A State-Space Model for the Dynamic Random Subgraph Model

Abstract : In recent years, many random graph models have been proposed to extract information from networks. The principle is to look for groups of vertices with homogenous connection profiles. Most of these models are suitable for static networks and can handle different types of edges. This work is motivated by the need of analyzing an evolving network describing email communications between employees of the Enron compagny where social positions play an important role. Therefore, in this paper, we consider the random subgraph model (RSM) which was proposed recently to model networks through latent clusters built within known partitions. Using a state space model to characterize the cluster proportions, RSM is then extended in order to deal with dynamic networks. We call the latter the dynamic random subgraph model (dRSM).
Type de document :
Communication dans un congrès
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.231-236
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01199634
Contributeur : Rawya Zreik <>
Soumis le : mardi 15 septembre 2015 - 17:06:14
Dernière modification le : mardi 11 octobre 2016 - 12:02:32
Document(s) archivé(s) le : mardi 29 décembre 2015 - 07:21:33

Fichier

Final version Esann.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01199634, version 1

Collections

Citation

Rawya Zreik, Pierre Latouche, Charles Bouveyron. A State-Space Model for the Dynamic Random Subgraph Model. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.231-236. <hal-01199634>

Partager

Métriques

Consultations de
la notice

81

Téléchargements du document

37