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Abstract – Honeybee (Apis mellifera Linnaeus) colonies in temperate zones produce either summer bees,
which have a lifespan of 15 to 48 days, or winter bees, which emerge in late summer and live up to 8 months.
Winter bees develop unique physiological conditions characterized by changes in protein composition that
appear to be major determinants of honeybee lifespan. We analyzed winter honeybee worker hemolymph using
a proteomic approach for the first time. Hemolymph collected from the dorsal vessel of winter honeybees using
a glass capillary tube was analyzed using two-dimensional gel electrophoresis followed by MALDI TOF/TOF
protein identification. Overall, 93 spots were assigned significance (P<0.05). Many identified proteins
corresponded well with extended lifespan. Vitellogenin subunits (mainly ∼180 and ∼100 kDa) comprised the
major portion of the proteins; however, vitellogenin dominance repressed the signals of the lower-abundance
proteins. Future physiological studies related to overwintering bees, including health, immunity, longevity,
nutrition, and/or colony losses, can benefit from these results.

Apis mellifera / hemolymph / winter honeybee / vitellogenin / proteomics / longevity

1. INTRODUCTION

Honeybees (Apis mellifera Linnaeus) are the
most economically valuable pollinators of agri-
cultural crops worldwide. The fact that the
honeybee genome was one of the first genomes
to be sequenced and annotated (Honeybee
Genome Sequencing Consortium 2006) high-
lights the importance of honeybees to humans.
Recently, many researchers have been interested
in the as-yet unexplained phenomenon of
Colony Collapse Disorder (CCD) (Williams et
al. 2010) for which the major cause is thought

to be the parasitic mite, Varroa destructor
(Dainat et al. 2012; van Dooremalen et al.
2012). The study of the biology of wintering
bees is important because the main colony
losses occur in winter in temperate regions
(Dainat et al. 2012; van Dooremalen et al.
2012).

In temperate regions, honeybee colonies
produce either short-lived summer worker bees,
which have a lifespan between 15 and 48 days,
or long-lived winter worker bees, which emerge
in late summer and live up to 8 months (Fluri
1990). Because no brood or small numbers of
brood are reared during winter, winter workers
have low synthesizing activity (Brouwers 1983)
in the almost fully developed hypopharyngeal
glands (HPGs) (Fluri et al. 1982; Hrassnigg and
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Crailsheim 1998). The unique physiological
adaptations that occur in winter bees over a
period of 3 to 4 weeks after emergence are
associated with worker longevity (Fluri et al.
1982). Most distinctly, winter bees differ from
summer worker bees in that they have low
juvenile hormone (JH) titer, but high protein
titer. Low JH levels increase vitellogenin titers,
which negatively regulate JH levels (Fluri et al.
1977, 1982). However, because summer work-
ers are not as homogenous as winter bees, their
physiology differs in the role they fulfill in the
colony. Dramatic changes occur when nurse bee
with high vitellogenin titer becomes forager, a
process that decreases vitellogenin titers to an
undetectable level (Amdam et al. 2003; Piulachs
et al. 2003; Guidugli et al. 2005). Thus, protein
composition appears to be a major determinant
of honeybee lifespan, and the major hemolymph
protein, vitellogenin, seems to play a crucial
role in longevity (Amdam and Omholt 2002).

Similar to vertebrate blood, insect hemo-
lymph is responsible for supplying nutrients to
tissues and organs. It is composed mainly of
water, inorganic salts, carbohydrates, proteins,
hormones, lipids, free amino acids, and
macrophage-like cells (hemocytes) (Leta et al.
1996; Lavine and Strand 2002; Hrassnigg et al.
2003; Chan et al. 2006; Burmester and Hankeln
2007). The insect hemolymph proteins provide
important physiological and immune system
information and reflect the health of the
organism (Levy et al. 2004; Bogaerts et al.
2009). Moreover, because honeybees are social
insects and the protein composition of hemo-
lymph varies between developmental stages,
hemolymph proteins can be used to study caste
differences as well as development (Chan et al.
2006; Randolt et al. 2008). Several proteomic
studies analyzing honeybee hemolymph using
one-dimensional gel electrophoresis or two-
dimensional gel electrophoresis (2DGE) have
been performed (Danty et al. 1998; Chan et al.
2006; Chan and Foster 2008; Randolt et al.
2008; Bogaerts et al. 2009). Bogaerts et al.
(2009) were the first group to analyze the
hemolymph of summer A. mellifera carnica
workers using 2DGE and gel-free (2DLC)

proteomic approaches (Bogaerts et al. 2009). More
recently, a similar 2DGE protein pattern of key
hemolymph proteins was found in summer
dequeened honeybees (Cardoen et al. 2011).

The objective of the current study was to
analyze winter honeybee worker hemolymph
using a proteomic approach for the first time.
Using a proteomic approach based on 2DGE,
together with matrix-assisted laser desorption/
ionization (MALDI) time-of-flight (TOF)/TOF
mass spectrometry analysis, major proteins of
long-lived winter A. mellifera hemolymph were
identified. An insight into the complex proteins
of the winter honeybee hemolymph gave us the
opportunity to summarize the functions of the
proteins that were identified and are thus related
to the wintering of the honeybee.

2. MATERIALS AND METHODS

2.1. Biological samples

Winter honeybees, A. mellifera mellifera, bred at
the Bee Research Institute at Dol in the Czech
Republic were used in this study. The beehive was
moved in January to a 5×8×4-m flying hall (RH 70–
80 %; ∼18 °C) for easier manipulation. After a 3-day
acclimatization period in the new environment, winter
honeybees were collected from the hive and placed in
a glass bottle covered with muslin and a cap with
10 mm diameter vent holes. The bees were anesthe-
tized using CO2. Hemolymph was collected from the
dorsal vessel using a 40-μm outer diameter glass
capillary tube after puncturing the intersegmental
membrane between the fourth and fifth tergites of
the adult honeybee abdomen. Approximately 2 μL of
hemolymph was collected from each individual. Only
transparent hemolymph was used in these studies.
Hemolymph that was potentially contaminated by
non-hemolymph particles was discarded. The hemo-
lymph was transferred from the glass capillary tube to
a 0.5-mL Eppendorf Protein LoBind Tube (Cat. No.
Z666491, Sigma-Aldrich) containing 1 μL of prote-
ase inhibitor mix (Cat. No. 80-6501-23, GE Health-
care). The samples were stored on ice during
collection. To protect the samples from human keratin
contamination, sterile plastic single-use gloves were
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used throughout the process. Hemolymph extracted
from 20 adults was used for analysis.

2.2. Two-dimensional gel electrophoresis

Protein concentration was determined using the
Bradford assay (Cat. No. B6916, Sigma-Aldrich),
and 250 μg protein was used for the 2DGE.
Isoelectric focusing (IEF) was performed on an
Ettan IPG Phor 3 instrument (GE Healthcare)
controlled by Ettan IPG Phor 3 control software.
The separation was performed in 13 cm ceramic
strip holders using Immobiline dry strips with a
pH range of 3–10 (Cat. No. 17-6001-14, GE
Healthcare). A DeStreak Rehydration Solution
(Cat. No. 18-1168-31, GE Healthcare) containing
0.5 % IPG buffer, pH3–10 (Cat. No. 17-6000-87,
GE Healthcare) was used for active rehydration.
The separation program was as follows: step 1—
30 V, 10 h; step 2—500 V, 500 Vh; step 3—Grad
1,000 V, 800 Vh; step 4—Grad 6,000 V,
15,000 Vh; and step 5—6,000 V, 16,000 Vh.
The duration of the isoelectrofocusing program
and the active rehydration was 19 h. Immediately
following IEF, the strips were equilibrated for
15 min in equilibration buffer containing dithio-
threitol (Cat. No. 43817, Sigma-Aldrich) and for
15 min in buffer containing iodoacetamide (Cat.
No. 57670, Sigma-Aldrich). The strips were
placed on sodium dodecyl sulfate (SDS)-PAGE
gel and fixed with 1 % agarose (Cat. No. A7431,
Sigma-Aldrich). The gel was prepared according
to the manufacturer’s instructions from 37.5:1
acrylamide/bisacrylamide (Cat. No. A3699,
Sigma-Aldrich), N,N,N′,N′-tetramethylethylenedi-
amine (Cat. No. T9281, Sigma-Aldrich), SDS (Cat.
No. 2326.2, Carl Roth), glycine (Cat. No. 3908.2,
Carl Roth), and Tris base (TRIS) (Cat. No. 4855.3,
Carl Roth). Nanopure water (0.2 μm filtered)
(Barnstead, Thermo) was used throughout the study.
A Rainbow Full-Range 12 to 225 kDa molecular
weight protein marker (Cat. No. RPN 800E, GE
Healthcare) was used for protein mass reference.
Ten microliters of the marker was loaded onto the
sample application piece (Cat. No. 80-11-29-46, GE
Healthcare) positioned near the pH3 (+) end of the
strip. The electrophoresis was run at a constant
voltage of 100 V for 30 min in an SE 600 Ruby

electrophoresis instrument (GE Healthcare) after
which the proteins were separated at a constant
voltage of 333 V under cooling.

For Coomassie staining, the gel was fixed in a fixing
solution (40 % LC-mass spectrometry (MS) grade
methanol, 10 % ice-cold acetic acid, 50 % nanopure
water) overnight and stained with 0.02 % PhastGelTM

Blue R (Cat. No. 17-0518-01, GE Healthcare). Unused
fixing solution was used for destaining. The results
were visualized using a scanner (CanoScan 8800F,
Canon).

2.3. Protein identification

For identification using MS, the proteins were
manually excised from the gel. The proteins were
destained and further digested with trypsin. Spectra were
acquired in the range of 700–4,000 m/z using a 4800
Plus MALDI TOF/TOF analyzer (AB Sciex) equipped
with an Nd:YAG laser (355 nm, firing rate of 200 Hz).
Peak lists from the MS spectra were generated using
4000 Series Explorer V 3.5.3 (AB Sciex). The spectra
were searched against a database of metazoan protein
sequences from GenBank using a local version of
Mascot v. 2.1 (Matrix Science). Only hits that were
scored as significant (P<0.05) and with a score greater
than 75 were considered further.

3. RESULTS

In this study, a 2DGE map of hemolymph
proteins of winter honeybees, A. mellifera
mellifera, was created (Figure 1). 2DGE
followed by mass spectrometry was used to
identify proteins from winter honeybee worker
hemolymph (Table I). In total, 121 spots of
high abundance were excised after 2DGE and
further analyzed by MALDI TOF/TOF mass
spectrometry. Overall, 93 proteins with identi-
fication scores greater than 75 were assigned
significance (P<0.05). The proteins identified
as significant are denoted in Table I and
indicated in Figure 1. The major protein
identified in the hemolymph of the winter
honeybees was vitellogenin. Its dominance
repressed the signals of the lower-abundance
proteins (Figure 1).
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4. DISCUSSION

4.1. Vitellogenin—major protein
in the winter honeybee hemolymph

Insect vitellogenins are phospholipoglycopro-
teins that are synthesized as ∼200 kDa precursors
and circulate in the hemolymph, usually as dimers
(typically 400–600 kDa). The primary insect
vitellogenin precursor is composed of large
(140–190 kDa) and small (40–60 kDa) subunits
that are assembled and secreted into the hemo-
lymph. In some insects, ∼100 kDa vitellogenin
subunits have been identified (Tufail et al. 2001;
Tufail and Takeda 2002, 2008). Honeybee
vitellogenin is thought to be a 180-kDa monomer

(Engels 1974; Engels and Fahrenhorst 1974;
Fluri et al. 1982; Wheeler and Kawooya 1990).
The proteomic results of this study showed that
vitellogenin subunits of different sizes are de-
tectable in the 2DGE map (Figure 1), mainly as
∼180 and ∼100 kDa subunits. In addition, we
detected a ∼40-kDa subunit previously identified
in the honeybee abdominal fat body tissue
(Havukainen et al. 2011); however, this subunit
was the only one identified in the summer
honeybee hemolymph 2DGE (Bogaerts et al.
2009). It is possible that the 100- and 40-kDa
units are fragmentation products of the unit of
higher molecular weight (MW).

Vitellogenins are female-specific precursors
of the major egg yolk protein vitellin and are

Figure 1. Representative Coomassie-stained 2DGE of winter Apis mellifera hemolymph. Spots assigned
significance (P<0.05) after MALDI TOF/TOF are marked by a number (1–93) and denote samples in Table I.
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used by both invertebrates and vertebrates in egg
maturation and embryo development (Finn et al.
2009; Arrese and Soulages 2010). In insects,
vitellogenins are produced by the fat body, from
which they are secreted to the hemolymph (Tufail
and Takeda 2008; Arrese and Soulages 2010). In
honeybees, it is the major hemolymph protein
(30–50 % of total) in queens, hive bees, and
wintering workers (Amdam et al. 2003). Howev-
er, in foragers, vitellogenin is expressed at low
levels and is linked to increased JH titers
(Amdam et al. 2003; Piulachs et al. 2003;
Guidugli et al. 2005). Moreover, vitellogenin-
derived proteins can constitute up to 25–60 % dry
weight of HPGs of summer hive bees and winter
bees (Fluri et al. 1982). Although vitellogenin
function is commonly associated with reproduc-
tion and storage, it also has a lipid carrier function
(Wheeler and Kawooya 1990; Mann et al. 1999;
Piulachs et al. 2003). Vitellogenin is also
involved in protection from oxidative stress; large
amounts of vitellogenin extend the life of honey-
bees, thus affecting honeybee longevity (Amdam
and Omholt 2002; Seehuus et al. 2006). Vitello-
genin is associated with immune defense in both
invertebrates and non-mammalian vertebrates
(Zhang et al. 2011). The link between vitelloge-
nin level, JH titer, zinc level, and immune
function was demonstrated in honeybee workers
(Amdam et al. 2004). Thus, the increased level of
hemolymph vitellogenin in the winter honeybees
should correspond to their resistance to diseases.
The results from the 2DGE analyses of winter
honeybee hemolymph could be used to study the
correlation between hemolymph vitellogenin lev-
els and the longevity and health of honeybees.
Because the vitellogenin level of winter honey-
bees has been proposed as a possible predictive
determinant for CCD (Dainat et al. 2012), we
believe that future studies related to CCD
could benefit from the results of this paper.

4.2. Hexamerin—sole presence
of hexamerin 70a in the winter
honeybee hemolymph

Hexamerins are another group of relatively
high-abundance proteins that we identified in

the hemolymph of winter honeybees. Typical
hexamerins are large oligomers of approximate-
ly 500 kDa in their native form. They are
typically composed of six similar or identical
subunits of 75–90 kDa each. Hexamerins
belong to the class of hemolymph proteins
originally described as storage proteins that
serve as a source of energy and amino acids in
non-feeding periods. They belong to a family of
proteins that includes hemocyanins, propheno-
loxidases, and arylphorin receptor proteins.
Although arthropod hemocyanins are involved
in oxygen transport, the analogous insect pro-
teins, hexamerins, have lost the ability to bind
Cu2+ ions and transport oxygen (Burmester et
al. 1998; Burmester 2002; Martins et al. 2008,
2010).

Four hexamerin subunits exist in the honey-
bee genome: 70a, 70b, 70c, and 110. However,
protein expression studies using honeybees at
different developmental stages and tissues re-
veal functional distinctions (Danty et al. 1998;
Cunha et al. 2005). Of the four hexamerins
present in honeybee larvae, hexamerin 70a is
present in adults, suggesting a distinct develop-
mental pattern (Danty et al. 1998; Cunha et al.
2005; Bogaerts et al. 2009). Hexamerin 70a is
classified as an arylphorin because more than
15 % of its amino acids are aromatic and it
serves as an amino acid source during meta-
morphosis. Hexamerin 70a plays a role in ovary
differentiation and testis maturation and func-
tioning. However, because hexamerin 70a is
detected in developing worker honeybees,
queens, and drone gonads, its reproductive role
differs from that of vitellogenin. Additionally, it
is not detected in eggs or embryos (Martins et
al. 2008, 2010). Martins et al. (2011) confirmed
that hexamerin 70a plays role in cell prolifera-
tion, a function previously described for aryl-
phorins. The amino acids derived from
hexamerin 70a hydrolysis are essential in cuticle
formation (Martins et al. 2011). The identifica-
tion of hexamerin 70a in the hemolymph of the
winter honeybee confirms that it is functional in
winter workers. Although we identified hexam-
erins that are expressed only by the Hex70a
gene, multiple isoforms of different MWs and
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isoelectric points (pIs) were identified by
2DGE. The presence of spots smaller than
70 kDa (Figure 1) suggests fragmentation of
hexamerin 70a in the hemolymph. This can be
due to insect hexamerins undergoing posttrans-
lational cleavages (Burmester and Scheller
1999). Hexamerin spots smaller than theoretical
MW were identified in 2DGE of both hemo-
cytes and fat body of Sarcophaga bullata
(Masova et al. 2010). Thus, we suggest that
the fragmented hexamerin 70a can be localized
to hemolymph hemocytes of winter honeybee.
Hexamerin was present in low abundance
compared to vitellogenin, suggesting that it is
not the primary storage protein in overwintering
honeybees.

4.3. Transferrin 1

Transferrin 1 is the most studied insect
transferrin and is similar to mammalian trans-
ferrin (Geiser and Winzerling 2012). The
predicted ∼75 kDa size from sequence analysis
of the A. mellifera transferrin 1 (Geiser and
Winzerling 2012) was verified, although multi-
ple isoforms with different MWs and pIs were
present in the 2DGE. Transferrins are iron-
binding glycoproteins that control the level of
free iron in biological fluids in vertebrates and
insects, including honeybees (do Nascimento et
al. 2004; Dunkov and Georgieva 2006). Insect
transferrins are multifunctional glycoproteins,
and multiple functions have been investigated.
In addition to iron delivery, transferrin functions
to reduce oxidative stress and to increase
survival in infected insects (as reviewed in
Geiser and Winzerling (2012)). An important
role for transferrin in longevity has been
hypothesized based on the evolutionary change
in its function from transport to immune
response (do Nascimento et al. 2004). The
function of transferrins may be similar to
mammalian lactoferrin (do Nascimento et al.
2004; Geiser and Winzerling 2012). Due to the
similarity between the functions of transferrin 1
and vitellogenin, it is apparent that both proteins
play important roles in preventing infection by
foreign factors that can negatively affect lon-

gevity. In winter honeybee hemolymph, vitello-
genin likely simulates the defense function of
transferrin and the quantitative level of both of
these proteins is indicative of immune tolerance.

4.4. Enzymes

Albeit frequent, enzymes were among the
low-abundance proteins identified in the ana-
lyzed spots. It is important to note that enzymes,
especially those with detoxification potency, can
be localized to hemolymph hemocytes. Hemo-
lymph hemocytes are invertebrate phagocytes
and play important roles in the insect immune
system (Lavine and Strand 2002). Therefore, we
did not separate them from the hemolymph. α-
Glucosidase (NP_001035349) is involved in
carbohydrate metabolism and has the α-
amylase catalytic domain found in maltase and
an α,α-phosphotrehalase domain (Marchler-
Bauer et al. 2011). Because trehalose is the
main hemolymph sugar in most insects
(Thompson 2003), the identified α-glucosidase
could relate primarily to trehalose metabolism.
Glutathione S-transferase (GST) functions as a
detoxification agent and as an antioxidant
defense against oxidative stress (Weirich et al.
2002). Identified GST (XP_624662) is a mem-
ber of the Sigma class GSTs that generally show
low levels of activity with the typical GST
substrates, but have a high affinity for the lipid
peroxidation product 4-hydroxynonenal. Their
localization in metabolically active tissues of
flies, such as the flight muscles, has been
suggested to be instrumental in protecting these
tissues from by-products of oxidative stress
(Singh et al. 2001). Earlier proteomic studies
also identified XP_624662 in the hemolymph of
summer honeybees (Bogaerts et al. 2009),
workers and queen larvae (Li et al. 2010),
venom (Peiren et al. 2008), and royal jelly (Li
et al. 2008). Thus, it is apparent that this
enzyme is ubiquitous in the life cycle of the
honeybee. The presence of esterase E4-like
protein (XP_393293) suggests esterase and/or
lipase activity. Esterases function as hymenop-
teran caste regulators, and ester hydrolysis by
esterases is thought to be the major metabolic
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route for JH degradation in most insects
(Mackert et al. 2008). Decreased levels of JH
increase longevity (Herman and Tatar 2001). In
honeybees, JH titers vary seasonally, with
winter honeybees having lower JH levels than
summer honeybees (Fluri et al. 1977, 1982;
Huang and Robinson 1995). We suggest that
XP_393293 could act similarly to juvenile
hormone esterase (AAU81605) (Mackert et al.
2008), thereby preventing elevated levels of JH
in winter honeybee workers. The chitinase-like
protein Idgf4-like belongs to the family of
imaginal disc growth factors (Idgfs). Idgfs are
structurally related to chitinases, but an amino
acid substitution in their active site prevents
hydrolase activity. Idgfs are secreted into the
hemolymph and transported to target tissues via
the hemolymph, and with insulin cooperation,
they stimulate the proliferation, polarization,
and motility of imaginal disc cells in Drosoph-
ila (Kawamura et al. 1999). Hypothetical
protein LOC413792 is classified as the metal-
loenzyme S-ribosylhomocysteinase (LuxS) that
catalyzes the non-redox cleavage of thioether
bonds (Pei and Zhu 2004). Proteins identified as
gamma-interferon-inducible lysosomal thiol
reductase-like (GILT-like) may be involved in
reducing protein disulfide bonds and the im-
mune response (Arunachalam et al. 2000).

In addition, we identified phenoloxidase
(PO) subunit A3. PO is a copper-containing
enzyme that controls melanization, thereby
affecting immune reactions. The inactive PO
form, a zymogen, is a prophenoloxidase. It is
found in hemolymph, hemocytes, and cuticle
where it is activated by serine protease protein-
activating factors (pPO-a) (Lourenco et al.
2005; Chan et al. 2006; Bogaerts et al. 2009).
A serine proteinase, stubble isoform 1, identi-
fied by 2DGE could function as the pPO-a. The
dynamics of PO levels have sex- and caste-
specific characteristics. PO levels are highest in
adults. PO activity reaches a plateau within the
first week of adult worker life. PO levels
continuously increase with age in queens and
reach levels twice as high as those found in
workers (Randolt et al. 2008; Schmid et al.
2008). The relatively high-abundance spots in

the 2DGE of the winter honeybee suggest that
PO levels are significant in long-lived worker
bees and are similar to the levels in queens. This
result supports other findings that PO levels
correlate with differences in longevity, which
has significance for colony survival (Randolt et
al. 2008). In contrast with the results from
Bogaerts et al. (2009), we were not able identify
bacteria/peptidoglycan recognition proteins that
were suggested to be the trigger for the
activation of the prophenoloxidase cascade in
the hemolymph of summer honeybees
(Bogaerts et al. 2009).

4.5. Other proteins

Various odorant binding proteins (Obps) that
are involved in olfaction are present in honey-
bee hemolymph. While Obp13, 14, and 15 were
identified in summer honeybee hemolymph
(Bogaerts et al. 2009), the only Obp that we
identified in winter honeybee hemolymph was
Obp14. This finding indicates a dominant role
of Obp14 in winter honeybees. Other identified
proteins were apolipophorins isoform 1,
reticulon-4 receptor-like (RTN4), and toll-like
receptor 13-like isoform 1 (TLR13). Lipophor-
ins are the principal lipoproteins of the insect
hemolymph and transport fats and other hydro-
phobic compounds (Robbs et al. 1985). Mem-
bers of TLRs are responsible for the recognition
of structures typical of pathogenic molecules
and are essential to fight infection in Drosophila
(Tanji and Ip 2005). RTN4s are also known as
NOGO proteins. They are important regulators
of cell motility and growth, i.e., developing
neurons or blood vessels (Schwab 2010).

4.6. Methodical note

The methodical approach adopted in this
work was based on gel-based 2DGE followed
by MS identification. The gel-based method has
the advantage that the identified proteins are
marked to a map with unique pI and MW and
are available for reference in the future. How-
ever, although we demonstrated that our 2DGE
had a distinct pattern and contained different
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major proteins than the earlier described 2DGE
of summer honeybee by Bogaerts et al. (2009),
our data are directly not comparable. The core
limitation is that data from different labs are not
comparable because they can use different
sample collection and preparation and/or sepa-
ration techniques. Some particular differences
with the mentioned study (Bogaerts et al. 2009)
are the following: (a) we used a pool of winter
worker bees versus random summer workers
that should differ greatly in castes, such as
foragers or nurse bees; (b) we performed
collection of hemolymph directly from the
dorsal vessel versus droplet collection by gentle
squeezing after removing the wings; (c) we did
not process the hemolymph before analysis
versus sonicating and desalting; (d) we used
different separation methods; and (e) our eval-
uation of MS data was based on significance
evaluation versus percentage of sequence cov-
erage. Because A. mellifera are classified to
different subspecies (Franck et al. 1998), the
selection of the subtype used for the analysis
could affect the results. We used subtype A.
mellifera mellifera while Bogaerts et al. (2009)
used A. mellifera carnica.

4.7. Conclusion

A hemolymph protein profile of winter honey-
bee workers has been generated. A series of
immune- and longevity-related proteins were
identified and discussed. However, the number
of identified proteins was limited due to domi-
nance of vitellogenin. Depletion of vitellogenin
can increase signals of the lower-abundance
proteins in the 2DGE. Future studies related to
the physiology of overwintering bees, including
their health, immunity, longevity, and nutrition,
will benefit from these results. Because over-
wintering is critical to the life of honeybee
colonies in temperate zones and because of the
elevated loss of managed honeybee colonies in
recent years, we believe that these results can
provide a foundation for studies related to CCD.
Future studies are needed that directly contrast
winter castes with summer castes to identify
pathways that may confer longevity.
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