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Abstract

Free-form architecture challenges architects, exggsand builders. The geometrical rationalization
of complex structures requires sophisticated tobdsthis day, two frameworks are commonly used:
NURBS modeling and mesh-based approaches. The raufhropose an alternative modeling
framework calledgeneralized cyclidic netthat automatically yields optimal geometrical pedjes

for the facade and the structure. This framewosdsus base circular mesh and Dupin cyclides, which
are natural objects of the geometry of circlespgace, also known as Mdbius geometry. This paper
illustrates how new shapes can be generated fravergkized cyclidic nets. Finally, it is demonstcate
that this framework gives a simple method to geteecarved-creases on free-forms. These findings
open new perspectives for structural design of derghells.

Keywords: conceptual design, structural morphology, architeal geometry, fabrication-aware
design, curved crease

1. Introduction

Non-standard architecture often makes referenemmaplex doubly-curved systems. Bagnezisal.

[2] identify three design approaches for non-stash@dachitecture: geometrically-constrained forms or
“analytic forms”, mechanically-constrained forms tmnechanical forms” and “flexible forms”.
Geometrically-constrained strategy uses compositafrgeometries which are known by the builder,
linking form and construction constraints. Mechahiorms are shapes that are mechanically optimal
with respect to certain load cases; the form ikdih with structural performance. Flexible forms
consider other aspects of an architectural progepe is not thought with respect to construation
structure, but to other considerations. The fipgiraach is present since the beginning of architect
The two latter appeared during the twentieth cgntiue to innovation in computation, like force-
density for mechanical forms (Scheck [20]) or Bézarfaces or De Casteljau’s algorithm for flexible
approaches.

Flexible forms are now widely used, implying hegwst-rationalization techniques and a workflow
where the architects and structural engineers fesaback from geometry specialists. This kind of
approach has severe limitations in terms of tine laudget during the early stages of the desigrs Thi
fact triggered new reflection ageometrically-constrainedhape explorations (Yara al. [22], Deng
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et al. [5]). These methods are based on functional miraton written on a mesh. Common
optimization targets include flat panels (Glymgthal. [8]) and torsion-free nodes (Liet al. [13]).
These methods however suffer from some limitatichsnge of topology (for example from quads to
hexagons) is difficult and the combination of torsiree nodes with flat quad panels is only possibl
when the lines of the meshes follow lines of cumaibf the underlying surface, which means that the
initialization of the problem is crucial for therogergence of the algorithm (Liet al.[13]). A unified
framework that could allow interactive remeshingl amtuitive design of Planar Quadrilateral (PQ)-
Meshes with torsion-free nodes would therefore bstep towards a more efficient geometrically-
constrained design approach.

Furthermore, most recent research link discretdéemdifitial geometry with notions of smooth
geometry (Liuet al. [13]), excluding hence surfaces with discontinudfynormal vectors, as some
notions like curvature cannot be defined everywh8reh surfaces constitute however an important
family of surfaces for the designers (think of fddstructures). The topic of doubly curved cre&ses
shell structures needs new methods and new totddkéoadvantage of their potential.

This paper presents new tools for geometricallyst@ined design strategy. Main contributions
include:

« a new framework for complex shape generation aligwautomatic discretization with
torsion-free nodes;

* implementation of this framework and applicatiorstame archetypal examples;

e a new insight on doubly-curved crease which opeans formal possibilities for shells and
spatial structures.

The paper is organized as follows: Section 2 intoe$ key geometrical notions used in the
framework introduced by the authors. Section 3 pseg the implementation of the new framework
based orcyclidic netsand its application. In the fourth Section, théhaus generalize the notion of
cyclidic nets to surfaces with creases. The strattpotential offered by this theoretical finding i
illustrated on Section 5. A brief conclusion sungsthe findings of this paper and proposes some
developments to this work.

2. Cyclidic Nets and Mo6bius Geometry

2.1 General geometrical definitions

2.1.1. Conical Mesh

When building a structural layout, the orientatafrmembers is an important geometrical problem to
be solved. A geometry where every node can be gawveaxis is of interest. Such nodes are called
torsion free-nodesTrivial solutions for this problem exist (likeamslation along a constant vector),
but non-trivial solution for offsets withorsion-free nodesequires the notion o€onical Meshes
studied in (Liuet al. [13]). It was also proven in (Liet al. [13]) that the only quadrilateral meshes
that are planar and conical follow the lines ofvatiure of the underlying surfaces, which makes the
computation of lines of curvature a key-issue fouctural designers. The case studies published in
the aforementioned paper suggest that Conical Mesde be found on any surface.
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2.1.2. Edge Offset Meshes

Edge Offset Meshemre a subclass of Conical Meshes. They correspiifte case where all beams
axes have a constant angle with the node norma.cbhsequence is that beams of constant height
are perfectly aligned on top and bottom of the naglis, hence the nanperfect nodesometimes
found in literature (Pottmanat al. [18]). Such meshes are only possibleissthermic surfacesa
restricted family of surfaces; among them: surfagksevolution, moulding surfaces (Mesmit al.

[15, 16]), minimal and constant-mean curvature ae$. Interactive modeling of surfaces with
perfect nodes is still a challenge for designetsrasearchers.

2.1.3. Circular Meshes

A Circular Meshis a quadrilateral mesh where each face is insdrib a circle. They are related to

PQ-Conical Meshes by a form of duality described(Pottman and Wallner [19]). It is indeed

possible to convert any circular mesh into a quaigtial conical mesh, and vice versa. Like Conical
Meshes, Circular Meshes are seen as a discretmgtdzation of surfaces by lines of curvature.

2.1.4. Mobius Transform

Circles are the natural shapes describing Cirddieshes. It is legitimate to study transformatidmet t
map circles to circles because such transformapoeserve the circular property in meshes. They are
known as Mdbius transforms, or more commonly ineers with respect to a sphere. The geometry of
circles in space is callddébius Geometry

An inversion is defined by a center C, and a rtidhe image of a point M is given by:

{ CMCM' =k @

C,M,M 'aligned

It is interesting to notice that Mobius transfordw not preserve the global shape. These transforms
give therefore a way to apply global deformatiomsrteshes while preserving local properties. The
potential of these simple transformations is dethih Section 3.2.

2.2. Cyclidic Meshes

2.2.1. Dupin Cyclide

This work uses a key object in discrete differdng@ometry: Dupin cyclides. These surfaces were
discovered by the French mathematician Charles mugho studied some of their remarkable
properties in 1803. Dupin cyclides can be definednaersion of tori in the sense of Section 2.1.4.
Some special cases of Dupin cyclides include wylinders and spheres. An example of a cyclide
with patches following the lines of curvature i®aim on Figure 1.
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Figure 1: Dupin Cyclide and quads delimited by dird curvature (top, front and perspective)

For application in architecture, some propertiesyafides are particularly appealing:
« their lines of curvature are circles;

e a quad whose edges are lines of curvature is betrin a circle: lines of curvatures thus
create naturaCircular Meshes;

« they are isothermic surfaces (Adam [1]) and canmefloee be covered with Edge Offset
Meshes (Pottmann [18]).

Dupin cyclides are also easily parameterized bgsliof curvature, as seen in Section 2.1.2. This
guarantees good properties for other meshes thaoh mpeshes, since planar hexagonal meshes follow
lines of curvature (Wanet al.[21]).

2.1.2. Cyclidic Patch

The four intersections of lines of curvature inl@es naturally define a circle. Conversely, a @ycl
quadrilateral and a frame give a unique portiorcyaflide, later callectyclidic patchin this paper.
Several algorithms have been proposed to conveytlic patch to a NURBS surface, the one used
in this paper has been proposed in Gareial. [7]. The algorithm requires a cyclic quadrilatesald

an orthogonal frame (one blue and one red arrowigare 2). The other frames are generated by
reflection with respect to the median plane of eedfe of the quad. Note that the median planes are
congruent on Figure 2. The boundaries of the patehcircles which are uniquely defined by two
points and two (compatible) tangent vectors.

N

Figure 2: Generation of a cyclidic patch from aliyquadrilateral and one frame
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The resulting surface is naturally parameterizeislnes of curvatures. Since the underlying acef
is a Dupin cyclide, this means that the trivial dumaeshes on cyclidic patches like the one displayed
in Figure 2 are exact circular meshes.

2.1.3. Cyclidic Nets

The properties of cyclides and the existence obraversion algorithm to NURBS led to the idea of
representing shapes as a collection of cyclidichgdt. The mathematical properties of such shapes,
called cyclidic nets, have been studied in (Huhdenedey and Bobenko [9]). Cyclidic nets are based
on Circular Quadrilateral Meshes and require omlg rame vector, the others being generated by
reflection if they belong to the same cyclidic faté simple reflection rule illustrated in Figure 5
allows the propagation of the frame to adjacenthms.

A strong limitation of these objects is that anyter of the Circular Mesh should have a valence of
four. This was seen as a problem for the modelinghapes with umbilical points. However, recent

advances show that this limitation has been sodweblthat all shapes can be approximated by cyclidic
nets (Krasauskas [12]). Starting from circular baany curves (in red on Figure 3), it is possible to

generate a circular mesh that supports a cyclieiahigned with the boundaries. This process sbkrink

the opening, and a finite number of iterations oake the opening arbitrary small (for example the
size of a panel).

Figure 3: Filling of a n-sided hole with circulanindaries: circular mesh created by the method of
Krasauskas [12] and resulting cyclidic net (right)

Applications of cyclidic nets for architecture wepeoposed in (Baet al. [4]), the cyclidic patches
being typically the size of panels. This soluticmshthe advantage of generating one unique type of
node, but it requires building with circular ardsis solution would also require remeshing if the
designer wants to modify the structural layout. Dipportunity offered by larger cyclidic patches as
global modeling tool is unexplored up to now.

3. Shape generation framework
3.1. Cyclidic Nets Framework

3.1.1. Framework
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The study of cyclidic nets demonstrates that autarcmesh and a frame can generate a collection of
NURBS parameterized by their lines of curvatureisTépllection of surfaces can then be easily
meshed with conical or circular PQ-Meshes or pldmesagonal meshes. Unlike previous applications
of cyclidic meshes in architecture, it is suggeditgdhe authors that the shapes can be descrilibd wi
large cyclidic patches. The result is a framewook $hape modeling tailored for architectural
constraints.

A brief comparison with NURBS is proposed in TabbleA parallel can be found between the control
polygon of NURBS and the circular mesh of cyclidats. Unlike control points in NURBS modeling,
the vertices of Cyclidic Nets are all on the moddlerface. The surface resulting from cyclidic nets
are only G, which is a drawback in many industries, but i awery serious issue in architectural
design. Indeed, the final shape is very often bwith flat or developable panels, which makes the
built envelope at most a'Gurface. Finally, both NURBS modeling and CyclitNets encounter
difficulties when modeling complex topologies. THed to alternative modeling techniques, like
surfaces of subdivision in the continuity of NURBISu et al. [13]), and hole-filling strategies like
recalled in this paper for cyclidic nets.

NURBS Cyclidic Net
Base shape Control Polygon Circular Quad Mesh +i@me
Interpolation Bernstein polynomial Cyclidic Patch
Surface regularity From C’to C” FromC’to C'
Isoparametric lines properties  None Curvature lines
Complex topologies T-splines, subdivision surfacé4ole filling

Table 1: Comparison of NURBS and Cyclidic Net inhdtecture

3.1.2. Primitives for circular meshes

The framework proposed here requires thus cirqukesshes as input. Some shapes give trivial conical
or circular meshes. Among them, surfaces of reimiytmoulding surfaces or Monge surfaces

(Mesnil et al.[15,16]). It is possible to apply Moébius transfario those shapes to enrich the formal

vocabulary: some case studies are presented ipdper. Composition of these shapes is also pessibl
in the manner of what has been proposed for scats-surfaces (Glympdt al.[8]).

This framework can be combined with the optimizatinethods described in (Deng et al. [4]) and
(Yang et al. [13]), with an optimization of quad shes towards circular meshes. The combination of
those methods has several advantages. First cfitatie cyclidic patches are smooth surfaces, only a
few of them are required to describe a given sh#ps: decreases the size of the problems to be
solved by optimization and makes shape exploratiasier. Secondly, they can be easily remeshed
with no computational optimization.

3.1.3. Implementation and numerical issues

The framework proposed in this paper has been immgitted within Grasshopper. It allows a fully
parametric design approach and interaction witlero@rasshopper plug-ins such as Karamba 3d. The
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geometrical tools generate the cyclidic nets ardasociated subdivisions. Once the circular n®sh i
chosen, an infinity of frames can be chosen. Adl tinderlying surfaces are,®ut some are visually
more pleasant than others. To take this aesthsfiech into account, a fairness-functional has been
introduced to give the smoothest possible shapea fgiven circular mesh. The fairness function to
minimize is here defined by:

Fle.A)=> J' Kk2ds @)
edges
wherex is the curvature of each edge a(&d)l) represent the spherical coordinates of the fieshé
vector. The functional recalls therefore a bendingrgy: it can be minimized by classical methods
with respect t(ﬁe,/l). The optimization is here done using the BFGS ritlym, a classical quasi-

Newton scheme. The initial frame is chosen at antlaty and lay in the face plane. The functional
varies of less than 0.1% in less than 5 steps,hwdéenonstrates fast convergence.

Other fairness functions based on the variatiomwf/ature or Willmore energy of the underlying
surfaces could be used (Joshi and Séquin [10]mFaaechnical point of view, their computation
would be very efficient because it is possibledmieve the implicit equation of the cyclide fopatch
(Garnieret al.[7]). The minimization scheme would just have todulapted to the new functionals.

3.2. Applications

Mobius transforms applied on circular meshes ddfeich variety of shapes to support cyclidic nets.
An example is given on Figure 4: a simple surfateegolution is inverted to give a less obvious
“peanut-shaped” geometry.

e e

Figure 4: Surface of revolution (left) and one imadg inversion (right)

The computation of the Mdbius transform is basedEgnation (1), it requires no optimization or
matrix manipulation and can therefore be done &askiyuas other simple transformations, like
translations. The cyclidic net laying on the ciaruimesh is also generated in real-time. M&bius
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transforms can be applied on more complex shapes $irfaces of revolution, for example on
Monge’s surfaces or moulding surfaces (Mesh#l.[15,16]).

4. Generalized cyclidic nets: a geometric approadior doubly curved crease

4.1. Doubly curved crease

Creases, understood as normal vector discontinatityan essential feature of free-form architecture
As an example, they are a well-known feature ohkr@ehry’s architectural language and were also
used by master designers like Eduardo TorrojalferZarzuela’ Hippodrome or Nicolas Esquillan in
several designs (Billington [3], Marrey [14] Mot{d7]). However, their construction remains a
challenge, as creases are generally not aligneul limés of curvature, excluding the possibility to
build them as conical meshes. Nicolas Esquillantskngives good example of creased shells, but
each solution was tailored for a specific projésaving no general method to generate constructible
creases (Motro [16]).

The usual modeling tools, even based on post mtication of geometry hardly deal with the
problem of discontinuity of normal vector in thetioaalization of free-form structures. The only
examples dealing with curved crease in architeabmfg consider developable surfaces (Kilietnal.
[11]), which are sensitive to local buckling duezgro Gaussian curvature.

4.2. Generalized cyclidic net

In this paper, the authors generalize the constmuctiles of Cyclidic Nets to deal with discontities

of normal vectors. The fundamental shapes remailidiy patches, the only difference with the usual
cyclidic nets as defined in (Huhnen-Venedey anddddb [9]) is the reflection rule for the normal
vectors, as illustrated in Figure 5

7t-0

Figure 5: Reflection rule for cyclidic net (leftheé for generalized cyclidic net (right)

When propagating the framéu,v) of the cyclidic patch from one face to the othéwe tlassical
approach keeps one vector and inverts the other:

{u': u @)

V'=-v
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In (3), U refers to the common edge between the two patdhes.first equality means that two
patches have the same boundary; the second equaliisiates the continuity of tangent vectof (C
surface). Therefore the second equality is not sgsn if one only deals with’Gurfaces. Equation

(3) can thus be turned in its more general form:

{ e )
V=R, sV

R,¢ is @ matrix representing the rotation along thetaeU with an angle¢ calledcrease anglen

this paper. Equation (2) refers to an arggten . This generalized definition has to be coherentfoy
patch, which implies that the crease angle hastodmstant along a polylines. Another restricti®on i
that it is not possible to introduce creases in tifterent directions. A simple example with four
patches is displayed in Figue

Figure 6: Circular Mesh and a Generalized Cycliigt

4.3. Application of curved creased

The introduction of Generalized Cyclidic Nets albbwhe drawing of constructible creases: the
designer can control the crease angle and the nuohloecases. These parameters enrich considerably
the design space, from regular creases which hénghastructural potential, like the one presented

Section 5, to more aesthetical designs, like the dieplayed in Figure 7. Note also that the Sydney
Opera House geometry is a collection of spherescamdbe seen as a special case of generalized
cyclidic net.

MG i

Figure 7: Doubly curved shape with a unique crems&eneralized Cyclidic Net
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Any circular mesh can support a Generalized Cyclidiet, therefore all the shapes presented as basis
for circular meshes can be used to support GemedhCyclidic Nets. Like cyclidic nets, these obgect
are natural objects of M6bius Geometry.

5. Application to structural design

5.1. Benefits of cyclidic nets for structural perfomance

Cyclidic nets have several advantages when strilcti@sign is concerned. Firstly, they allow for the
construction of torsion-free-nodes, which are catibfea with double-layer structures or arbitrary
members’ height: the designers can thus play fredtly the structural height regardless of eventual
geometrical difficulty. Secondly, the fabricatiohcurved members is made easy due to the fact that
isoparametric lines of cyclidic patches are circlEsmplex structural hierarchies with a combination
of straight secondary members and curved primamloees can thus arise from cyclidic nets. Finally,
unlike modeling techniques based on mesh optingirathey allow a quick remeshing, allowing the
designers to modify the density of a structurablatyin real time. This framework thus offers the
possibility to explore efficiently the design spdoe structural engineers, from structural systems
structural density.

5.2. Crease and structural performance

General Cyclidic Nets offer the possibility to mbdenstructible creases. Folding or creases play an
important role in structural design, since they stiffen a structure or increase its buckling load.

Think of the famous example of a flat sheet of paggich can barely support its own weight whereas

a single crease makes it significantly stiffer.dpplications to doubly curved systems, crease can
allow the designer to increase locally the Gaussiamature of a shell by orders of magnitude. This

idea is illustrated by a case study on Nicolas Hsqus work.

5.3. Revisiting Esquillan’s work

A perfect illustration of the structural potenti creases in doubly curved structures is the vadrk
French Engineer Nicolas Esquillan. Some of his sgeshells designs held record of span at the time
of their construction. This section focuses on karignane hangars, an early example of creased
shell for Esquillan.

Designed in 1949 by Nicolas Esquillan and buill&52, the Marignane hangars are a juxtaposition of
torus-shaped shells spanning 101.5m for a rise2dfm (Motro [17]). At that time, it was the span
record worldwide for a concrete shell. This recaas later broken by the CNIT, another example of
doubly-curved creased shell (Marrey [14], Motro]j1The geometry of the Marignane hangars is
shown onFigure 8 Previous examples of such geometry can also bedfin the work of Franz
Dischinger (Billington [3]).

The shape imagined by Nicolas Esquillan can edmlyeinterpreted with generalized cyclidic nets.
Tori are indeed a trivial subclass of Dupin cyclidehe reference Circular Mesh is a simple
rectangular Mesh, such as the one displayed inr&iguGeneralized Cyclidic Meshes give therefore a
theoretical Framework that describes the geomdtiMarignane hangars. The simplicity of the base
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circular mesh hints that the shape exploration w¥ed crease is still in its infancy. Generalized
Cyclidic Nets should open new possibilities in thédd.

Figure 8: Geometry of the Marignane Hangar: pettspe¢left), and side view (center)

6. Conclusion

Free-form structures are still a challenge for eagis in terms of fabrication and structural
performance. Engineers and architects need inteeattols to assess the constructability of their
designs. Both NURBS modeling and mesh optimizasimategy have taken an increasing importance
in complex structures, but they show some limitaioln this paper, the authors have introduced a
method spanning between these two solutions. GieretaCyclidic Meshes use a base circular mesh
and generate complex shapes as a collection of NBJR&ameterized by their lines of curvature,
yielding automatically geometrically optimal strul layouts. This framework for fabrication-aware
design also introduces a systematic way to gen@@ustructible crease in free-form architecture,
which allowed the authors to reinterpret the wofknaster builder Nicolas Esquillan. It creates new
shapes thanks to inversion, and the potential edféry curved crease in structural optimization seem
very promising.

Future work includes the development of a usentti environment for the design of creased shells,
exploration of the design space offered by creabetls and automatic methods for the generation of
circular meshes. Innovative methods of structuglnaization combining form-finding and creases
can also arise from this work.
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