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Abstract. In this paper we prove a general bounded height result for
specializations in finitely generated subgroups varying in families which
complements and sharpens the toric Mordell-Lang Theorem by replacing
finiteness by emptyness, for the intersection of varieties and subgroups,
all moving in a pencil, except for bounded height values of the parame-
ters (and excluding identical relations).

More precisely, an instance of the results is as follows. Consider
the torus scheme Grm/C over a curve C defined over Q, and let Γ be a

subgroup-scheme generated by finitely many sections (satisfying some
necessary conditions). Further, let V be any subscheme. Then there is

a bound for the height of the points P ∈ C(Q) such that, for some γ ∈ Γ
which does not generically lie in V , γ(P ) lies in the fiber VP .

We further offer some direct diophantine applications, to illustrate
once again that the results implicitly contain information absent from
the previous bounds in this context.

1. Introduction

Let C be a projective smooth curve defined over Q, with function field
denoted F := Q(C). In 1999 Bombieri and the second and third authors [7]
proved a bounded height result in the multiplicative group Gr

m.

Theorem 1.1 ([7], Theorem 1’). Let Γ ⊂ Gm(F) be a finitely generated
subgroup of non-zero rational functions on C such that the only constants in
Γ are roots of unity. Then the height of the points P ∈ C(Q), such that for
some x ∈ Γ \ {1} we have x(P ) = 1, is bounded above.

A significant special case is

tn(1− t)m = 1

provided only n, m are not both zero.

In this paper we prove a general bounded height result for specializations
in finitely generated subgroups varying in families. This vastly extends the
previously treated constant case and involves entirely different, and more
delicate, techniques.

Before stating our results, note that Theorem 1.1 may be also phrased as a
kind of toric analogue of Silverman’s Specialization Theorem ([24], Theorem
C). To illustrate this link, let us consider the ‘trivial’ family Gm/C := Gm×C
and the sections γi : C → Gm × C, given by P 7→ (gi(P ), P ), where gi
are generators for Γ, independent modulo constants. The above conclusion
then means that the set of points P where the values of the sections are
multiplicatively dependent has bounded height.
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Now, multiplicative dependence at P means that some nontrivial mono-
mial attains the value 1 at P . Then, rather more generally, given a constant
family π : Gr

m/C := Gr
m × C → C, a subvariety V ⊂ Gr

m × C and sections

γi : C → Gr
m/C generating a group Γ, we may ask the following

Question: What can be said about those points P such that some nontrivial
element of the group Γ when specialized at P lies on the fiber VP = π−1(P ) ⊂
Gr

m.

The previous situation is obtained in the very special case when VP is con-
stantly equal to the origin, i. e. V = origin×C. By contrast, we stress that
here neither V nor the VP are assumed to have any kind of group structure;
especially this feature heavily prevents the previously known proof-pattern
to apply.

The present paper offers in a sense a complete solution to this issue, prov-
ing that on the appropriate assumptions we have generally bounded height
for any proper family of subvarieties. In particular, the said intersection is
empty except for a ‘sparse’ set of points.

For simplicity, we phrase this conclusion in the language of Theorem 1.1.
Namely, we consider a power Gr

m of the multiplicative algebraic group and
we let V be a subvariety of Gr

m defined over F; so we may view V as a
family of varieties parameterised by C. Then we denote by VP , for almost all
P ∈ C, a specialized variety defined e.g. by specializing at P a given system
of defining equations for V . Given a subgroup Γ of Gr

m defined over F we
say that Γ is constant-free if its image Γ′ by any surjective homomorphism
Gr

m → Gm satisfies the assumption Γ′ ∩Q∗ = Γ′tors of Theorem 1.1.
With such notation, we have the following uniform complement to the

toric case of Lang’s conjecture.

Theorem 1.2. Let Γ ⊂ Gr
m(F) be a finitely generated constant-free subgroup

and let V be a subvariety of Gr
m defined over F. Then the height of the points

P ∈ C(Q), such that for some x ∈ Γ \ V the value x(P ) is defined and lies
in VP , is bounded above.

Consider a generic situation when Γ ∩ V is empty and VP does not con-
tain a coset of positive dimension. The Mordell-Lang Theorem tells us that
ΓP ∩VP is finite for all P . Theorem 1.2 gives the following complement: for
P of large height ΓP ∩ VP is empty.

As a consequence, we recover Theorem 1.1 of [7], taking V = {1}. An
other known example is with C the affine line, F = Q(t) and Γ ⊂ G2

m the
subgroup generated by (t, 1 − t). Let V be the hypersurface of G2

m defined
by the equation α1x1 + α2x2 = 1; here we obtain bounded height for

(1.1) α1t
n + α2(1− t)n = 1

unless n = 1 and α1 = α2 = 1, a result of Beukers [2].
Theorem 1.2 has also several entirely new consequences. For instance,

choose C the affine line as above, Γ ⊂ G3
m generated by (t, 1, 1), (1− t, 1, 1),

(1, t, 1) and (1, 1, 1+t). With V of equation x1 +x2 +x3 = 1 we get bounded
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height for the solutions of

(1.2) tn(1− t)m + tl + (1 + t)p = 1,

with no proviso on n,m, l, p. More generally, any equation

(1.3) α1M1 + · · ·+ αsMs = 1

for algebraic α1, . . . , αs and monomials M1 . . . ,Ms in fixed algebraic func-
tions of t usually implies that the absolute height of t is bounded above
independently of M1, . . . ,Ms. We can also think of allowing α1, . . . , αs in
(1.3) to be not necessarily fixed, for example as fixed algebraic functions of
t, or even as numbers varying at most subexponentially in the exponents
occurring in M1, . . . ,Ms.

Addendum to Theorem 1.2. For a subvariety V defined over the con-
stant field Q (i. e. we have a ‘trivial’ family with VP = V for all P ), the
conclusion of Theorem 1.2 still holds for a subgroup Γ which is not neces-
sarily constant-free, but such that Γ/Γ ∩Gr

m(Q) is of rank 1.

Note however that some assumption on Γ is needed. As a non-trivial
example, we may take as C the affine line as above, and Γ ⊂ G2

m the sub-
group generated by γ1 = (t, 1) and γ2 = (1, 2t) (note that these vectors are
multiplicatively independent modulo constants). Let V be the hypersurface
of G2

m defined by the equation x1 + x2 = 0. Then for n ∈ N the element
x(n) = x(n)(t) = γn+1

1 γn2 = (tn+1, 2ntn) ∈ Γ is not generically in V but its
specialization at t = −2n is. Of course the image of Γ under the isogeny
sending (x, y) to xy contains 2.

Choosing V a subvariety defined over the constant field Q, we obtain a
bounded height result for certain ‘unlikely intersections’.

Corollary 1.3. Let C ⊆ Gr
m be a curve and let V ⊆ Gr

m be a subvariety,
both defined over Q. Then the height of the points P ∈ C(Q), such that there
exists an integer n with1 [n]C 6⊆ V and [n]P ∈ V (Q), is bounded above.

Indeed, take Γ = 〈(g1, . . . , gr)〉 where g1, . . . , gr are coordinate functions
on C, and let n be an integer such that [n]C 6⊆ V . Then γ := (gn1 , . . . , g

n
r ) ∈

Γ \V . By the addendum of Theorem 1.2, the height of the points P ∈ C(Q)
such that [n]P ∈ V (Q) is bounded independently of n.

Note that by the Skolem-Mahler-Lech theorem, for a fixed point P0 ∈ Gr
m

the set of integers n with [n]P0 ∈ V is a union of a finite number of points and
arithmetic progressions, and is ‘usually’ finite (if the set is not finite, V must
contain the Zariski-closure of a set [nq + s]P0, n ∈ N, for suitable integers
q 6= 0, s, and in particular must contain a coset of an algebraic subgroup
of positive dimension unless P0 is torsion). As in a comment above, the
corollary says that when we move P0 along a curve C the corresponding set
is ‘usually’ empty, except for points P0 ∈ C(Q) of bounded height.

For more remarks on Theorem 1.2 and Corollary 1.3, see section 2.4.

1We denote as usual by [n] : Grm → Grm the morphism x 7→ xn of multiplication by n ∈ Z.
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Let us now discuss proofs. Those of [7] may be said to rely on some form
of simultaneous diophantine approximation to rational numbers. But the
proof of Beukers for (1.1) is very different. The starting point is an explicit
construction of Padé approximants to powers of the linear polynomial 1− t,
which goes back to [3] and involves hypergeometric polynomials. This leads
to explicit identities of the form A(t)tn + B(t)(1 − t)n = C(t) (suitable for
(1.1) above).

In our general situation, or even just for γn1 +γn2 = 1, we cannot hope to use
such an explicit construction; just to mention one indication in this respect,
results of Bombieri-Cohen (see [5]) suggest that in general the coefficients
of these Padé approximants have a height growing much faster (i. e. like
exp(cn2)) than in the case of Beukers (when it grows like exp(cn)), and this
would destroy the basic estimates necessary for the method to go through.

We use instead Thue’s Method for avoiding such explicit constructions;
this involves divided derivatives, Siegel’s Lemma and a zero estimate based
on Wronskians. However, to deal with certain unexpected vanishings we
have to introduce a quite intricate descent, whose structure is different with
respect to other investigations using Wronskians. This allows us to prove
the following explicit version of a special case of Theorem 1.2.

Theorem 1.4. Let r ≥ 2 and f1, . . . , fr ∈ F be non-zero rational functions
such that fi/fj is non-constant for some i and j. Then there exists a positive
real number C depending only on f1, . . . , fr, having the following properties.
Let α = (α1 : · · · : αr) ∈ Pr−1(Q). Consider, for a natural number n, a
solution P ∈ C(Q) of the equation

(1.4) α1f1(P )n + · · ·+ αrfr(P )n = 0.

Then, if n ≥ C and if there are no proper vanishing subsums, we have

(1.5) h(P ) ≤ rh(α)

n
+ C.

Our method provides even more explicit bounds: see Theorem 4.1 in Sec-
tion 5, which is our main technical result. As also remarked by a referee
we note that, given a fixed ε > 0, Theorem 4.1 allows to replace r in for-
mula (1.5) by r − 1 + ε for fixed arbitrarily small ε > 0, by allowing C to
depend mildly on ε. Then remark 4.2, iii) shows that now this is sharp.

We finally remark that the assumption that n is sufficiently large is nec-
essary: we may have α1f

n
1 + · · ·+αrf

n
r = 0 identically for some small values

of n. Reciprocally, our results implies that α1f
n
1 + · · ·+αrf

n
r cannot in fact

be zero for infinitely many n. This last fact may be also derived directly on
using the main result of [10] (i. e. a general form of the abc-inequality over
function fields).2

Of course the use of Thue’s Method in classical diophantine approxi-
mation is well-known to lead to results which are usually not effective.
By contrast all the results of this paper are effective. For example with
tn + (1− t)n + (1 + t)n = 1 (and n ≥ 0) Denz [12] gets H(t) ≤ 2856 for the

2It is no coincidence that the proof of this uses Wronskians, which also appear in our
arguments; on the other hand, no consideration of heights appears in [10].
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standard (non-logarithmic, absolute) height.

1.1. Plan of the paper. In Section 3 we first define a simple notion of
arithmetic height on rational functions and we prove some elementary es-
timates for this height, including some explicit bounds for the height of
divided higher derivatives. Next we have two lemmas: Lemma 3.6 which is
an auxiliary construction through Siegel’s Lemma, and Lemma 3.11 which
constructs by specialization some approximation forms. This last lemma is
a fundamental tool of the inductive proof in section 5.

In Section 4 we state Theorem 4.1, which is a more precise and detailed
version of Theorem 1.4. Then, we first illustrate the strategy of the proof
in a test-run case. For the general proof, we need to overcome a technical
obstacle related to non-vanishing. At this stage we only state a Claim and
we deduce the Theorem in full generality from it.

Section 5 is devoted to a proof of the Claim which relies on a somewhat
intricate descent argument.

The final Section 6 is devoted to the deduction of Theorem 1.2 from The-
orem 4.1, namely the case of arbitrary rank from the case of rank one. This
is done using simultaneous diophantine approximation applied to the expo-
nents of the group-generators.

Aknowledgements. We thank the referees for their accurate consideration
of the paper and several valuable suggestions. The first author thanks Bruno
Anglès who draw his attention to Mirimanoff Polynomials.

2. Applications and further remarks

2.1. Two simple applications. We show by means of two simple exam-
ples that our results, actually already very special cases of them, are ca-
pable of applications to diophantine issues, recovering certain finiteness
statements. The result achieved in the first example is known and may
be obtained by a variety of techniques, but here we reach it directly as a
consequence of the above corollary. The second example appears to be new.
Probably it can be sharpened, but our aim here is merely to illustrate pos-
sible applications, not to develop them in depth. For this same reason we
shall be sketchy in the arguments.

Example 1: A family of Thue’s equations. Consider the Thue’s equation

x3 − (t3 − 1)y3 = 1,

where t > 1 is an integer, to be solved in integers x, y.
Our results easily imply that there are only finitely many integers t such

that the equation has an integer solution with y 6= 0, 1.

In fact, let u = 3
√
t3 − 1, e.g. the real determination. It is very easy to

see that the group of units of the ring Z[u] is generated by ±1 and the unit
t− u.
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Let (x, y) ∈ Z2 be a solution, so x−uy ∈ Z[u] is a unit of norm 1, whence
= (t− u)n for some integer n, and on taking conjugates over Q we have

(t− u)n + ω(t− ωu)n + ω2(t− ω2u)n = 0,

where ω is a primitive cube root of 1.
If n > 1, one may easily show that the left side does not vanish identically.

Hence, by the corollary (with C a curve with function field Q(z, 3
√
z3 − 1)

and r = 3), the height of t is bounded and finiteness follows.
This particular result (even that there are no t) has been known for nearly

a century, but our method allows substantial generalizations; for example it
may be applied to the context of a conjecture of Thomas [26] about families
of Thue equations, and extended to non-Thue equations such as

x3 − (t3 − 1)y3 + 3(t3 − 1)xy + (t3 − 1)2 = 1

(which cannot be obtained from a Thue equation by an inhomogeneous linear
transformation), and even to more variables such as

x4 + (4t4 − 1)y4 + (4t4 − 1)2z4 + 2(4t4 − 1)x2z2 − 4(4t4 − 1)xy2z = 1.

Example 2: Zeros of polynomial recurrences. Consider a linear recurrence
sequence (un(t))n∈N of polynomials in t, defined by prescribing polynomial
initial data (not all zero) u0(t), . . . , ur−1(t) ∈ Q[t] and imposing

un+r = c1(t)un+r−1 + · · ·+ cr(t)un, n = 0, 1, . . . ,

where ci(t) are polynomials with coefficients say in Q. We assume for sim-
plicity that the characteristic polynomial Zr− c1(t)Zr−1−· · ·− cr(t) has no
multiple roots in an algebraic closure of Q(t).

We assert that: The set of algebraic numbers ξ such that for some n we
have un(t) 6= 0 but un(ξ) = 0 has bounded height. In particular, there are
only finitely many such ξ having bounded degree over Q.

Again, this follows rather immediately from the corollary and Northcott’s
theorem (see [6]), after expressing un(t) as a linear combination of n-th
powers of the roots of the characteristic polynomial of the recurrence.

A rephrasing of the last conclusion is that for every given D there are
only finitely many monic polynomials in Q[t] of degree ≤ D which may
divide some un(t) 6= 0.

In several cases we may further sharpen this, to say something about the
irreducible factors. Assume for instance that r ≥ 3 and that the character-
istic polynomial of the recurrence has Galois group Sr over Q̄(t) (which is
the ‘generic’ case).3 Under this assumption, we have:

Apart from a finite set of polynomials, the degrees of the irreducible factors
(over Q) of the polynomials un tends to infinity with n.

To prove this claim note first that the assumption implies in particular
that the recurrence is non-degenerate, meaning that no ratio of its roots is a

3A doubly transitive Galois group would suffice for the sharpened conclusion. However it
is beyond the scope of these examples to push the analysis further.
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root of unity. In turn, by the Skolem-Mahler-Lech theorem, this yields that
only finitely many un may vanish identically.

Suppose now that an algebraic number ξ0 is a root of un for infinitely
many n. Then, again by the Skolem-Mahler-Lech theorem ‘several’ ratios of
the specialised roots become roots of unity, so the n-th powers of the roots of
the recurrence collapse and vanishing of un(ξ0) gives rise to linear relations
among these roots of 1. If the order of these roots of unity is eventually
unbounded, then known theorems on torsion points on curves in Gr

m (see
[27]) imply that the roots of the recurrence may be grouped in subsets of
cardinality ≥ 2 such that all the ratios of two roots in the same subset are
multiplicatively dependent as algebraic functions; but the assumption on
the Galois group then easily yields a contradiction. On the other hand, if
the order of the relevant roots of unity is bounded, then we find only finitely
many ξ0, proving the assertion.

Note that some assumption as above is needed for this conclusion; an
example in this direction is given by the Chebishev polynomials Tn defined
by T0(t) = 2, T1(t) = t and Tn+2(t) = tTn+1(t) − Tn(t) for n ≥ 0. It turns
out that, for odd m, Tq divides Tmq for all odd q, providing an example
when the last conclusion is not true. Similarly for polynomials like un(t) :=
Tn(t)Tn+h(t), where r = 4 but the Galois group is too small.

2.2. A relation with Unlikely Intersections. The boundedness of the
height in the set of P ∈ C(Q) such that [n]P ∈ V (Q) is related also to the
context of Unlikely Intersections, and more precisely to degenerate cases
of the former Bounded Height Conjecture of Bombieri-Masser-Zannier [8],
nowadays a theorem of Habegger [13], as in Example 1.3 of [27].

Let X ⊆ Gr
m be a subvariety. Define Xoa as the complement in X of the

union of unlikely intersections of positive dimension, namely the components
of some positive dimension δ > 0 of some intersection X ∩ B, where B is
a translate of an algebraic subgroup and dimB ≤ δ + codimX − 1. By the
former Habegger Theorem, the Weil height is bounded in the intersection of
Xoa with the union of algebraic subgroups of dimension ≤ codimX.

Let now X = C × V ⊂ Gr
m ×Gr

m. If P ∈ C(Q) is such that [n]P ∈ V (Q),
then (P, [n]P ) is in the intersection of X with the algebraic subgroup Hn =
{(x,xn), x ∈ Gr

m} of dimension dimHn = r ≤ codimX. Thus it would
be tempting to apply the former Bounded Height Conjecture = Habegger’s
Theorem. Nevertheless, such result gives us no information here, since X is
degenerate: in the notation of [8] we have Xoa = ∅.

This failure is not surprising, because in the degenerate cases we cannot
hope to have in general bounded height in the whole union

⋃
n(X ∩ Hn).

However, our Corollary shows that, at least, bounded height is recovered in
the projection of the whole union to the first factor.

In the special case V = C, this kind of problem has been intensively
studied by Bays and Habegger in [1], who show (under suitable assumptions)
the finiteness of the set of P ∈ C such that [n]P ∈ C for some n ≥ 2, thus
giving a partial answer to a question (with [n]P ∈ C′ instead for another
curve C′) originated by A. Levin (see [27] notes of Chapter 1, p.39). As
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an important tool they first observe that the height in this set is bounded,
except in the trivial case when C is a translate of a subtorus (op.cit., Lemma
6). This last result is a rather direct consequence of a generalized Vojta’s
inequality due to Rémond [20] (which however does not seem to apply when
C′ 6= C). This finiteness result provides further evidence of the usefulness of
height bounds as in this paper.

2.3. Abelian analogues? In this paper we limit ourselves to the toric case,
but analogous questions and statements can be naturally formulated in the
elliptic and abelian context, thus extending Silverman’s very setting.

Note that Silverman’s specialization results in fact concern mainly abelian
families, actually non-isotrivial, whereas algebraic tori have only isotrivial4

families; this introduces some differences in the assumptions, as in results
by Manin and Demjanenko, see [23]; for instance the assumption of mere in-
dependence has to be strengthened, as above, in the sense modulo constants,
in order to obtain bounded height.

Further differences with respect to the abelian case are due to the fact that
heights in abelian varieties behave like quadratic forms, so somewhat more
‘regularly’ than in the toric case, when this lack may introduce difficulties
in some parts of the proofs for the toric case.

A specific example of what would be the analogue of our main issue for
that case appears in the paper [16], where we find the pencil J of Jacobians
Jt of the curves Ht : y2 = x6 + x + t, of generic genus 2, parametrized by
t ∈ A1; we also find the section σ : A1 → J , obtained by defining σ(t) ∈ Jt
as the class of the divisor ∞+ −∞−, difference of the two poles of x on Ht

(let us forget here about the values for which Ht has genus < 2). One can
now consider the subvariety V of J obtained as the union of Ht, embedding
Ht in Jt e.g. through ∞+.

The question now is: What can be said about the points t0 ∈ A1 such
that [n]σ(t0) ∈ Ht0, for some n = n(t0) > 3? (We exclude here n =
3 because [3]σ(t) ∈ Ht identically.) Now even to prove that this set of
t0 (necessarily algebraic) has infinite complement in Q is far from being
evident; the Appendix by Flynn to [16] in particular achieves this, and
much more, providing nontrivial congruence conditions on the suitable t0.
However Flynn’s method is not guaranteed to work generally, and moreover
the question of whether the set of these numbers has or not bounded height
remains open. In fact, we do not know if and how the present methods can
be adapted to the abelian context. It seems to us a rather interesting issue
to obtain even such a hyperelliptic analogue. Or even a “constant elliptic”
analogue; for example the points P in C such that [n]P ∈ C′ for some n > 1,
where C, C′ are defined by x1 + x2 = 1, x1 + x2 = c respectively in the
product of y2

1 = x3
1 + x1 + 1 and y2

2 = x3
2 + x2 + 1 (we thank a referee for

pointing out that when C′ = C this abelian version of Levin’s question is
covered by Rémond’s abelian analogue [19] of [20]).

2.4. Further remarks. Let C ⊆ Gr
m be a curve and let V ⊆ Gr

m be a
subvariety, both defined over Q. Concerning the assumption [n]C 6⊆ V in

4By ‘isotrivial’ we mean that the family becomes trivial, i. e. a product, after suitable
extension of the base.
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Corollary 1.3, a relevant issue is to detect the set of integers n such that
[n]C ⊆ V . Now, this amounts to [n]x ∈ V where the coordinates of x are
the restrictions to C of the coordinate functions on Gr

m. Classical results de-
scribe the Zariski closure of these [n]x as a finite union of cosets of algebraic
subgroups. Thus, if C is not contained in any translate of a proper subtorus,
no proper algebraic subgroup can contain a multiple [m]x for m 6= 0, prov-
ing that the said set is finite unless V is the whole space5. Actually, using
for instance results in [10], it is not difficult to reach directly this finiteness
conclusion, moreover determining effectively the set.

A similar remark holds for Theorem 1.2: we may compute ‘effectively’
the intersection x ∈ Γ ∩ V , which however may be infinite in general.

3. Notation and Auxiliary Results.

3.1. Rational functions. Given f1, . . . , fr ∈ F not all zero, we put6

div(f1, . . . , fr) :=
∑
P

min
j

ordP (fj)P.

Note that deg(div(f1, . . . , fr)) = deg(div(gf1, . . . , gfr)) for any nonzero g ∈
F.

Let us denote d := −deg(div(f1, . . . , fr)). We remark that d ≥ 0, since for
example if f1 6= 0 we have

∑
P minj ordP (fj) ≤

∑
P ordP (f1) = 0. Moreover

d > 0 if and only if some fi/fj is non-constant.
As a special case, let f be a non-zero rational function on C. We define

as usual its degree d(f) as the the degree of the polar divisor div(f)∞ =
−div(1, f). This is the geometric height of (1 : f) ∈ P1(F).

An arithmetic height on F. We define an arithmetic height h(·) of
a rational function f on C as follows. We choose once and for all a non-
constant t ∈ F\Q. Let F (X,Y ) ∈ Q[X,Y ] be the irreducible polynomial
such that F (t, f) = 0 (note that F has degree at most d(f) in X and at
most d(t) in Y ).

Definition 3.1. For a function f ∈ F, we define the height h(f) as the
projective Weil height of the vector of the coefficients of F .

Clearly h(1/f) = h(f). Also, this coincides with the affine height on
Q[t] (if C is the affine line and f = P (t) is a polynomial then F (X,Y ) =
P (X)− Y .)

We shall need the following elementary estimates for this height; we could
not find suitable references in the standard literature, and indeed the very
definition of h(f) is not quite so standard.

Lemma 3.2. There is a constant c depending only on C and t with the
following properties. Let f ∈ F. Then we have

(i) h(fn) ≤ nh(f) + cnd(f) for any positive integer n,
(ii) h(f ′) ≤ c(h(f) + d(f)), d(f ′) ≤ cd(f) for f ′ = df/dt,

5See also the paper [25] by Silverman and Voloch for more general finiteness results in this
direction.
6Since we have chosen a smooth projective model of C, the closed points over Q of the
curve correspond to the places of its function field F = Q(C).
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(iii) h(trf) ≤ h(f) + log d(t), d(trf) ≤ d(t)d(f) for the trace tr from F to
Q(t),

(iv) for g ∈ F we have

max{h(f + g), h(fg)} ≤ c(h(f) + h(g) + d(f) + d(g)),

(v) for any non-constant s ∈ F\Q there is C depending on s (and C, t)
such that the height of f with respect to s is at most C(h(f) +d(f)).

Proof. We use resultants. Let F (X,Y ) be the irreducible polynomial for
f over Q(t): F (t, f) = 0. For (i) we can assume d(f) ≥ 1, and we take
the resultant of F (X,Y ) and Y n − Z with respect to Y to get a non-zero
polynomial Fn(X,Z) with Fn(t, fn) = 0. Its degrees in X,Z are at most
nd(f), d(t) respectively. And its height is at most n(h(f)+c); here one must
be careful to avoid a factorial in the number N of terms in the Sylvester
determinant, but it is easy to see that N ≤ (d(t) + 1)n2d(t) ≤ cn. Now
Fn might not be irreducible, but by well-known estimates the height of any
factor is at most

n(h(f) + c) + c(nd(f) + d(t)) ≤ nh(f) + cnd(f);

and (i) follows.
A similar argument works with (v), now taking the resultant of F (X,Y )

and S(X,Z) with respect to X, where S(t, s) = 0. Also with (iv): now
say G(t, g) = 0 and then for f + g we take the resultant of F (X,Y ) and
G(X,Z−Y ) with respect to Y ; then we do g/f with F (X,Y ) and G(X,ZY )
and deduce fg using h(1/f) = h(f).

And (iii) is rather easy: if

F (X,Y ) = F0(X)Y e + F1(X)Y e−1 + · · ·+ Fe(X)

then trf = −d(t)
e

F1(t)
F0(t) . Finally for (ii) we can also assume d(f) ≥ 1 and then

we note that

f ′ = − F ′0(t)fe + · · ·+ F ′e(t)

eF0(t)fe−1 + · · ·+ Fe−1(t)

so that we can use (iv).

�

As at the beginning, we choose once and for all a system of Weil’s func-
tions associated to a divisor of degree 1 and a corresponding height h on
C(Q). By a well-known result of Néron (see [18]), the height of P ∈ C(Q)
differs from h(t(P ))/d(t) by an error term bounded by a constant multiple

of 1 + h(P )1/2.

We need the following functorial bound for the arithmetic height associ-
ated to values of (f1, . . . , fr), which is an easy consequence of “Weil’s Height
Machine”:

Lemma 3.3. For r ≥ 2 let f1, . . . , fr ∈ F and P ∈ C(Q), not a pole or
a common zero of f1, . . . , fr. Put d := −deg div(f1, . . . , fr). Then the
projective Weil height

h(f1(P ) : · · · : fr(P )) = dh(P ) +O(1 + h(P )1/2)
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where the implicit constant in the big-O may depend on f1, . . . , fr but not
on P .

Proof. Let E′ = −div(f1, . . . , fr). We may assume f1, . . . , fr linearly inde-
pendent over Q; indeed, we may select a basis, say f1, . . . , fs (s ≥ 2), of the
Q-vector space generated by f1, . . . , fr and observe that div(f1, . . . , fs) =
div(f1, . . . , fr) and h(f1(P ) : · · · : fr(P )) = h(f1(P ) : · · · : fs(P )) +O(1).

Given a divisor D, we denote by hD the height on C(Q) associated to it,
which is defined up the addition of a bounded term: see [14], Part B for
details.

Let φ : C → Pr−1 be the morphism P 7→ (f1(P ) : . . . : fr(P )) and H be an
hyperplane of Pr−1. Then φ∗H is linearly equivalent to E′ (indeed, for i =
1, . . . , r − 1, set gi = fi/fr; then φ∗{xr = 0} = −div(g1, . . . , gr−1, 1) ∼ E′).

Thus h(f1(P ) : · · · : fr(P )) = hE′(P ) +O(1). Here and in the rest of this
proof, the big-O depend on the divisors.

We now apply Theorem B.5.9 of [14]) (which goes back to Néron), taking
as the ample divisor the divisor D of degree 1 such that h = hD + O(1)
and as the divisor equivalent to zero the divisor E = dD − E′. We obtain
hE(P ) ≤ c(1 + hD(P )1/2). Moreover, by Theorem B.3.2 (d) of [14], hE =
dh− hE′ +O(1). Thus

h(f1(P ) : · · · : fr(P )) = hE′(P ) +O(1)

= dh(P )− dhE(P ) +O(1)

= dh(P ) +O(1 + h(P )1/2).

�

Uniformity. The question of how the implicit constants in the O-terms
in the lemma depend on the functions is a subtle one, and has been treated
in number of papers, which control this dependence in data as the degree
and heights of the functions. Here we can prove (at the expense of extra
complication) the upper bound

dh(P ) +O
(
(d+ maxh(fi))(1 + h(P )1/2)

)
with an implicit constant in the big-O which depends only on C and t. If
some sort of refined Height Machine could deliver the analogous lower bound,
even for r = 2, then it would imply at once some significant cases of our
Theorem 1.4. For example with fixed different F1, . . . , Fr in Q[t] of degree
p ≥ 1 and fixed sufficiently general α1, . . . , αr in Q we would have d = np
for

f(t) =
α1F1(t)n + · · ·+ αr−1Fr−1(t)n

αrFr(t)n
.

Thus when f(t) = −1 we would deduce

0 = h(f(t)) ≥ dh(t)−O
(
n(1 + h(t)1/2)

)
so h(t) = O(1).

However such a lower bound is false in general, as the example f(t) =
(t− 2d)td−1 − 1 with f(2d) = −1 shows; the lower bound would be

dh(2d)−O
(
d(1 + h(2d)1/2)

)
= d2 log 2−O(d3/2),
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a contradiction for sufficiently large d.

We shall need also some good bounds for the values of higher derivatives
f (l) = (d/dt)lf ; or rather those of the divided derivatives δlf = f (l)/l!
essential to the success of Thue’s Method. Iterating part (ii) of Lemma 3.2
does not suffice. In fact we have to consider certain monomial expressions
whose curious weighting will soon be justified.

Lemma 3.4. For any f ∈ F there is c, depending only on f and t, with
the following property. Suppose f and t are regular at some P ∈ C(Q)
with dt(P ) 6= 0. For any non-negative integer L let δ be any vector with
components

δ0f(P )a0δ1f(P )a1 · · · δlf(P )al

for non-negative exponents satisfying

a0 + a1 + · · ·+ al ≤ L, a1 + · · ·+ lal ≤ L.
Then the affine Weil height h(δ) is at most cL(h(P ) + 1).

Proof. This falls into the circle of Eisenstein-related ideas. We can assume
that f is not constant. With F (t, f) = 0 as above and αj = δjf(P ) the power
series y =

∑∞
j=0 αjx

j satisfies F0(x, y) = 0 with F0(X,Y ) = F (t(P )+X,Y ).

We may therefore apply Theorem 1 (p.162) of Schmidt’s paper [21]. He
needs a number field k over which F0 is defined. As he notes, the αj lie in
an extension K of k of relative degree at most the degree e ≥ 1 of F0 in Y ;
thus [K : k] ≤ d(t). We find for each valuation v on k some Av ≥ 1, with
Av = 1 for all but finitely many v, such that

|αj |w ≤ Am+j
v (j = 0, 1, 2, . . .)

for any valuation w on K over v, where m ≥ 1 is the degree of F0 in X; thus
m ≤ d(f). Thus

|αa00 α
a1
1 · · ·α

al
l |w ≤ A

m(a0+a1+···+al)+(a1+···+lal)
v ≤ A2mL

v .

It follows for the non-logarithmic height

H(δ)[K:Q] ≤
∏
v

A2mL[K:k]
v .

The v are split into two sets S∞1, S2 with∏
v∈S∞1

Av ≤ ((m+ 1)(e+ 1)
√
e)(2e+1)[k:Q]H(F0)2e[k:Q] ≤ (2H(F0))c[k:Q],

∏
v∈S2

Av ≤ (16m)11e3[k:Q]H(F0)(2e3+2e)[k:Q] ≤ (2H(F0))c[k:Q],

where H(F0) is still projective (and absolute). Thanks to the crucial (but
nowadays natural) linear dependence on [k : Q] in the exponents we deduce
H(δ) ≤ (2H(F0))4cmL. Finally H(F0) ≤ cH(t(P ))m, and the result we want
follows by relating h(t(P )) to h(P ) as described above.

We remark that the extra precision of [21] (especially concerning the set
S2) is not really necessary for us; thus by putting harmless additional re-
strictions on the point P we could have got ourselves into the “non-singular”
situation, where the proofs are much easier (as for example in [6] p.360).

�



BOUNDED HEIGHT IN PENCILS OF FINITELY GENERATED SUBGROUPS. 13

Given a divisor D we denote by L(D) the finite-dimensional Q-vector
space

L(D) = {f ∈ F∗, div(f) +D ≥ 0} ∪ {0}.
and by l(D) its dimension. We shall need a good basis of L(NQ) for fixed
Q and large N . It is convenient to talk also of L(∞Q) =

∑∞
N=1 L(NQ) the

vector space of f ∈ F which are regular outside Q.

Lemma 3.5. For any Q ∈ C(Q) there is a positive integer ∆ and real c
together with g, g0, g1, . . . , g∆−1 in L(∞Q), depending only on Q and t, such
that the following hold for any N ≥ 1.

(i) We have d(g) = ∆, and the elements

gjg
k (j = 0, 1, . . . ,∆− 1, d(gj) + kd(g) ≤ N)

form a basis for L(NQ), with

N − c ≤ l(NQ) ≤ N + 1.

(ii) For any f in L(NQ) we have

f =
∑

αjkgjg
k

with affine height

h(. . . αjk . . .) ≤ c(h(f) +N),

as well as

h(f) ≤ c(h(. . . αjk . . .) +N).

Proof. It is well known, for example by the Riemann-Roch Theorem, that
as f 6= 0 varies over L(∞Q) the −ordQ(f) (which are none other than the
degrees d(f)) take all sufficiently large values. Let ∆ ≥ 1 be the smallest
positive value, attained by some g in L(∞Q). If ∆ = 1 we are done, as a
standard argument of killing poles shows (which will be repeated below).

So we may and shall assume ∆ ≥ 2. For j = 1, . . . ,∆ − 1 pick gj in
L(∞Q) with nj = −ordQ(gj) ≡ j modulo ∆ and also as small as possible;
here nj > 0 is automatic and even nj > ∆. We define g0 = 1 and n0 = 0.
We show by induction on N that these do the trick in (i).

Pick any f 6= 0 in L(NQ), so that n = −ordQ(f) ≤ N . If n ≡ j

modulo ∆ (j = 0, 1, . . . ,∆ − 1) then n ≥ nj and we can find α in Q with

f − αgjg(n−nj)/∆ in L((N − 1)Q). As

d(gj) +
n− nj

∆
d(g) = n ≤ N

this shows by induction that the elements in (i) span L(NQ). They are
certainly linearly independent, as the

−ordQ(gjg
k) = nj + k∆

(
j = 0, 1, . . . ,∆− 1, k = 0, 1, . . . ,

[
N − nj

∆

])
are all different (even for all k). In particular

l(NQ) =

∆−1∑
j=0

(
1 +

[
N − nj

∆

])
,
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which leads easily to the required estimates using nj ≥ ∆ for j > 0. So (i) is
proved. Incidentally it is not difficult to estimate the constants so far solely
in terms of the genus of C.

For (ii) we note that this last argument even shows that g0, g1, . . . , g∆−1

are linearly independent over Q(g). As ∆ = d(g) = [F : Q(g)] it follows that
they form a basis of F over Q(g). Now we can write

f =
∆−1∑
j=0

gjGj

withGj =
∑

k αjkg
k in Q[g]. In the standard way we multiply by g0, g1, . . . , g∆−1

and take the trace from F to Q(g). The resulting equations can be solved
for G0, G1, . . . , G∆−1. It follows easily from Lemma 3.2 (iii) (with g not
t),(iv),(v) that

∆−1∑
j=0

h(Gj) ≤ c(h(f) +N).

But the affine height in (ii) is at most the analogous sum with heights taken
with respect to g. So the first of the two required inequalities follows with
another appeal to Lemma 3.2 (v). The second is similar but easier.

�

Before we go further we record the following identity for divided deriva-
tives. Namely

(3.1) δl(f
n) = fn−l

∑
a

C(a)δ0(f)a0δ1(f)a1 · · · δl(f)al

where the sum is taken over all a = (a0, a1, . . . , al) with non-negative coor-
dinates satisfying

|a| = a0 + a1 + · · ·+ al = l, a1 + · · ·+ lal = l

(see earlier) and the C(a) are non-negative integers. Some version for undi-
vided derivatives is attributed to the Blessed Francesco Faà di Bruno (who
even has φ(f) instead of fn), but in this divided form we get an immedi-

ate proof by formally writing f̃ =
∑∞

m=0 δm(f)Tm. Note that, formally,

f̃(x) = f(x+ T ).
Taking this into account one may then go ahead by picking out the coeffi-

cient of T l in f̃n. We take δ0(f) = f in a′0 of the factors f̃ , and then δ1(f) in
a1 of the factors, and so on. Then a′0 +a1 + · · ·+al = n and a1 + · · ·+ lal = l
making it clear that a0 = a′0 − (n − l) ≥ 0. We need also good estimates
for the C(a), but it is similarly clear that their sum is majorized by the
coefficient of T l in (1 + T + T 2 + · · · )n = (1− T )−n, which is

(−1)l
(
−n
l

)
=

(
n+ l − 1

l

)
≤ 2n+l

and in particular factorial-free.
Now comes our basic “auxiliary polynomial”.

Lemma 3.6. Let f1, . . . , fr be in Q(C), let Q in C(Q) be not a pole or zero of
f1, . . . , fr also with dt(Q) 6= 0, and write as before d = −deg div(f1, . . . , fr) ≥



BOUNDED HEIGHT IN PENCILS OF FINITELY GENERATED SUBGROUPS. 15

0. Then there are c0, c depending only on C, f1, . . . , fr, t and Q with the fol-
lowing property. For any non-negative integers n,M1, . . . ,Mr with S >
M + nd+ c0 for

S = M1 + · · ·+Mr, M = max{M1, . . . ,Mr}

define the “Dirichlet exponent”

% =
M + dn

S −M − dn− c0
.

Then there are A1 ∈ L(M1Q), . . . , Ar ∈ L(MrQ), not all zero and with
heights at most c(%+ 1)(M + n), such that A1f

n
1 + · · ·+Arf

n
r = 0.

Proof. By Lemma 3.5 (i) we can take

(3.2) Ai =
∑

αijkgjg
k (i = 1, . . . , r)

with j, k satisfying

j = 0, 1, . . . ,∆− 1, d(gj) + kd(g) ≤Mi

and algebraic numbers αijk to be determined. We first find them such that
if φ =

∑r
i=1Aif

n
i 6= 0 then

(3.3) ordQφ > T

where the integer T is nearly as large as linear algebra allows.
If U is the number of unknowns αijk then their vector α must lie in a

certain subspace V of QU
. Here U =

∑r
i=1 l(MiQ) so Lemma 3.5(i) gives

(3.4) S − c ≤ U ≤ S + r.

We have E = T + 1 equations, so the dimension D of V satisfies

(3.5) D ≥ U − E ≥ S − T − c0.

Thus we assume T < S− c0 for solvability. But if T is too near S then as in
Thue’s Method we would lose control of the heights. To regain this we use
the version of the Absolute Siegel Lemma proved by David and Philippon
[11]; for example taking ε = 1 in the estimate at the bottom of page 523 we
find non-zero α ∈ V with

(3.6) h(α) ≤ h(V )

D
+

1

2
logD + 1

where h(V ) is the euclidean height.
To estimate h(V ) we note that it is defined by certain equations, and by

Hadamard’s inequality for determinants (here the factorials don’t matter)
we get

(3.7) h(V ) ≤ cE(logE + heq)

where heq is an upper bound for the logarithmic euclidean height of each
equation. These are δlφ(Q) = 0 or more explicitly

r∑
i=1

∑
j,k

αijkβijkl = 0 (l = 0, 1, . . . , T )
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with βijkl = δl(gjg
kfni )(Q). Now

δl(gjg
kfni ) =

∑
δs(gj)δp(g

k)δq(f
n
i )

taken over all non-negative integers s, p, q with s+ p+ q = l. By (3.1)

δp(g
k) = gk−p

∑
a

C(a)δ0(g)a0δ1(g)a1 · · · δp(g)ap ,

δq(f
n
i ) = fn−qi

∑
b

C(b)δ0(fi)
b0δ1(fi)

b1 · · · δq(fi)bq .

Now we see without difficulty thanks to Lemma 3.4 that heq ≤ c(T+M+n).
Then (3.6) and (3.7) lead to

h(α) ≤ c(T +M + n)(T + 1)

S − T − c
+ log(S + c)

because S − T − c0 ≤ D ≤ U ≤ S + r by (3.4) and (3.5).
We now choose T so large that the condition (3.3) forces after all φ = 0

in the sense that ordQφ =∞. In fact (3.3) holds also for φ̃ = φ/fnr because

fr(Q) 6= 0, and since A1, . . . , Ar are in L(MQ) it is easy to see that d(φ̃) ≤
M + dn. So T = M + dn will do, leading to

h(α) ≤ c%(M + dn) + log(S + c).

Finally Lemma 3.5 (ii) gets us to h(Ai) by (3.2); and then we use S ≤ rM .

�

3.2. Orthogonal spaces and key lemma.
Let w be a fixed vector of Cn with all entries non-zero. Given a subset Λ of
{1, . . . , r} we consider the vector space

VΛ = VΛ,w = {v ∈ w⊥ | ∀j 6∈ Λ, vj = 0}.

Thus V∅ = {0} and dimVΛ = |Λ| − 1 if Λ 6= ∅. We clearly have VΛ1 ∩ VΛ2 =
VΛ1∩Λ2 .

Remark 3.7. Let Λ1, Λ2 be non-empty subsets of {1, . . . , r}. If Λ1∩Λ2 6= ∅
we have

VΛ1 + VΛ2 = VΛ1∪Λ2

while VΛ1 + VΛ2 is a subspace of VΛ1∪Λ2 of codimension 1 if Λ1 ∩ Λ2 = ∅.

Proof. Let us assume Λ1 ∩ Λ2 6= ∅. The displayed formula follows from
the trivial inclusions VΛi ⊆ VΛ1∪Λ2 and from the equality of dimensions:

dim(VΛ1 + VΛ2) = dim(VΛ1) + dim(VΛ2)− dim(VΛ1 ∩ VΛ2)

= dim(VΛ1) + dim(VΛ2)− dim(VΛ1∩Λ2)

= (|Λ1| − 1) + (|Λ2| − 1)− (|Λ1 ∩ Λ2| − 1)

= |Λ1 ∪ Λ2| − 1 = dim(VΛ1∪Λ2).

The last assertion follows similarly.

�
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In order to generalise this simple remark, we introduce the following def-
inition.

Definition 3.8. Let Γ = {Λ1, . . . ,Λs} be a collection of subsets of {1, . . . , r}.
We say that a subset C of {1, . . . , r} is a connected component of Γ, if, after
renumbering Λ1, . . . ,Λs if necessary, there exists an integer k with 1 ≤ k ≤ s
such that

i) C = Λ1 ∪ · · · ∪ Λk;
ii) for j = 1, . . . , k − 1 we have Λj+1 ∩ (Λ1 ∪ · · · ∪ Λj) 6= ∅;
iii) for j = k + 1, . . . , s we have C ∩ Λj = ∅.

We say that Γ is connected, if it has only one connected component.

We may also rephrase this definition, as follows: consider first the graph
on {1, . . . , s} defined by joining i, j if and only if Λi ∩ Λj 6= ∅. Then a
connected component in our sense is a union C =

⋃
i∈U Λi, where U is a

connected component, in the usual sense, of the graph just defined.

As an example, Γ = {{1, 2}, {3, 4, 5}, {2, 5}, {6, 7, 8}, {7, 8, 9}} has two
connected components, {1, 2, 3, 4, 5} and {6, 7, 8, 9}.

By Remark 3.7 we easily see that:

Remark 3.9. Let Γ = {Λ1, . . . ,Λs} be a collection of subsets of {1, . . . , r}
and let C1, . . . , Cp be the connected components of Γ. Then,

i) VΛ1 + · · ·+ VΛs = VC1 + · · ·+ VCp .
ii) dim(VΛ1 + · · ·+ VΛs) = |Λ1 ∪ · · · · ∪Λs| − p.

The following definition is crucial for our purposes.

Definition 3.10. Let V be a Q-vector space, v1, . . . , vs be s ≥ 2 vectors of
V . Let a1v1 + · · · + asvs = 0 be a non-trivial linear relation. We say that
this relation is minimal if there are no non-trivial relations

∑
bivi = 0 over

a proper non-empty subset of {1, . . . , s}.

We remark that the relation a1v1 + · · ·+ asvs = 0 is minimal if and only
if a1, . . . , as ∈ Q∗ and dim〈v1, . . . , vs〉 = s− 1.

We also remark that, given v1, . . . , vs ∈ V linearly dependent and not all
zero, there exists a subset Λ ⊆ {1, . . . , r} such that {vi}i∈Λ satisfy a minimal
linear relation.

We now agree on some conventions which will be followed in the rest of
this section and in the next section.

We fix as above r ≥ 2 rational functions f1, . . . , fr ∈ F\{0} and a non-
constant t ∈ F. We define S0 as the finite set consisting of all zeros
and poles of f1, . . . , fr, dt. We fix a point Q ∈ C(Q)\S0 and we define
S = S0 ∪ {Q}. We choose once and for all a positive integer ∆, a real c
and g, g0, g1, . . . , g∆−1 ∈ L(∞Q) depending only on Q and t and satisfying
the statement of Lemma 3.5. The implicit constants in the big-O below will
depend only on these data.

The next lemma is the main tool in our construction.
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Lemma 3.11. Let Λ ⊆ {1, . . . , r} be of cardinality ≥ 2 and (M ′i)i∈Λ be
positive integers with maximum M ′. Define

dΛ = −deg div(fi)i∈Λ, Θ = max
(

1,
∑
i∈Λ

M ′i − (M ′ + ndΛ)
)
.

Let also P ∈ C(Q)\S, n ∈ N and put

w = (f1(P )n, . . . , fr(P )n).

Let finally {Ai}i∈Λ ⊂ F not all zero, such that Ai ∈ L(M ′iQ). Let us assume
that {Aifni }i∈Λ satisfy a minimal linear relation. Then there exists a basis
of algebraic vectors v1, . . . ,v|Λ|−1 of VΛ,w which satisfies

h(vj) ≤M ′h(P )+O
(

Θ(h(P ) + 1) + (n+M ′)(1 + h(P )1/2) + maxh(Ai)
)
.

Proof. In the proof we use a Wronskian argument. Let us first recall some
basic facts on it. The derivative d

dt on Q(t) can be uniquely extended to F.

For F ∈ F and R ∈ C(Q) we have

(3.8)

{
ordR(dF/dt) = ordR(F )− 1− ordR(dt), if ordR(F ) 6= 0;

ordR(dF/dt) ≥ −ordR(dt), if ordR(F ) = 0.

The (normalized) Wronskian of F1, . . . , Fk ∈ F with respect to t is the
determinant

W (F1, . . . , Fk) = det

(
1

j!

djFi
dtj

)
i=1,...,k

j=0,...,k−1

.

It is well known that W = 0 if and only if the Fi’s are linearly dependent
over Q.

Let us now go on with the proof of our lemma. We may assume Λ =
{1, . . . , s}. For short we put Fi = Aif

n
i andWi = W (F1, . . . , Fi−1, Fi+1, . . . , Fs)

for i = 1, . . . , s.
For later reference, we remark that F1, . . . , Fs are S-integers (as elements

of the function field F): indeed the div(fi) are supported in S and the Ai
are also S-integers since Ai ∈ L(M ′Q). Moreover the zeros and the poles of
dt are in S as well. Thus dlFi/dt

l are S-integers (cf (3.8)), and so also Ws.

By assumption, we have a minimal linear relation a1F1 + · · ·+ asFs = 0.
Thus F1, . . . , Fs−1 are linearly independent and a1, . . . , as 6= 0. This proves
that Ws 6= 0.

Let 1 ≤ i ≤ s− 1. Since ai 6= 0 we can replace Fi by

−a1

ai
F1 − · · · −

ai−1

ai
Fi−1 −

ai+1

ai
Fi+1 − · · · −

as
ai
Fs

in Ws. This shows that Ws = ±(as/ai)Wi.

We want to obtain a suitable upper bound for m0 := ordP (Ws). For this,
we shall use the fact that Ws has already a big multiplicity at the zeros of
Fi, since these functions are essentially n-th powers.

For i = 1, . . . , s and for l = 0, . . . , s− 1 we have (cf (3.8))

ordR

(
dlFi
dtl

)
≥ ordR(Fi)− l(1 + ordR(dt)) = ordR(Ai) + n ordR(fi) +O(1)
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for any R ∈ C(Q). Thus, for i = 1, . . . , s,

ordR(Ws) = ordR(Wi) ≥
∑
j 6=i

(
ordR(Aj) + n ordR(fj) +O(1)

)
=

s∑
j=1

n ordR(fj)− λR,i +O(1).

where λR,i := n ordR(fi)−
∑

j 6=i ordR(Aj). We deduce:

ordR(Ws) ≥ max
i=1,...,s

 s∑
j=1

n ordR(fj)− λR,i +O(1)


=

s∑
j=1

n ordR(fj)− λR +O(1)

where we have defined, for R ∈ S,

λR := min
i=1,...,s

λR,i = min
i=1,...,s

{
n ordR(fi)−

∑
j 6=i

ordR(Aj)
}
.

We shall use this inequality, for R ∈ S, in the functional (i. e. in F) product
formula, applied to Ws, namely the formula

∑
R ordR(Ws) = 0.

In this formula, for R = P 6∈ S we find the quantity ordP (Ws) that we
have to estimate, whereas for R outside S ∪ {P} we use the trivial bound
ordR(Ws) ≥ 0. Also, since the div(fi) are supported in S0 ⊆ S, we have7∑

R∈S ordR(fi) = deg(div(fi)) = 0. Moreover P 6∈ S. Thus

0 =
∑
all R

ordR(Ws) ≥ ordP (Ws)+
∑
R∈S

ordR(Ws) ≥ ordP (Ws)−
∑
R∈S

λR+O(1).

We now recall that Ai ∈ L(M ′iQ) and that the fi are supported in S0. Thus

λQ = min
j

{
−
∑
i 6=j

ordQ(Ai)
}
≤ min

j

∑
i 6=j

M ′i =

s∑
i=1

M ′i −M ′

and ∑
R∈S0

λR ≤
∑
R∈S0

min
i
{n ordR(fi)} = n

∑
R

min
i
{ordR(fi)} = −ndΛ.

Collecting together these last three inequalities, we get the following sought
upper bound for m0 = ordP (Ws):

(3.9) m0 ≤
∑
R∈S

λR +O(1) ≤
∑
i∈Λ

M ′i − (M ′ + ndΛ) +O(1) = Θ +O(1).

We can now construct the desired basis v1, . . . ,v|Λ|−1 of VΛ = VΛ,w. For
a non-negative integer ρ we put as before

δρ =
1

ρ!

dρ

dtρ

7We use the fact that S contains not only the poles but also the zeros of the fi’s.
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Given a vector of non-negative integers ρ = (ρ1, . . . , ρs−1) we let

Wρ = det(δρjFi)i,j=1,...,s−1.

Thus Ws = W(0,1,...,s−1). It is also easily seen that

(3.10) δm0Ws ∈
∑
|ρ|=e

ZWρ

where |ρ| = ρ1 + · · ·+ ρs−1 and e = m0 + 1 + · · ·+ (s− 2). By (3.9) we have

(3.11) e ≤ Θ +O(1).

Since P 6∈ S and the zeros of dt are in S, we have ordP (dt) = 0. By
definition of m0 and by (3.8) we have ordP (δm0Ws) = 0. Again by (3.8)
and since Fi are S-integers, for all ρ we have ordP (δm0Wρ) ≥ 0. By (3.10),
this implies that there exists ρ′ with |ρ′| = e such that ordP (Wρ′) = 0. For
i = 1, . . . , s and j = 1, . . . , s− 1, let

(3.12) Bij = aif
−n
i δρ′jFi.

Recall that: P 6∈ S, the fi’s are supported in S, the Fi have all their poles
in S, the zeros of dt are in S. By (3.8) we see that ordP (Bij) ≥ 0. Thus

Bij(P ) ∈ Q.
Since a1F1 + · · · + asFs = 0, we have B1jf

n
1 + · · · + Bsjf

n
s = 0 for j =

1, . . . , s− 1. Thus, for i = 1, . . . , s,

vj = (B1j(P ), . . . , Bsj(P ), 0, . . . , 0) ∈ V{1,...,s}.

The important fact that we have achieved so far is that since P is not
a zero of Wρ′ the vectors v1, . . . ,vs−1 are linearly independent and form a
basis of V{1,...,s}.

By Lemma 3.2, h(Fi) = O(n+M ′i + h(Ai)). In order to deduce an upper
bound for the height of Bij we still need a bound for the height of the
coefficients a1, . . . , as of the minimal linear relation a1F1 + · · · + asFs = 0.
Obviously, we may assume as = −1. We differentiate the relation up to order
s − 2. Since the rational functions F1, . . . , Fs−1 are linearly independent
over Q, their Wronskian is not zero and so we can solve the resulting system
for a1, . . . , as−1. Using Cramér’s Rule and h(Fi) = O(n + M ′i + h(Ai))
together with Lemma 3.2 especially (i) and (ii) we find without difficulty
that h(ai) = O(n+M ′ + maxh(Ai)).

Now to simplify the notation we write vj as (B1(P ), . . . , Bs(P ), 0, . . . , 0)
for Bi = aif

−n
i δρ(Aif

n
i ) as in (3.12); here ρ ≤ e ≤ Θ + O(1) by (3.11). As

before
f−ni δρ(Aif

n
i ) = f−ni

∑
l+m=ρ

δl(Ai)δm(fni )

which by (3.1) is∑
l+m=ρ

δl(Ai)f
−m
i

∑
a

C(a)δ0(fi)
a0δ1(fi)

a1 · · · δm(fi)
am

(note the changed power of fi). As in Lemma 3.5(ii) we write

Ai =
∑
j,k

αijkgjg
k (i = 1, . . . , s)
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and it suffices here to take k ≤M ′i/∆ ≤M ′/∆. Again (3.1) for δq(g
k) gives

f−ni δρ(Aif
n
i ) =

∑
l+m=ρ

f−mi
∑
p+q=l

∑
j,k

αijkδp(gj)g
k−qEqm,

where

(3.13) Eqm =∑
b

C(b)δ0(g)b0δ1(g)b1 · · · δq(g)bq
∑
a

C(a)δ0(fi)
a0δ1(fi)

a1 · · · δm(fi)
am .

We evaluate all this at P and we want a main term M ′h(P ) “uniformly
in i”, so that when we bundle the coordinates into the vector we don’t get
sM ′h(P ).

In fact the terms gk−q with k ≥ q already give

h
(
gk−q(P )

)
= (k−q)h(g(P )) ≤ M ′

∆
h(g(P )) ≤ M ′

∆

(
∆h(P )+O(1+

√
h(P ))

)
by the upper bound in Lemma 3.3 with just two functions. The right-hand
side is

M ′h(P ) +O
(
M ′(1 +

√
h(P ))

)
so we already have the main term, clearly uniformly. Thus the rest had
better be small. The point here is

b0 + b1 + · · ·+ bq = b1 + · · ·+ qbq = q ≤ l ≤ ρ ≤ Θ +O(1),

a0 + a1 + · · ·+ am = a1 + · · ·+mam = m ≤ ρ ≤ Θ +O(1).

So if k < q in gk−q then |k − q| ≤ q so we get

h
(
gk−q(P )

)
= |k − q|h(g(P )) ≤ qh(g(P )) = O (Θ(h(P ) + 1)) .

And by Lemma 3.4 we get for the δ-terms in (3.13), as well as the fi-term,
a height of order at most

(q +m)(h(P ) + 1) ≤ ρ(h(P ) + 1) ≤ (Θ +O(1))(h(P ) + 1),

also uniformly. The C-terms contribute logarithmically to order at most

k + q + n+m ≤ k + n+ ρ ≤M ′ + n+ Θ +O(1).

So this deals uniformly with the Eqm. As p ≤ ρ the δp(gj) (j = 0, 1, . . . ,∆)
give nothing new, and by Lemma 3.5(ii) the α-terms contribute O(M ′ +
maxh(Ai)).

Collecting everything up, we get

h(vj) ≤M ′h(P ) +O
(

Θ(h(P ) + 1) + n+ maxh(Ai) +M ′(1 + h(P )1/2)
)

for j = 1, . . . , s− 1, slightly better than required.

�
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4. Proof of Theorem 1.4.

The next theorem is a refined version of Theorem 1.4.

Theorem 4.1. Let r ≥ 2 and f1, . . . , fr ∈ F be non-zero rational functions
such that fi/fj is non-constant for some i 6= j. Let d = −deg div(f1, . . . , fr),
K > 0 be sufficiently large with respect to f1, . . . , fr and α = (α1 : · · · :
αr) ∈ Pr−1(Q). Consider, for a natural number n, a solution P ∈ C(Q) of
the equation

α1f1(P )n + · · ·+ αrfr(P )n = 0.

Then, if n ≥ K and if there are no proper vanishing subsums, we have

(4.1) h(P ) ≤
(
r − 1

d
+O(1/K)

)
h(α)

n
+O(K2)

where the implicit constant in the big-O depends only on f1, . . . , fr.

Theorem 1.4 easily follows from Theorem 4.1. Indeed, choosing K suffi-
ciently large, we have (r − 1)/d+O(1/K) ≤ (r − 1)/d+ 1 ≤ r.

Remark 4.2.
i) In the proof we shall show:

(4.2)
h(α)

n
≥ dh(P )

r − 1
+O

(
1

K
h(P ) + h(P )1/2 +K

)
.

which immediately implies (4.1), since either h(P ) ≤ K2 or h(P )1/2 +K ≤
2h(P )/K. Note also that we will not use the assumption fi/fj 6= constant
in the proof of (4.2). This assumption is equivalent to d 6= 0 and (4.2) is
trivially satisfied if d = 0.

ii) Let β = (f1(P ) : · · · : fr(P )) ∈ Pr−1(Q). By Weil’s Height Machine
Lemma 3.3 (and since d > 0), inequality (4.2) is equivalent to

(4.3)
h(α)

n
≥ h(β)

r − 1
+O

(
1

K
h(β) + h(β)1/2 +K

)
(which in turn implies h(β) ≤ (r − 1 +O(1/K))h(α)

n +O(K2)).

iii) A standard application of Siegel’s lemma to the linear equation

(4.4) α1β
n
1 + · · ·+ αrβ

n
r = 0

in the unknowns α1, . . . , αr, shows that there exists a solution with

h(α)

n
≤ h(β)

r − 1
+O(1).

Thus inequality (4.3) is sharp. More precisely, Theorem 4.1 gives a lower
bound for the first minimum (with respect to the height) of the linear equa-
tion (6.1), and hence shows that the successive minima are close to each
other for large n.
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iv) If we ask that fi/fj is non-constant for all i 6= j, the assumption on
vanishing subsums can be easily removed (by induction on r).

v) We finally remark that we have a result even if d = 0 (i. e. fi/fj constant
for all i, j), but now the lower bound n ≥ K must depend also on α.
Indeed, if fi = cif1 with ci constants, our equation becomes (α1c

n
1 + · · · +

αrc
n
r )f1(P )n = 0. By the Skolem-Mahler-Lech Theorem, if f1(P ) 6= 0 then

n is bounded by a constant depending on α1, . . . , αr and on c1, . . . , cr.

Strategy of the proof of Theorem 4.1. Let f1, . . . , fr ∈ F be as in
the statement of the theorem. We recall that we have chosen a non-constant
rational function t ∈ F and that S is the finite set consisting of all zeros and
poles of f1, . . . , fr, dt and of an extra point Q (which is neither a zero nor a
pole of f1, . . . , fr, dt).

We fix algebraic numbers α1, . . . , αr, not all zero. In order to prove (4.1)
we may suppose that P does not lie in any prescribed finite set of points.
We thus choose P ∈ C(Q)\S satisfying our equation

α1f1(P )n + · · ·+ αrfr(P )n = 0

for some n ≥ K. We shall also assume h(P ) ≥ 1.

Put now w = (fn1 (P ), . . . , fnr (P )). Thus α ∈ w⊥, the orthogonal space
of w. Our strategy is the following:

We shall first construct a basis of function-vectors (with controlled heights)
for the orthogonal of the vector (fn1 , . . . , f

n
r ) ∈ Fr. Then we shall specialise

at P , in order to obtain a basis of w⊥, again with controlled heights. All
of this shall involve an induction, necessary to take into account certain
unexpected linear relations, i. e. relations with certain special properties in
addition to those imposed by the construction.

At this stage we shall get a new basis, on replacing one of the vectors of
the previous basis with α. By well-known facts, w and w⊥ have the same
height. Lemma 3.3 gives a lower bound for the height of w. The height
of w⊥ is bounded from above by the sum of the heights of the vectors of
our new basis. Comparing these bounds, we shall get the desired conclusion.

First step of the inductive proof.
Let N1 be the minimum of the set of integers m ≥ 0 such that there exist

a non-empty Λ ⊆ {1, . . . , r} and rational functions Ai ∈ F (i ∈ Λ) not all
zero, satisfying

(4.5)


Ai ∈ L(mQ), for i ∈ Λ;

h(Ai) ≤ nK, for i ∈ Λ;

(Aif
n
i )i∈Λ are linearly dependent over Q.

Fact 4.3.

(4.6) (r − 1)N1 ≤ nd+O(n/K).
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Proof. We provide an upper bound for N1 using Lemma 3.6, as we are
going to illustrate. Let 0 < ε < 1/2 and for this argument define N as the
smallest integer such that

(4.7) (r − 1− ε)N ≥ (1 + ε)nd+ c0.

Then N = O(n) and, with M1 = · · · = Mr = N , the Dirichlet exponent %
of Lemma 3.6 satisfies

% =
N + dn

(r − 1)N − dn− c0
≤ 1

ε
.

Thus, by that lemma, there exist A1, . . . , Ar ∈ L(NQ) not all zero such that

(4.8) A1f
n
1 + . . .+Arf

n
r = 0

and

h(Ai) = O(n/ε+N/ε) = O(n/ε).

Choosing ε = c/K, where c is a sufficiently large constant to kill the implicit
constant in the last O(), we see that there exists a non-trivial solution of (4.8)
with Ai ∈ L(NQ) and h(Ai) ≤ nK. Not all A1, . . . , Ar are zero, and we see
that the non-zero ones among A1f

n
1 , . . . , Arf

n
r sum up to zero, and so they

are linearly dependent, as required by (4.5) (on choosing Λ simply as the
set of i such that Ai 6= 0).

This shows that N1 ≤ N . Since N is the smallest integer satisfying (4.7)
and since ε = c/K, we have (r − 1)N = nd+O(n/K). Thus (4.6) holds.

�

Among all subsets Λ which realize the minimum defining N1 in (4.5), we
choose a subset which is minimal. We denote by Λ1 such a set, by l1 = |Λ1|
its cardinality (necessarily l1 ≥ 2) and by {A(1)

i }i∈Λ1 the corresponding

rational functions. This implies in particular that {A(1)
i fni }i∈Λ1 satisfy a

minimal linear relation.

To go ahead we want to apply Lemma 3.11 to find a suitable basis of VΛ1 .
In that lemma, let us putM ′i = N1 for i ∈ Λ1, soM ′ = maxM ′i = N1 = O(n)
and

Θ = max
(

1,
∑
i∈Λ1

M ′i − (M ′ + nd1)
)

= max
(

1, (l1 − 1)N1 − nd1

)
with d1 = dΛ1 = −deg div(fi)i∈Λ1 .

Fact 4.4. Θ = O(n/K).

Proof. To prove this, we use again Lemma 3.6, this time on the fi (i ∈ Λ1),
with Mi = N1 − 1 for i ∈ Λ1. The Dirichlet exponent % is then

% =
N1 − 1 + nd1

(l1 − 1)(N1 − 1)− nd1 − c0
.

By Lemma 3.6, there exist rational functions Bi not all zero such that Bi ∈
L((N1 − 1)Q) for i ∈ Λ1,

∑
i∈Λ1

Bif
n
i = 0 and

h(Bi) = O((%+ 1)n).
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By the minimality of N1, we cannot have maxi h(Bi) ≤ nK. Thus % ≥
K/c, where c is a sufficiently large constant to kill the implicit constant in
the last O(). This implies

(l1 − 1)N1 − nd1 ≤
c

K
(N1 + nd1) +O(1) = O(n/K)

as required. This concludes the proof of this fact.

�

Using Lemma 3.11 and the inequalities

h(P ) ≥ 1, h(Ai) ≤ nK, M ′i = N1 = O(n), Θ = O(n/K),

we find a basis v
(1)
1 , . . . ,v

(1)
l1−1 of VΛ1 satisfying

(4.9)

h(v
(1)
i ) ≤M ′h(P )

+O
(

Θ(h(P ) + 1) + (n+M ′)(1 + h(P )1/2) + maxh(Ai)
)

= N1h(P ) +O
( n
K
h(P ) + nh(P )1/2 + nK

)
.

Proof of Theorem 4.1 in a test-run case. Let as now assume Λ1 =
{1, . . . , r}, which is in essence the generic case. In this case we shall obtain
directly the desired conclusion of Theorem 4.1, as we now show.

Recall that w = (fn1 (P ), . . . , fnr (P )). Since α is a non-zero vector in w⊥

we may assume (reordering v
(1)
1 , . . . ,v

(1)
r−1 if necessary) that

α,v
(1)
1 , . . . ,v

(1)
r−2

is a basis of w⊥. Let us denote by h2 the logarithmic euclidean height
(defined on choosing the L2-norm at the infinite places). By well-known
facts on the height of subspaces (see [9] and [22]) and by the previous upper
bounds for the height of these vectors.

h(w) ≤ h2(w) = h2(w⊥) ≤ h2(α) +
r−2∑
i=1

h2(v
(1)
i ) + log(r − 1)

≤ (r − 2)N1h(P ) + h(α) +O
( n
K
h(P ) + nh(P )1/2 + nK

)
.

Moreover, by the functorial lower bound for the height Lemma 3.3, we have:

h(w) ≥
(
h(P ) +O(h(P )1/2)

)
nd.

Thus

0 ≤ λh(P ) +
h(α)

n
+O

(
1

K
h(P ) + h(P )1/2 +K

)
with

λ = (r − 2)N1/n− d.
By (4.6) we have

λ ≤ (r − 2)
d

r − 1
− d+O(1/K) = − d

r − 1
+O(1/K).
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Inequality (4.2) follows.

Inductive construction. The obstacle in the approach of the test-run
case is that Λ1 may be smaller than {1, . . . , r}. If this happens, we can
somewhat take advantage of the fact that we have an ‘unexpected’ depen-
dence relation. To exploit this, let us sketch how we intend to argue by an
induction procedure. The following claim resumes the inductive construc-
tion we shall do in the next section.

Claim 4.5. There exists an integer s with 1 ≤ s ≤ r, positive integers
N1, . . . Ns and non-empty subsets Λ1,Λ2, . . . ,Λs of {1, . . . , r} of cardinalities
l1, l2 . . . , ls satisfying:

i) N1 ≤ N2 ≤ · · · ≤ Ns.
ii) For j = 2, . . . , s, the set Λj is contained in no connected component

of {Λ1, . . . ,Λj−1}.
iii) The collection {Λ1, . . . ,Λs} is connected and its union is the full set
{1, . . . , r}.

iv) Let t1 = dim(VΛ1) and, for j = 2, . . . , s let

tj = dim(VΛ1 + · · ·+ VΛj )− dim(VΛ1 + · · ·+ VΛj−1).

Then for j = 1, . . . , s we have

t1N1 + · · ·+ tj−1Nj−1 +
(
r − 1−

j−1∑
i=1

ti

)
Nj ≤ nd+O(n/K).

v) For j = 1, . . . , s, there exists a basis v
(j)
1 , . . . ,v

(j)
lj−1 of VΛj satisfying

max
i
h(v

(j)
i ) ≤ Njh(P ) +O

( n
K
h(P ) + nh(P )1/2 + nK

)
.

We shall explain how to perform this construction in the next section,
proving the claim. For the moment, we pause to show how this claim allows
us to conclude the proof of Theorem 4.1.

We state at once a general elementary lemma.

Lemma 4.6. Let τ , ρ, a1, . . . , as be positive real numbers such that as ≥ 1
and a1 + . . .+ as = ρ. Let also x1 ≤ . . . ≤ xs be positive real numbers such
that

s∑
i=1

aixi ≤ τ.

Then
s−1∑
j=1

ajxj + (as − 1)xs − τ ≤ −τ/ρ.

Proof. Set σ :=
∑s

i=1 aixi, so σ ≤ τ and also σ ≤ ρxs. Hence σ − xs ≤
σ(1− 1

ρ) ≤ τ(1− 1
ρ), since ρ ≥ as ≥ 1.

Now, on subtracting τ from both sides we obtain σ − xs − τ ≤ − τ
ρ , as

required.
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�

Deduction of Theorem 4.1 from Claim 4.5. We remark that

(4.10) VΛ1 + · · ·+ VΛs = w⊥. In particular, t1 + · · ·+ ts = r − 1,

by Claim 4.5 iii) and by Remark 3.9 i). Thus, taking into account i) of Claim

4.5, we may assume, after reordering for each j the vectors v
(j)
1 , . . . ,v

(j)
lj−1

and possibly omitting some of them, that

v
(1)
1 , . . . ,v

(1)
t1
, . . . ,v

(s−1)
1 , . . . ,v

(s−1)
ts−1

,v
(s)
1 , . . . ,v

(s)
ts

is a basis of w⊥.
We also remark that ts ≥ 1. Otherwise dim(VΛ1 + · · ·+VΛs−1) = t1 + · · ·+

ts−1 = r−1 by (4.10). By Remark 3.9 ii), this implies that {Λ1, . . . ,Λs−1} is
connected and its union is the full set {1, . . . , r}, which contradicts Claim 4.5
ii) with j = s.

By assumption there are no proper vanishing subsums in α1f1(P )n+ · · ·+
αrfr(P )n = 0. This implies that α 6∈ VΛ1 +· · ·+VΛs−1 . Thus we may assume
that

v
(1)
1 , . . . ,v

(1)
t1
, . . . ,v

(s−1)
1 , . . . ,v

(s−1)
ts−1

,α,v
(s)
1 , . . . ,v

(s)
ts−1

is a basis of w⊥. Arguing as we did before, we deduce that

(4.11) 0 ≤ λh(P ) +
h(α)

n
+O

(
1

K
h(P ) + h(P )1/2 +K

)
with

λ = t1
N1

n
+ · · ·+ ts−1

Ns−1

n
+ (ts − 1)

Ns

n
− d.

To go ahead, we recall that t1 + · · · + ts = r − 1 (see (4.10)). Thus,
Claim 4.5 iv) for j = s reads

t1
N1

n
+ · · ·+ ts−1

Ns−1

n
+ ts

Ns

n
≤ d+O(1/K).

We apply the lemma 4.6 with

aj = tj , ρ = r − 1, xj = Nj/n and τ = d+O(1/K).

We find

λ = t1
N1

n
+ · · ·+ ts−1

Ns−1

n
+ (ts − 1)

Ns

n
− d ≤ −d/(r − 1) +O(1/K).

Thus, by (4.11),

0 ≤ − d

r − 1
h(P ) +

h(α)

n
+O

(
1

K
h(P ) + h(P )1/2 +K

)
.

Inequality (4.2) follows. This concludes the proof of Theorem 4.1, assuming
the truth of Claim 4.5.
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5. Proof of Claim 4.5

In this section, as promised, we detail our inductive process, verifying all
the assertions of Claim 4.5.
We construct by induction an integer s with 1 ≤ s ≤ r and, for each j =
1, . . . , s,

- a positive integer Nj ;
- a subset Λj of {1, . . . , r} of cardinality denoted lj := |Λj |;
- a subset Jj of Λ1 ∪ · · · ∪ Λj−1 such that:

– |Jj ∩ C| = 1 for each connected component of {Λ1, . . . ,Λj−1}
– Jj is disjoint from Λ1 ∪ · · · ∪ Λj−2 \ Jj−1 if j ≥ 2.

- rational functions {A(j)
i }i∈Λj .

- a function ϕj : {1, . . . , r} → {1, . . . , j};
The role of the functions ϕj shall appear along the discussion.

For j = 1, we let N1 be the minimum of the set of integers N ≥ 0 such
that there exist Λ ⊆ {1, . . . , r} and rational functions Ai ∈ F (i ∈ Λ) not all
zero, of height ≤ nK, with (Aif

n
i )i∈Λ linearly dependent and such that

Ai ∈ L(NQ), for i ∈ Λ.

Among all subsets Λ which realize the minimum defining N1, we choose a
subset which is minimal. We denote Λ1 such set, l1 = |Λ1| its cardinality and

{A(1)
i }i∈Λ1 the corresponding rational functions. This implies in particular

that {A(1)
i fni }i∈Λ1 satisfy a minimal linear relation. As we have already

shown earlier (see (4.6) and (4.9)), we have

(r − 1)N1 ≤ nd+O(n/K)

and there exists a basis v
(1)
1 , . . . ,v

(1)
l1−1 of VΛ1 satisfying

h(v
(1)
i ) ≤ N1h(P ) +O

( n
K
h(P ) + nh(P )1/2 + nK

)
.

We also set J1 = ∅ and ϕ1(i) = 1 for i = 1, . . . , r.

For j ≥ 2 we go ahead similarly, but modifying somewhat the require-
ments for the Aj , taking into account the previous steps. More precisely, let
j ≥ 2 and assume to have already constructed N1, . . . , Nj−1, Λ1, . . . ,Λj−1

and Jj−1, ϕj−1. If {Λ1, . . . ,Λj−1} is connected and Λ1 ∪ · · · ∪ Λj−1 =
{1, . . . , r} we put s = j − 1 and we stop here the process.

Otherwise, we choose a subset Jj of Λ1∪ · · ·∪Λj−1 such that |Jj ∩C| = 1
for each connected component of {Λ1, . . . ,Λj−1}. We need to show that we
can choose Jj disjoint from Λ1 ∪ · · · ∪ Λj−2 \ Jj−1. If the set Λj−1 does not
intersect Λ1 ∪ · · · ∪ Λj−2, the connected components of {Λ1, . . . ,Λj−1} are
the connected components of {Λ1, . . . ,Λj−2} plus the set Λj−1 itself. Thus
we may choose Jj = Jj−1∪{i0} where i0 is any element of Λj−1. If otherwise
Λj−1 intersects Λ1∪· · ·∪Λj−2, each connected component of {Λ1, . . . ,Λj−1}
contains at least one connected component of {Λ1, . . . ,Λj−2}. Thus we may
choose Jj as a suitable subset of Jj−1.

Then we let Nj be the minimum of the set of integers N ≥ 0 such that
there exist Λ ⊆ {1, . . . , r} and rational functions Ai ∈ F (i ∈ Λ) not all zero,
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satisfying8

(5.1)


Ai ∈ L((Nϕj−1(i) − 1)Q), if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) ∩ Λ,

Ai ∈ L(NQ), if i ∈ Λ and i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj ,
h(Ai) ≤ nK, for i ∈ Λ,

(Aif
n
i )i∈Λ are linearly dependent.

We remark that the set of such N is indeed not empty, as we easily
see since {1, . . . , r}\(Λ1 ∪ · · · ∪ Λj−1\Jj) has cardinality ≥ 2 (for otherwise
{Λ1, . . . ,Λj−1} would be connected and Λ1 ∪ · · · ∪ Λj−1 = {1, . . . , r}).

We select a minimal set Λj among all sets Λ which realize the minimum

defining Nj . We denote by {A(j)
i }i∈Λj the corresponding rational functions.

Thus {A(j)
i fni }i∈Λj satisfy a minimal linear relation.

We finally set

(5.2) ϕj(i) =

{
ϕj−1(i) if i ∈ Λ1 ∪ · · · ∪ Λj−1\Jj ,
j otherwise, i. e. if i 6∈ Λ1 ∪ · · · ∪ Λj−1 or i ∈ Jj .

Thus, by the minimality of Nj , there are no subsets Λ and rational func-
tions (Ai)i∈Λ not all zero such that

Ai ∈ L((Nϕj(i) − 1)Q), for i ∈ Λ,

h(Ai) ≤ nK, for i ∈ Λ,

(Aif
n
i )i∈Λ are linearly dependent.

We notice that for j = 2, . . . , s we have

(5.3) ϕj−1(i) = j − 1 for i ∈ Jj ,
since Jj is disjoint from Λ1 ∪ · · · ∪ Λj−2 \ Jj−1.

Proof of Claim 4.5 i). Since at each step we have added conditions, we
have

(5.4) N1 ≤ N2 ≤ · · · ≤ Ns

as required.

Proof of Claim 4.5 ii) and iii) We first showthat for j = 2, . . . , s, the
set Λj is contained in no connected component of {Λ1, . . . ,Λj−1}.

To verify this assertion, let us assume by contradiction that Λj is con-
tained in a connected component C of {Λ1, . . . ,Λj−1}. Let C ∩ Jj = {i0}.
Then for i ∈ Λj , i 6= i0, we have A

(j)
i ∈ L((Nϕj−1(i) − 1)Q). Using the

minimal linear relation
∑

i∈Λj
aiA

(j)
i fni = 0 and the fact that Q is not in

the support of any of the divisors div(fi) we see that A
(j)
i0
∈ L(N∗Q) with

N∗ = maxi(Nϕj−1(i) − 1). By (5.4) we have N∗ ≤ Nj−1 and, by (5.3),

j−1 = ϕj−1(i0). Thus A
(j)
i ∈ L((Nϕj−1(i)−1)Q) for all i ∈ Λj . This contra-

dicts the minimality in the definition of Nj−1 (see the remark after (5.2)).

8Note that we are prescribing somewhat more stringent conditions than before on the
indices inside the subsets previously defined.
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Thus for j = 2, . . . , s the set Λj is contained in no connected component
of {Λ1, . . . ,Λj−1}. This proves assertion ii) of Claim 4.5 and ensures that
the inductive process ends somewhere. Thus Claim 4.5 iii) also holds by
inductive construction.

We still have to check assertions iv) and v) of Claim 4.5. To prove as-
sertion iv) we first need the following lemma. Let, as in Claim 4.5 iv),
t1 = dim(VΛ1) and

tj = dim(VΛ1 + · · ·+ VΛj )− dim(VΛ1 + · · ·+ VΛj−1).

for j = 2, . . . , s.

Lemma 5.1.

i) For j = 2, . . . , s we have:

|Λ1 ∪ · · · ∪ Λj−1| − |Jj | = dim(VΛ1 + · · ·+ VΛj−1) =

j−1∑
j′=1

tj′

ii) Let j, j′ be two integers with j ≥ 2 and 1 ≤ j′ ≤ j − 1. Then the set
of i ∈ {1, . . . , r} such that ϕj(i) = j′ has cardinality tj′.

Proof. The first assertion follows from Remark 3.9 ii), since Jj has cardi-
nality equal to the number of connected components of Λ1 ∪ · · · ∪ Λj−1.

We prove the second assertion by induction on j. For j = 2 we have by
construction #{i | ϕ2(i) = 1} = |Λ1| − 1 = dim(VΛ1) = t1.

Let j > 2 and assume that #{i | ϕj−1(i) = j′} = tj′ for j′ = 1, . . . , j − 2.
We want to show that #{i | ϕj(i) = j′} = tj′ for j′ = 1, . . . , j − 1.

Assume first j′ ≤ j−2. Let i be such that ϕj(i) = j′. Then ϕj(i) 6= j, thus
by (5.2) ϕj(i) = ϕj−1(i). This shows that {i | ϕj(i) = j′} ⊆ {i | ϕj−1(i) =
j′}. On the other hand, let i such that ϕj−1(i) = j′. Then ϕj−1(i) 6= j − 1
and (5.2) (with j replaced by j − 1) shows that

i ∈ Λ1 ∪ · · · ∪ Λj−2\Jj−1 ⊆ Λ1 ∪ · · · ∪ Λj−1.

Moreover i 6∈ Jj by (5.3). Thus, by (5.2), ϕj(i) = ϕj−1(i). This proves that
{i | ϕj−1(i) = j′} ⊆ {i | ϕj(i) = j′}. Putting together the two inclusions we
see that

{i | ϕj(i) = j′} = {i | ϕj−1(i) = j′}.
Thus, by induction, #{i | ϕj(i) = j′} = #{i | ϕj−1(i) = j′} = tj′ .

Assume now j′ = j − 1. By (5.2)

{i | ϕj(i) = j − 1} = {i ∈ Λ1 ∪ · · · ∪ Λj−1\Jj | ϕj−1(i) = j − 1}

By (5.3) we have ϕj−1(i) = j − 1 on Jj . By (5.2) (again with j replaced
by j − 1) we still have ϕj−1(i) = j − 1 outside Λ1 ∪ · · · ∪ Λj−2 and thus, a
fortiori outside Λ1 ∪ · · · ∪ Λj−1. These facts and the first assertion of the
present lemma imply

#{i | ϕj(i) = j − 1} = #{i | ϕj−1(i) = j − 1} − (r − |Λ1 ∪ · · · ∪ Λj−1|)− |Jj |
= dim(VΛ1 + · · ·+ VΛj−1)− (r −#{i | ϕj−1(i) = j − 1}).
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By induction,

r −#{i | ϕj−1(i) = j − 1} =

j−2∑
j′=1

#{i | ϕj−1(i) = j′} =

j−2∑
j′=1

tj′

= dim(VΛ1 + · · ·+ VΛj−2).

Putting together the last two displayed equations, we get

#{i | ϕj(i) = j−1} = dim(VΛ1 + · · ·+VΛj−1)−dim(VΛ1 + · · ·+VΛj−2) = tj−1

as desired.

�

Proof of Claim 4.5 iv). We proceed by induction. For j = 1 assertion
iv) was already proved in (4.6). Let j ≥ 2. In a similar way as we have done
for N1, we are going to provide an upper bound for Nj using Lemma 3.6.
Let ε = c/K for a sufficiently large constant c and choose N as the smallest
integer such that

(5.5)

j−1∑
j′=1

tj′(Nj′ − 1) +
(
r − 1−

j−1∑
j′=1

tj′ − ε
)
N ≥ (1 + ε)dn+ c0.

We notice that N = O(n).

Fact 5.2. We have

Nj−1 ≤ N.

Proof. By Claim 4.5 iv) with j replaced by j − 1 (which holds by the
present inductive assumption) we have

j−2∑
j′=1

tj′Nj′ +
(
r − 1−

j−2∑
j′=1

tj′
)
Nj−1 ≤ nd+O(n/K).

Thus(
r − 1−

j−1∑
j′=1

tj′ − ε
)

(Nj−1 −N)

=
(
r − 1−

j−2∑
j′=1

tj′
)
Nj−1 − tj−1Nj−1 − εNj−1 −

(
r − 1−

j−1∑
j′=1

tj′ − ε
)
N

≤
(
nd+O(n/K)

)
−

j−2∑
j′=1

tj′Nj′ − tj−1Nj−1 −
(
r − 1−

j−1∑
j′=1

tj′ − ε
)
N

≤
(
nd+O(n/K)

)
−
(

(1 + ε)dn+ c0)
)

=
(
− cd+O(1)

) n
K

< 0,

if c is a sufficiently large constant to kill the implicit constant in the O(1).

�
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We are going to apply Lemma 3.6 with f1, . . . , fr and with

Mi =

{
Nϕj−1(i) − 1, if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj);
N, if i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj

(i = 1, . . . , r). Since Q is neither a zero nor a pole of f1, . . . , fr and since
N1 ≤ · · · ≤ Nj−1 ≤ N (by Claim 4.5 i) and by Remark 5.2), we have

(5.6) M = max
i
Mi = N.

We recall that, by Lemma 5.1 i),

|Λ1 ∪ · · · ∪ Λj−1| − |Jj | =
j−1∑
j′=1

tj′

and, by (5.2) and by Lemma 5.1 ii),

#{i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) | ϕj−1(i) = j′} = #{i | ϕj(i) = j′} = tj′

for j′ = 1, . . . , j − 1. Thus

(5.7) S =

r∑
i=1

Mi =

j−1∑
j′=1

tj′(Nj′ − 1) +
(
r −

j−1∑
j′=1

tj′
)
N.

By (5.5), (5.6) and (5.7), S ≥ (1+ε)(N+dn)+c0 and the Dirichlet exponent
% of Lemma 3.6 satisfies

% =
N + dn

S −N − dn− c0
≤ 1

ε
.

By that lemma (if c is a sufficiently large constant) there exist rational
functions A1, . . . , Ar not all zero and of height ≤ nK such that{

Ai ∈ L((Nϕj−1(i) − 1)Q), if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj);
Ai ∈ L(NQ), if i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj

satisfying
A1f

n
1 + . . .+Arf

n
r = 0.

Not all A1, . . . , Ar are zero, and we see that the non-zero ones among
A1f

n
1 , . . . , Arf

n
r sum up to zero, and so they are linearly dependent. Choos-

ing Λ as the set of i such that Ai 6= 0 we see that (5.1) is satisfied. By
minimality of Nj we have Nj ≤ N . Since N is the smallest integer satisfy-
ing (5.5) and since ε = c/K, we have

j−1∑
j′=1

tj′Nj′ +
(
r − 1−

j−1∑
j′=1

tj′
)
Nj ≤ nd+O(n/K).

as required. This conclude the proof of assertion iv) of Claim 4.5.

Proof of Claim 4.5 v). For j = 1 assertion v) was already proved in (4.9).
Let j ≥ 2. As we did for j = 1, we apply Lemma 3.11 to find a suitable
basis of VΛj . Let, for i ∈ Λj ,

M ′i =

{
Nϕj−1(i) − 1, if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) ∩ Λj ,

Nj , if i ∈ Λj and i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj
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and M ′ = maxi∈Λj M
′
i = Nj . Let also, as in Lemma 3.11,

Θ = max
(

1,
∑
i∈Λj

M ′i − (M ′ + ndj)
)

= max
(

1,
∑
i∈Λj

M ′i − (Nj + ndj)
)

with dj = dΛj = −deg div(fi)i∈Λj . We contend that Θ = O(n/K). As for
j = 1, we prove this assertion using Lemma 3.6, now for the fi (i ∈ Λj) with
Mi the same as M ′i except for Nj − 1 in place of Nj , i. e.

Mi =

{
Nϕj−1(i) − 1, if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) ∩ Λj ,

Nj − 1, if i ∈ Λj and i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj .

Let S =
∑

i∈Λj
Mi =

∑
i∈Λj

M ′i + O(1) and M = maxi∈Λj Mi = Nj − 1 =

O(n). The Dirichlet exponent % is then

% =
Nj − 1 + ndj

S −Nj − ndj − c0 + 1
.

By Lemma 3.6, there exist rational functions Bi not all zero such that Bi ∈
L(MiQ) for i ∈ Λj ,

∑
i∈Λj

Bif
n
i = 0 and

h(Bi) = O((%+ 1)n).

By the minimality of Nj , we cannot have maxi h(Bi) ≤ nK. Thus % ≥ K/c,
where c is a sufficiently large constant to kill the implicit constant in the
last O(). This implies∑

i∈Λj

M ′i − (Nj + ndj) ≤
c

K
(Nj + ndj) +O(1) = O(n/K)

as required.

We apply Lemma 3.11 to the rational functions {A(j)
i }i∈Λj , taking into

account:

h(P ) ≥ 1, h(Ai) ≤ nK, M ′i = Nj = O(n), Θ = O(n/K).

By this lemma, there exists a basis v
(j)
1 , . . . ,v

(j)
lj−1 of VΛj satisfying

h(v
(j)
i ) ≤M ′h(P ) +O

(
Θ(h(P ) + 1) + (n+M ′)(1 + h(P )1/2) + maxh(Ai)

)
= Njh(P ) +O

( n
K
h(P ) + nh(P )1/2 + nK

)
.

This proves assertion v) of Claim 4.5.

6. Proof of Theorem 1.2

Let Γ ⊂ Gr
m(F) be a finitely generated constant-free subgroup, and let

V be an algebraic subvariety of Gr
m, defined over F. By writing V as an

intersection of hypersurfaces, we see that it is enough to prove Theorem 1.2
and its addendum for a hypersurface V . We may further assume that V is a
hyperplane. The case of a general hypersurface can indeed be easily deduced
using an isogeny. For technical reasons, it is convenient to homogenize the
statement in the linear case:
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Proposition 6.1. Let Γ ⊂ Gr
m(F) be a finitely generated subgroup such that

(6.1) ∀f ∈ Γ, ∀i, j = 1, . . . , r, fi/fj ∈ Q =⇒ fi/fj ∈ Q∗tors.

Let γ = (γ1, . . . , γr) ∈ Γ and θ1, . . . , θr ∈ F such that θ1γ1 + · · ·+ θrγr 6= 0.
Then the height of P ∈ C(Q) such that

(6.2) θ1(P )γ1(P ) + · · ·+ θr(P )γr(P ) = 0

is bounded from above in terms only on Γ and θ1, . . . , θr, independently
of γ1, . . . , γr. The same conclusion holds without the assumption (6.1), if
θ1, . . . , θr ∈ Q and Γ/Γ ∩Gr

m(Q) is of rank 1.

Proof. Replacing {1, . . . , r} by a subset (and Γ by its projection on the
coordinates in the subset) we may assume that there are no proper van-
ishing subsums in (6.2). Dividing (6.2) by γ1(P ) (and replacing Γ by
{(1, f2/f1, . . . , fr/f1) | f ∈ Γ}) we may also assume γ1 = 1 and

(6.3) Γ ⊆ {x1 = 1} .

Assume first that Γ/Γ ∩ Gr
m(Q) is of rank 1 and θi ∈ Q. Thus there

exists f = (1, f2, . . . , fr) ∈ Γ such that Γ = Γ ∩ Gr
m(Q) ⊕ 〈f〉. Then

γ = (1, c2f
n
2 , . . . , crf

n
r ) for some ci ∈ Q. We may assume that there ex-

ists some i > 1 such that fi is non constant, since otherwise θ1γ1 + · · ·+θrγr
is a non zero constant and equation (6.2) does not have solutions. Thus we
can apply Theorem 1.4, and we find that the solutions of (6.2) have bounded
height.

Assume now that Γ satisfies (6.1). Then Γ = Γtors ⊕ Γ′ where Γ′ is freely
generated by, say, g1, . . . ,gκ. We now use Dirichlet’s Theorem in a way
which is inspired by a method appearing already in Bombieri’s paper [4],
especially Lemma 4 therein. There exist ω ∈ Γtors and integers λ1, . . . , λκ
such that

γ = ωgλ11 · · ·g
λκ
κ .

Let A = max |λj |. Since the equation (6.2) is not trivial (and since Γtors is
finite), we can obviously assume A unbounded. Let Q ≥ 1 be an integer
which will be fixed later, independently of A. By Dirichlet’s Theorem on
simultaneous approximation, there exists a positive integer q ≤ Qκ and
integers pj such that ∣∣∣∣qλjA − pj

∣∣∣∣ < 1

Q
.

Let n be the integral part of A/q. We write λj = npj + rj and we set, for
i = 1, . . . , r,

ρ =

κ∏
j=1

g
rj
j ∈ Γ, f =

κ∏
j=1

g
pj
j ∈ Γ, αi = ωiθi(P )ρi(P ).

Since γi = ωiρif
n
i , equation (6.2) can be rewritten as α1f1(P )n + · · · +

αrfr(P )n = 0 (without proper vanishing subsums).
We have

|pj | ≤
∣∣∣∣qλjA

∣∣∣∣+
1

Q
≤ q +Q−1 ≤ 2Qκ.
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Thus, f belongs to a finite set, depending only on the generators g1, . . . ,gκ
and on Q, as the exponents λj vary. Moreover

|rj | =
∣∣∣∣Aq
(
q
λj
A
− pj

)
−
(
n− A

q

)
pj

∣∣∣∣ ≤ (n+ 1)Q−1 + 2Qκ.

Thus d(θiρi) = O(n/Q + Qrκ), where the implicit constant in the big-O
depends only on θ1, . . . , θr and on g1, . . . ,gκ.
We recall that αi = ωiθi(P )ρi(P ), with ωi root of unity. Using Lemma 3.3
(for the two functions 1 and θiρi), we see easily that

h(α) ≤ h(α1) + · · ·+ h(αr) ≤ C1(n/Q+Qκ)h(P )

where the constant C1 depends only on θ1, . . . , θr and on g1, . . . ,gκ (and
neither on Q nor on A). We now choose Q = [4rC1] + 1.

There is a j such that λj = ±A and thus some of the pj are not zero.
Since g1, . . . , gκ is a basis of Γ′ we have f 6∈ Γtors. By (6.3) we have f1 = 1.
Thus, by (6.1), fi = fi/f1 is non-constant for some i > 1 and we can apply
Theorem 1.4.

Let C be the constant appearing in this theorem, which depends on
f1, . . . , fr and thus only on θ1, . . . , θr and on g1, . . . ,gκ (since the ratio-
nal functions fi belong to a finite set, depending only on the generators
g1, . . . ,gκ and on Q and Q has already been fixed as Q = [4rC1] + 1).
Since A is unbounded and Q does not depend on A, we may assume n =
[A/q] ≥ C and n ≥ 4rC1Q

κ. By Theorem 1.4 and by the inequalities
h(α) ≤ C1(n/Q+Qκ)h(P ), Q ≥ 4rC1 and n ≥ 4rC1Q

κ,

h(P ) ≤ rh(α)

n
+ C ≤ rC1(1/Q+Qκ/n)h(P ) + C ≤ h(P )/2 + C .

We deduce that h(P ) is bounded, as claimed.

�
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[20] G. Rémond, “Sur les sous-variétés des tores”, Compositio Math. 134 (2002),
no. 3, 337–366.

[21] W. M. Schmidt, “Eisenstein’s theorem on power series expansions of alge-
braic functions”, Acta Arith. 56 (1990), 161–179.

[22] W. M. Schmidt, “Diophantine approximations and Diophantine equations”.
LNM 1467, Springer-Verlag, Berlin, 1991.

[23] J-P. Serre, Lectures on the Mordell-Weil Theorem, 2-nd Ed., Vieweg, 1990.
[24] J. H. Silverman, “Heights and the specialization map for families of abelian

varieties”, J. Reine Angew. Math. 342 (1983), 197–211.
[25] J. H. Silverman and F. Voloch, “Multiple Weierstrass Points”, Compositio

Math., 79 (1991), 123–134.
[26] E. Thomas, “Solutions to certain families of Thue equations”, J. Number

Theory 43 (1993), 319–369.
[27] U. Zannier, “Some problems of unlikely intersections in arithmetic and ge-

ometry”, Annals of Mathematics Studies, vol. 181, Princeton University
Press, 2012, With appendixes by David Masser.

[28] S. Zhang, “Positive line bundles on arithmetic surfaces”, Ann. Math. (2)
136 (1992), no. 3, 569–587.


