BOUNDED HEIGHT IN PENCILS OF FINITELY GENERATED SUBGROUPS

Abstract : In this paper we prove a general bounded height result for specializations in finitely generated subgroups varying in families which complements and sharpens the toric Mordell-Lang Theorem by replacing finiteness by emptyness, for the intersection of varieties and subgroups, all moving in a pencil, except for bounded height values of the parameters (and excluding identical relations). More precisely, an instance of the results is as follows. Consider the torus scheme G r m/C over a curve C defined over Q, and let Γ be a subgroup-scheme generated by finitely many sections (satisfying some necessary conditions). Further, let V be any subscheme. Then there is a bound for the height of the points P ∈ C(Q) such that, for some γ ∈ Γ which does not generically lie in V , γ(P) lies in the fiber VP. We further offer some direct diophantine applications, to illustrate once again that the results implicitly contain information absent from the previous bounds in this context.
Type de document :
Article dans une revue
Duke Math. J., 2017
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01200626
Contributeur : Francesco Amoroso <>
Soumis le : samedi 18 février 2017 - 03:11:00
Dernière modification le : lundi 23 avril 2018 - 14:52:12
Document(s) archivé(s) le : vendredi 19 mai 2017 - 12:14:30

Fichier

Amoroso-Masser-Zannier-Duke3.p...
Fichiers produits par l'(les) auteur(s)

Licence


Domaine public

Identifiants

  • HAL Id : hal-01200626, version 3

Collections

Citation

F Amoroso, D Masser, U Zannier. BOUNDED HEIGHT IN PENCILS OF FINITELY GENERATED SUBGROUPS. Duke Math. J., 2017. 〈hal-01200626v3〉

Partager

Métriques

Consultations de la notice

178

Téléchargements de fichiers

37