;
Ruser et al. 2006; Scheer et al. 2008). An increased soil
microbial activity may lead to a decrease in the soil oxygen
concentration as well (Loecke and Robertson 2009; Potthoff
et al. 2005). Thus, irrigation may contribute to CO2 mitigation
and simultaneously enhance N2O emissions. Increased N2O
emissions might reduce or offset a potential positive effect of
enhanced carbon sequestration (Ball et al. 2008; Chatskikh
and Olesen 2007; Li et al. 2005; Smith et al. 2000).

3 Soil carbon contents under irrigation

3.1 Overview of long-term field experiments

An overview of 14 long-term field experiments created to
observe the soil carbon content under irrigation compared
with non-irrigation is given in Table 2. In some cases, soil
organic carbon contents were significantly higher under
irrigation, while other results do not show significant differ-
ences between the treatments.

Several experiments on the development of soil organic
carbon contents on irrigated and non-irrigated plots were
conducted in arid or semiarid regions where irrigation is
essential for crop production. Denef et al. (2008) conducted
investigations in an arid region of the USA. The improved
water availability under irrigation led to an increase in
biomass production and thus, to an accumulation of organic
matter in the soil. As a consequence, the contents of soil
organic carbon were significantly higher than in the non-
irrigated cultivated plots. However, on the experimental site
with the higher precipitation, the highest soil organic carbon
contents were found on plots with natural vegetation.

Fig. 2 Basic effects of
irrigation on soil organic carbon
content and nitrous oxide (N2O)
emissions (increase, decrease)

Irrigation, soil organic carbon and N2O emissions 735
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Gillabel et al. (2007) also observed higher soil carbon con-
tents in an arid region in fields irrigated for 30 years in the
USA. Irrigation led to a better plant growth and thus to a
high input of organic carbon by harvest residues. Also, in
this case, the highest soil organic carbon contents were
obtained in the plots under natural vegetation. After 30 years
of investigations, Entry et al. (2004) found higher soil
carbon contents in irrigated arable land compared with
non-irrigated plots and natural steppe vegetation in a semi-
arid to arid region in the USA. Here, the soil organic carbon
contents on plots with natural vegetation were lower than on
plots under cultivation.

Similar effects were detected by Wu et al. (2008) who
analyzed data from 50 to 90 years of experiments in the
USA comparing irrigated arable land with native vegetation
in an arid and semiarid climate. They found that the carbon
content was significantly higher in the irrigated arable land
after 30 years. Li et al. (2006) investigated changes in soil
carbon content in an arid region of China after converting
desert to irrigated arable land. Some years after conversion,
the soil carbon contents in all crop rotations studied were
higher than under desert vegetation. The large difference in
biomass production between desert and irrigated arable land
was reported to be probably the main reason for the fast
increase in soil organic carbon. Similar results were found
by Li et al. (2009) and Su et al. (2010). A significant
difference in soil organic carbon content was observed
10 years after the change from uncultivated dry land to
irrigated and fertilised cropland. Irrigation and fertilisation
led to a strong increase in plant growth and, thus, to a higher
input of organic matter into the soil. Similar results were
reported by Fallahzade and Hajabbasi (2012) whose inves-
tigations were conducted in Iran to analyse the effects of
converting desert to irrigated cropland. In contrast,
Bordovsky et al. (1999) found only slightly higher contents
of soil organic matter 10 years after implementation of
irrigation in a semiarid region in the USA.

The situation is different if precipitation is higher or soils
have higher initial soil organic carbon content. In Germany
(humid climate) (Fig. 3), Ellmer and Baumecker (2002)
found slightly but not significantly higher soil organic car-
bon contents after 32 years of irrigation (Table 2). Presley et
al. (2004) reported that no differences in the soil organic
carbon content were observed on soils with higher initial
contents after 28 to 30 years of irrigation on plots in a
semiarid region the USA. After 27 years of field trials in
Austria (humid climate), Dersch and Bohm (2001) did not
find significant differences in the soil organic carbon con-
tent between irrigated and non-irrigated plots. The authors
assume increased mineralisation under irrigation to be the
reason. Mineralisation decreased during dry periods in the
non-irrigated plots while it was not reduced under irrigation.
The same effect seems to predominate in the investigations

of De Bona et al. (2008). They also found no significant
differences in soil organic carbon contents between irrigated
and non-irrigated plots after 10 years of investigation in
Brazil.

Getaneh et al. (2007) report a slight and not significant
decrease in soil organic carbon from plots in a subhumid to
humid region of Ethiopia. In this experiment, over 11 to
60 years, the high cultivation intensity and the complete
removal of harvest residues are crucial. The increased soil
moisture under irrigation enhanced microbial activity, and
the input of organic matter was too low to compensate the
increased decomposition.

In summary, among the 14 long-term field experiments
shown in Table 2, there were eight cases where significantly
higher soil organic carbon contents under irrigation were
obtained. All of these investigations were carried out on arid
or desert sites. Especially on desert or arid sites with low
precipitation, scanty natural vegetation and low initial soil
organic carbon contents irrigation led to increases in soil
organic carbon. In semiarid and arid regions with a better
natural plant growth and higher precipitation, soil organic
carbon contents of irrigated and non-irrigated arable land
were generally lower than those of sites with natural vege-
tation. However, among the plots used as arable land, irri-
gation led to higher soil organic carbon contents compared
with non-irrigation.

No significant differences between irrigated and non-
irrigated plots or slight decreases in soil organic carbon
contents were found in six cases. These investigations were
conducted in wetter regions like Germany, Austria and
Brazil and on arable soils with higher initial soil organic
carbon content. The potential for decomposition of soil
organic carbon is higher in these regions. Ogle et al.
(2005) investigated the loss of soil organic matter after
change from natural vegetation to arable land in different
climates. The largest difference was found in the humid
tropics. The differences between soil organic matter con-
tents under natural vegetation and arable land decrease with

Fig. 3 Long-term irrigation field trial in Germany
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increased aridity and decreased mean annual temperature.
The analysis of the 14 long-term investigations has shown a
similar result. Figure 4 shows a summary of all 14 inves-
tigations, ordered by climate and land use. The largest
changes were found on irrigated desert soil with an average
increase in soil organic carbon of 242.6 %. In contrast, the
average increase in regions with higher precipitation was
smaller, about 17 to 25 % in arid or semiarid climates. In
some cases, soil organic carbon even decreased. In humid
climates, irrigation showed a minimal effect. The mean
increase in all investigations of this climate was about 2.0.
Also, the duration of experiments plays an important role in
investigations on the development of soil organic carbon
contents. In order to study significant changes in soil organ-
ic carbon, long-term experiments are necessary (Li et al.
1997). Results will be more meaningful with an increasing
duration of investigations on equal terms.

In the reviewed investigations, further management fac-
tors like tillage and fertilisation were also varied. Hence, the
observed effects on soil organic carbon content might be the
consequence of interaction of irrigation and other manage-
ment factors. These factors are discussed below.

3.2 Interaction of irrigation and N fertilisation

When considering the effects of irrigation, possible interac-
tions with other agrotechnical activities have to be regarded.
One of such activity is N fertilisation.

Many investigations show that N fertilisation leads to
higher biomass generation and to an increase in root and
harvest residues. Thus, N fertilisation may contribute to
increase the soil organic carbon content in arable land (Liu
and Greaver 2009; Schlesinger 2000). On the other hand, N
fertilisation may lead to a decrease in the soil carbon/nitro-
gen ratio and hence to a higher decomposability of soil
organic matter (Li et al. 2009).

Field experiments that allow for observing the interaction
between irrigation and N fertilisation are rare. Among the
investigations listed in Table 2, only Ellmer and Baumecker
(2002) and Dersch and Bohm (2001) include varying N fertil-
isation rates on irrigated and non-irrigated plots. Both report that
plots with N fertilisation have higher soil organic carbon con-
tents than plots without N fertilisation at the same intensity of
irrigation. As previously mentioned, they did not observe addi-
tional increases in soil organic carbon contents by irrigation.

Fig. 4 Changes (mean, minimum maximum) in soil organic carbon
content under irrigation compared with non-irrigated conditions and
native vegetation in different climes, based on 14 long-term investiga-
tions (references: 1=Denef et al. (2008); 2=Gillabel et al. (2007); 3=
Entry et al. (2004); 4=Wu et al. (2008); 5=Li et al. (2006); 6=Li et al.

(2009); 7=Su et al. (2010); 8=Fallahzade and Hajabbasi (2012); 9=
Bordovsky et al. (1999); 10=Ellmer and Baumecker (2002); 11=Pres-
ley et al. (2004); 12=Dersch and Böhm (2001); 13=De Bona et al.
(2008); 14=Getaneh et al. (2007))

740 B. Trost et al.



3.3 Interaction of irrigation and tillage

The intensity of tillage may affect the soil organic carbon
content remarkably due to its effects on soil physical and
biological conditions. Bulk density, pore volume and, thus,
aeration and water infiltration are strongly influenced
(Amézketa 1999; Šimon et al. 2009; Stubbs et al. 2004).
With regard to the combined impact of tillage and irrigation,
two effects are relevant. One is the independent effect of
tillage intensity on soil organic carbon. The second effect
results from the influence of tillage intensity on water
productivity.

Conservation tillage is well-known to be humus-
preserving and leads to soil organic matter accumulation
as a rule (Rusu et al. 2008). While conventional tillage
causes a strong disaggregation and aeration of soil, thus
supporting the decomposition of organic matter by in-
creased oxygen availability, the impact on soil structure is
strongly reduced under conservational tillage and especially
under no-till. Harvest residues are shallowly incorporated
into the soil or remain on the soil surface. The increasing
amount of organic matter protects the soil against wind and
water erosion and stimulates the edaphon (Šimon et al.
2009; Stubbs et al. 2004).

Reduced or no-tillage contribute as well to increasing
water productivity, i.e., the amount of crop output generated
per unit water input. Both reduced and no tillage increases
the soil’s water storage capacity due to humus preservation
and decreased evaporation from soil. In the case of no-till,
additional air moisture can be absorbed into the mulch
cover. Altogether, reduced tillage and no-till may increase
biomass generation per unit of water input via precipitation
and irrigation and, thus, enlarge the potential positive effect
of irrigation on soil carbon sequestration (Drastig et al.
2011; Rusu et al. 2008).

Consequently, the combination of irrigation and reduced
tillage is assumed to have a larger potential to increase soil
organic carbon contents than irrigation in combination with
conventional tillage (Martens et al. 2005). This is confirmed
by the results of Entry et al. (2004) and Bordovsky et al.
(1999) (Table 2). Significantly higher soil organic carbon
contents were found under irrigation and reduced tillage
compared with plots under irrigation and conventional till-
age. In contrast, De Bona et al. (2008) did not observe
significant differences between plots under conventional
and no-tillage with or without irrigation.

3.4 Effects of irrigation on soil aggregate stability and soil
biota

The integration of soil organic matter into microaggregates
(50 to 250 μm diameter) and macroaggregates (>250 μm
diameter) protect it against decomposition. Carbon

compounds are difficult to disrupt when bound in the matrix
of silt and clay particles in connection with solid chemical
exudates (Blanco-Canqiu and Lal 2004; Gillabel et al.
2007). Kong et al. (2005) consider the content of micro-
aggregates an ideal indicator for the carbon sequestration
potential of agricultural soils since additional carbon inputs
are mainly fixed in these microaggregates. Other results
accentuate the importance of macroaggregates for carbon
sequestration. Investigations of Degens and Sparling (1995)
have shown that organic carbon bound in macroaggregates
was not increasingly decomposed after repeated wetting and
consequently intensified microbial activity.

Soil moisture variation and hence irrigation has an im-
portant influence on soil aggregate building (Amézketa
1999). On the one hand, it is assumed that the alternation
between drying and wetting has a negative impact on the
stability of macroaggregates (Lehrsch et al. 1991; Mulla et
al. 1992). On the other hand, investigations have shown that
a continued change between wetting and drying has led to
an increase in water-stable aggregates (Utomo and Dexter
1982; Dexter 1988; Barzegar et al. 1995). The effect seems
to depend on soil type and soil composition. Pore volume,
pore diameter, contents of clay and organic matter are im-
portant factors (Amézketa 1999; Six et al. 2004). The ve-
locity of moisture infiltration in soil aggregates may be
relevant as well (Barzegar et al. 1995). If moisture infiltrates
slowly, there is little effect on soil aggregate stability in most
cases. In contrast, a rapid moisture infiltration may lead to
disaggregation. This depends on the water saturation of the
soil in particular (Amézketa 1999).

Likewise, the intensity of irrigation may affect aggregate
building and therefore the soil organic carbon content. In
their investigations on deficit irrigation, Blanco-Canqui et
al. (2010) found that an increase in the amount of applied
irrigation water led to more soil aggregates with a diameter
over 0.5 mm, while aggregates under 0.5 mm decreased.
Also, the soil organic carbon content increased with higher
amounts of applied water. Besides the rate and duration, the
system of irrigation may also influence structural stability.
Furrow and flood irrigation led to disaggregation by com-
pression of entrapped air due to rapid soil wetting
(Amézketa 1999). In addition, sprinkler irrigation may in-
fluence aggregate forming at the soil surface. Water drops
may increase the aggregate breakdown on the soil surface
by their impact forces. This depends on drop size and fall
height (Shainberg et al. 1992).

The effects of irrigation on mesofauna are relevant as
well with respect to aggregate building.

The important role of soil organisms like earth worms for
building clay–humus complexes makes them essential for
long-term carbon storage in soils (Pulleman et al. 2005).
Amador et al. (2005) registered that earth worms
(Lumbricus terrestris L.) decompose more organic matter
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in a wet soil than under dry conditions. Also, the amounts of
springtails (Collembola), mites (Acari) and nematodes
(Nematoda) are higher under irrigation (Lindberg et al.
2002).

Soil-borne fungi are essential for aggregate building.
Mycorrhiza fungi, particularly, act in multifaceted ways on
the formation of soil aggregates. This occurs primarily by
the growth of hyphae, which supports the complex building
of microaggregates and by the excretion of secondary syn-
thesis products. The secondary synthesis products could act
directly on soil particles or influence other soil living organ-
isms (Rilling and Mummy 2006). The effect of irrigation on
mycorrhiza fungi has not been definitely ascertained. Mitra
et al. (2006) did not find a significant increase of mycorrhiza
infections on wheat roots under irrigation. Rillig et al.
(2001) found that increased soil moisture affected hyphae
length negatively.

Another mechanism to affect soil biota via irrigation
might be the cooling of the soil surface. Investigations in
Mongolia conducted by Mariko et al. (2007) showed that
irrigation led to a fast decease in soil surface temperature
from 30 °C to 20 °C and a short-term increase in CO2

generation, which indicates higher microbial activity.
Optimal soil temperature for microorganisms depends on
the specific soil microbial communities. O’Connel (1990)
sees the optimum at 30 °C, while Thierron and Laudelout
(1996) found the highest microbial activity between 20 °C
and 25 °C. In hot climates, where the temperatures of soil
surface are often high, irrigation may support microbial
activity not only by providing moisture but also by cooling
the soil. This may lead to an increased decomposition of soil
organic matter.

3.5 Summary on irrigation and soil organic carbon

The results of long term-investigations show that the effect
of irrigation strongly depends on climate and initial soil
organic carbon content. Positive effects of irrigation on soil
organic carbon become less pronounced at higher initial soil
organic carbon contents and higher precipitation. Desert
soils with very low soil moisture contents and minimal
carbon contents have a lower natural activity of soil biota.
Inputs of carbon by the cultivation of crops exceed the
microbial decomposition. Soils with higher initial carbon
contents and higher soil moisture offer better living condi-
tions for microorganisms and usually have a higher natural
activity of soil biota. In these soils, there is often a balance
between carbon input and carbon decomposition. Therefore,
the effect of irrigation may be twofold. Irrigation, while
enhancing the carbon input through larger amounts of plant
residues, could additionally improve the living conditions
for microorganisms, causing higher decomposition rates.
Thus, the increased input of carbon could be decomposed

completely. A further reduction in soil organic carbon con-
tent is even possible. The combination of irrigation with
other agronomic management factors also influences the
development of soil organic carbon content. Nitrogen fertil-
isation promotes plant growth but may lead to a change in
the carbon/nitrogen ratio and hence to a higher decompos-
ability of soil organic carbon. Tillage influences soil aera-
tion and soil structure and hence the decomposability of soil
organic carbon and the activity of soil living microorgan-
isms. In addition to increased input of carbon by improved
plant growth, irrigation shows direct effects on soil aggre-
gate building and thus on the ability of soil to fix organic
carbon long-term.

4 Irrigation and nitrous oxide emissions

4.1 Overview of experiments

There are few investigations directly comparing N2O emis-
sions from irrigated and non-irrigated land. An overview of
eight field experiments carried out in different regions of the
world is given in Table 3. In most cases, N2O emissions
increased under irrigation. Investigations carried out in
Finland by Simojoki and Jaakkola (2000) show that N2O
emissions were significantly higher under irrigation, both
with and without N fertilisation. These investigations dem-
onstrate that the availability of reactive nitrogen compounds
has an essential influence on the amount of N2O emissions.
The N2O emissions from a soil under vegetation were clear-
ly lower than from a fallow soil without vegetation. Plants
take up nitrogen from soil and, thus, reduce the nitrification
and denitrification potential. Liu et al. (2011), who carried out
investigations in China, likewise observed that irrigation
events led to higher N2O emissions only in combination with
adequate nitrogen availability. Comparing irrigated wheat and
maize fields with and without N fertilisation, higher N2O
emissions were obtained from the fertilised fields.

Livesly et al. (2010), who investigated the effects of
fertilisation, irrigation and mulching on N2O emissions from
urban lawns in Australia, report a continuous increase in
N2O emissions under weekly irrigation, whereas the in-
crease after fertilising was short-term. They conclude that
the effect of regular irrigation is higher than that of N
fertilisation.

Horváth et al. (2010) report an increase in N2O
emissions from irrigated pastures in Hungary. This ef-
fect was observed in 2 of 3 years, in particular, when
precipitation was low and the differences in water-filled
pore volume between the irrigated and non-irrigated
plots were large.

Scheer et al. (2008) investigated cotton fields in
Uzbekistan. They found that a reduced application of water
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by less frequent irrigation events could lead to lower N2O
emissions as a result of lower soil moisture.

Rochette et al. 2010, who investigated the effects of
irrigation and N fertilisation on a drained organic soil in a
2-year study in Canada, obtained higher N2O emissions on
irrigated plots where nitrogen fertiliser was applied.
Moreover, higher amounts of precipitation and irrigation
water in the second year led to increased N2O emissions.

In contrast, no significant differences between N2O emis-
sions from irrigated and non-irrigated land are reported from
two further field experiments. Liu et al. (2008) did not observe
significant increases in N2O emissions from irrigated pastures
in the Mongolian steppe. They consider the reason to be the
low content of reactive nitrogen compounds in the soil. Also,
Wulf et al. (1999), who conducted their investigations in
Kenya, found that the amount of N2O emissions did not differ
significantly from irrigated and non-irrigated plots. After irri-
gation or precipitation events, increases of N2O emissions
were observed in both variants. Under irrigation, the increase
was slightly smaller. This is explained by the availability of
reactive nitrogen compounds, since the nitrate contents in the
irrigated plots were lower. Without irrigation, the microbial
activity and, hence, mineralisation, nitrification and denitrifi-
cation processes were reduced in the dry period. These pro-
cesses were enhanced rapidly with an increase in soil moisture
after precipitation and caused a strong release and conversion
of reactive nitrogen compounds. Living conditions for micro-
organisms are more favourable and constant under irrigation
so that mineralisation and conversion proceed more steadily
(Wulf et al. 1999).

4.2 Influence of soil water content and soil aeration
on nitrous oxide emissions

N2O arises as an intermediate in denitrification and
nitrification. Both processes are strongly influenced by
soil water content and soil aeration. Low oxygen con-
tents and anaerobic conditions caused by high soil water
content can lead to intensification of denitrification pro-
cesses (Beare et al. 2009). N2O emissions arising from
denitrification processes increase strongly at a water
filled pore volume over 70 % (Amha and Bohne
2011; Ruser et al. 2006). However, a nearly complete
filling of the pore volume over a long time may lead to
a decrease of N2O emissions since, under strict anaero-
bic conditions, the intermediate in denitrification N2O is
completely deoxidised to N2 (Huang et al. 2007).

Nitrification is the primary reason for N2O formation
under oxygen availability. A water-filled pore volume of
30 % to 60 % supports N2O release via nitrification
(Kavdir et al. 2008; Horváth et al. 2010). Also, the kind
of tillage may affect soil aeration and, thus, the process-
es generating N2O. There are many investigations regardingT
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the impact of reduced or minimum tillage on N2O release,
reporting that reduced tillage leads to higher N2O emissions in
comparison to conventional tillage (Abdalla et al. 2010; Ball
et al. 2008; Rochette 2008; Smith et al. 2000). In contrast,
some results have shown higher N2O emissions from soils
under conventional tillage (Chatskikh and Olesen 2007;
Gregorich et al. 2007; Mutegi et al. 2010). The increased
N2O emissions under reduced or minimum tillage can be
explained by a reduced gas exchange and resultant intensified
denitrification processes (Abdalla et al. 2010; Ball et al. 2008;
Rochette 2008). Also, increased CO2 production from micro-
bial respiration caused by the accumulation of organic matter
in the top soil under no-till leads to a decrease in oxygen
concentration (Abdalla et al. 2010). The reason for higher
N2O emissions under conventional tillage could be a strong
disaggregation and enhanced soil aeration. Hence, the living
conditions of aerobic nitrifying bacteria may be improved
(Elmi et al. 2003; Gregorich et al. 2007).

4.3 Nitrous oxide emissions under irrigation in combination
with nitrogen fertilising

In those investigations where higher N2O emissions were
observed under irrigation, the availability of nitrogen was

most often the more relevant factor (Fig. 5). An average
increase of about 87 % was estimated under irrigation in
combination with nitrogen fertilising. Without nitrogen, fer-
tilising the estimated average increase was about 7 %. But
exceptions with high increases in N2O emissions under
irrigation without nitrogen fertilisation are possible.
According to Robertson et al. (2000), the primary reason

Fig. 5 Changes (mean, minimum maximum) in N2O emissions under
irrigation compared with non-irrigated conditions, based on six inves-
tigations (references: 1=Simojoki and Jaakkola (2000); 2=Livesley et

al. (2010); 3=Horváth et al. (2010); 4=Rochette et al. (2010); 5=Liu et
al. (2008); 6=Wulf et al. (1999))

Fig. 6 Drip irrigation, partial wetting of soil
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for high N2O emissions is the existence of a high con-
centration of reactive nitrogen compounds in the soil.
Irrigated arable land as a rule is intensively farmed and,
therefore, has a high fertiliser input. Consequently, it
offers a high potential for N2O formation (Ellert and
Janzen 2008). It has been affirmed in numerous inves-
tigations that an increase in nitrogen fertilising leads to
higher N2O emissions (Clayton et al. 1997; Hao et al.
2001; Lin et al. 2011; Liu and Greaver 2009; Yao et al.
2010). An increase in the water-filled pore volume can
intensify this effect additionally (Abbasi and Adams
2000). Significantly higher emissions were observed in
several investigations if precipitation and irrigation events
proceeded after the application of nitrogen fertiliser
(Dobbie and Smith 2003; Liu et al. 2010; Hutchinson
and Mosier 1979; Scheer et al. 2008).

4.4 Effects of irrigation systems on nitrous oxide emissions

The irrigation technology and hence the distribution of
water in the soil may affect the amount of N2O emis-
sions. Sanchez-Martin et al. (2010) and Kallenbach et al.
(2010) found that N2O emissions were lower under drip
irrigation than under furrow irrigation. According to
Kallenbach et al. (2010), the reason is the partial wetting
of soil under drip irrigation (Fig. 6). The soil pore
volume is filled with water only at the spots where the
drippers are located. Thus, denitrification proceeds on a
considerably smaller area in comparison to furrow irriga-
tion. Nelson and Terry (1996) compared N2O emissions
under sprinkler irrigation and furrow irrigation. They
observed strong changes in soil physical parameters un-
der furrow irrigation. Increases in bulk density and crust-
ing led to a decrease in aeration and, therefore, to an
intensification of denitrification processes. At the same
time, crusting may prevent N2O from directly escaping
from the soil to the atmosphere, so that N2O may pos-
sibly deoxidise to N2 (Mahmood et al. 2008).

4.5 Summary on irrigation and N2O emissions

In summary, general statements on the effect of irrigation on
the amount of N2O emissions cannot yet be derived. In
various cases, an increase in soil moisture intensified
nitrification and denitrification processes and, thus, en-
hanced N2O emissions. Direct comparisons between the
amount of N2O emissions from irrigated and non-
irrigated land are rare. Those available did not always
find higher N2O emissions from the irrigated plots. In
most cases, the availability of reactive nitrogen com-
pounds seems to be more important for the release of
N2O. Different technologies and intensities of irrigation
may also influence N2O emissions.

5 Conclusions

In most cases, irrigation leads to significantly higher soil
organic carbon contents in arid soils and deserts than non-
irrigated conditions. For humid climates and on soils with
higher initial soil organic carbon content, irrigation has no
significant effects on soil organic carbon contents. N2O
emissions as a rule increase under irrigation when reactive
nitrogen compounds are adequately available. Soil carbon
sequestration and N2O release are affected by environmental
factors and management measures interacting with irriga-
tion. It is difficult to estimate the effects of some of these
factor combinations. The net effects of irrigation on green-
house gas emissions have not been estimated yet. A full
balance is necessary to assess the impact of irrigation on net
greenhouse gas emissions.
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