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Abstract 

Several measuring systems can be combined to perform accurate assessments at the sub-

micrometre level in dimensional metrology. The obtained data are fused into a common coordinate 

system using registration methods for which the optimal transformation parameters from the 

common parts of the data called correspondences are computed. New original automated coarse 

and fine registration methods are proposed here using discrete curvatures: an improved Hough 

Transformation method for the coarse registration and three Iterative Closest Points (ICP) variants 

for the fine registration. The enhancement of Hough consists of exploiting the curvature parameters 

in order to minimize the basic algorithm complexity. Thus local transformation parameters are only 

computed for points presenting similar precalculated surface type.  

While the rough alignment of the scene data and the model data is thereafter optimized through the 

fine registration using commonly ICP algorithm, the first ICP variant includes the curvedness and 

surface type similarity constraints, especially to reduce the searching area during the matching step. 

For the proposed second ICP variant, correspondences are searched using a specific distance 

criterion involving curvature features similarity measure defined from principal curvatures. The 

third ICP variant combines both point-to-point and point-to-plane minimizations automatically 
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weighted in the objective function, with the use of Moving Least Squares (MLS) surface technique 

to determine the corresponding point in point-to-point part.  

The three developed methods are tested on simulated and real data obtained from a computer 

tomography (CT) system. The results reveal the benefit of the proposed new automated coarse and 

fine registration approaches. 

I. Introduction 

Measurement of freeform microparts at the sub-micrometre level of accuracy requires one to 

combine different measuring systems such as computed tomography (CT) and coordinate 

measuring machines (CMM) based on optical and tactile probing systems. The CT is a technology 

based on the computer-processed X-rays, which produces tomographic data/image of specific areas 

of the scanned artefact, allowing the operator to get information about inside and/or outside of the 

artefact [1-4]. The CMM involves tactile and/or optical measurement only of the outside of the 

artefact [5-7]. The obtained data are fused into a common coordinate system using coarse and fine 

registration methods [8]. Registration process aims to compute the optimal transformation 

parameters (R,T) (3 rotation angles in R and 3 translation components in T) from the common parts 

of the data called correspondences. An initial rough alignment resulting from the coarse registration 

is crucial and is thereafter optimized through the fine registration using commonly the ICP 

algorithm or its variants. 

Coarse registration enables to estimate roughly the rigid transformation using commonly 

marker-based approach [9-11] or automatic shape alignment [12,13]. The second category of 

methods includes techniques such as the genetic algorithm, and Principal Component Analysis 

(PCA) [14] which has been robustified recently using the least-median-of-squares method (LMedS) 

for the principal axis determination in the presence of outliers [15]. This category covers also 

approaches based on the use of known correspondences found from the calibration relationships 

between the multiple sensors and views [16] or from similar invariant characteristics, features 

signatures, etc [17,18]. 

Fine registration consists of refining the alignment of the two data sets using traditionally ICP 

algorithm [19]. ICP is an iterative algorithm for the optimal motion estimation that brings the scene 

data P to the model data Q in closed-form from known correspondences. The iteration is terminated 

if stopping criteria are reached. At each iteration, ICP is proceeded as follows:    

• match points in the overlapping sections of  the  scene data and the model data (𝑝𝑝𝑖𝑖,𝑞𝑞𝑖𝑖); 

• compute the global rigid transformation (Rg,Tg); 

• apply the motion (Rg,Tg) to the scene data points P; 

http://en.wikipedia.org/wiki/X-ray
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• calculate the error metric;  

• apply the stopping criteria.  

Different ICP variants are yielded in the literature to improve the algorithm robustness, speed, range 

and rate of convergence [20,21]. 

A new automated registration method is proposed in this paper using discrete curvatures. The 

coarse registration requires no markers and no user interaction since it exploits a curvature feature 

for an improved HT method [22]. For that purpose, the shape index and the corresponding surface 

type are computed for all vertices which are afterwards classified accordingly. HT is then applied 

only on points of the same surface type, which reduces considerably the processing time and the 

algorithm’s complexity. 

The exploitation of discrete curvatures has been explored for fine registration while being classified 

into three approaches.  

Although the classical point-to-point ICP algorithm is adopted for the first approach, two additional 

correspondences matching criteria have been associated with the closest point criterion using 

respectively the shape index and the curvedness in order to prune the searching area. 

For the second approach, a novel distance criterion has been elaborated combining Euclidean 

distance and curvature distance defined from the principal curvatures. The classical point-to-point 

minimization algorithm has been applied to compute the transformation parameters. 

To improve the robustness of the fine registration to noise, the point-to-point optimization 

method is combined with a point-to-plane one for the third approach. The curvature parameters of 

each vertex are exploited for an automatic weights definition and for a local surface approximation 

of the model data using MLS surface technique ([23]). The final corresponding point taken from the 

model data is an artificial point defined as the projection of the initial corresponding point onto the 

local surface approximation. 

Finally the developed methods are tested on simulated data and on real data from CT 

measurements. The results are analysed and reveal the benefits of the automated proposed 

registration approaches. 

II. Proposed automated registration techniques 

The proposed automated registration process is based on the exploitation of the curvature 

features of each vertex in scene data (P) and in model data (Q). The shape index, the surface type 

(𝑇𝑇𝑠𝑠) and the local frames 𝑉𝑉 are used for coarse registration while the shape index, the curvedness, 

the principal curvedness and the surface type are exploited for fine registration. 
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1- Curvature extraction 

A. Smooth cases  

For smooth cases, curvatures are defined to measure the local bending of an oriented surface. 

Assuming a given point pi belongs to the surface, for each unit direction 𝑢𝑢�⃗  on its tangent plane 

𝑇𝑇𝑝𝑝(𝑝𝑝𝑖𝑖) the normal curvature 𝐾𝐾𝑛𝑛(𝑢𝑢�⃗ ) is defined as the curvature of the curve that belongs to both the 

surface itself and a perpendicular plane containing 𝑛𝑛�⃗ (𝑝𝑝𝑖𝑖) and 𝑢𝑢�⃗ . The normal curvature is formulated 

in Eq.1. 

Where 𝑆𝑆𝑝𝑝(𝑢𝑢�⃗ ) formulated in (Eq.2) denotes the shape operator (or Weingarten endomorphism) at 

point 𝑝𝑝𝑖𝑖 along the direction 𝑢𝑢�⃗ , which is defined as the derivate of 𝑛𝑛�⃗ (𝑝𝑝𝑖𝑖) with the tangent direction 𝑢𝑢�⃗ , 

−∇𝑢𝑢��⃗ 𝑛𝑛�⃗ (𝑝𝑝). 

The shape operator matrix is usually symmetric. Its eigenvalues and the corresponding eigenvectors 

are respectively called the principal curvatures and the principal directions. It has been proved in 

[24] that the principal curvatures are related with the normal curvature (Eq.3). 

Where 𝐾𝐾1 and 𝐾𝐾2 represent the maximum and the minimum principal curvatures respectively. 𝜃𝜃 is 

the angle between 𝑢𝑢�⃗  and the principal direction associated with the maximum principal curvature.  

These equations allow one to calculate the Gaussian curvature and the mean curvature (the main 

curvature parameters commonly used) according to the classical definitions and notations of 

differential geometry for the case of smooth surface [25]. 

B. Discrete cases 

For discrete models, such as the point cloud or the polygon mesh, the discrete differential 

geometric information is different from the smooth cases. Classical discrete curvature estimation 

methods are usually applied on polygon mesh surfaces. Depending on the piecewise smoothness of 

the input mesh, the discrete curvature estimation is subject to various definitions [26,27]. The 

classical methods of discrete estimation based on polygon mesh surfaces could be classified into 

three basic categories: one may approximate a local quadric surface at a given vertex mesh and then 

apply the derivatives to obtain the curvatures [28]. One may discretize the mathematic formula that 

gives the curvature information of continuous surface and extend the notations to discrete domains 

𝐾𝐾𝑛𝑛(𝑢𝑢�⃗ ) = 𝑆𝑆𝑝𝑝𝑖𝑖(𝑢𝑢�⃗ ).𝑢𝑢�⃗  ( Eq.1) 

𝑆𝑆𝑝𝑝(𝑢𝑢�⃗ ) = −∇𝑢𝑢��⃗ 𝑛𝑛�⃗ (𝑝𝑝)  ( Eq.2) 

𝐾𝐾𝑛𝑛(𝑢𝑢�⃗ ) = 𝐾𝐾1 cos2 𝜃𝜃 − 𝐾𝐾2 sin2 𝜃𝜃 ( Eq.3) 
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[29]. One may use the tensor-based techniques for discrete curvature estimation [28]. The last 

category has been proved to be efficient and simple to implement, which mainly motivated our 

choice for a modified Cohen-Steiner [29] approach. 

The discrete curvatures on 3D meshes are estimated by the local surface fitting for the first 

category. For a given vertex 𝑝𝑝𝑖𝑖, local parameterization technique, such as local surface fitting, is 

applied to get a local parametric representation of a surface in u and v. Once the 𝑟𝑟(𝑢𝑢,𝑣𝑣) corresponds 

to the semigeodesic coordinates, the Gaussian curvature and mean curvature could be calculated 

from the following formula (Eq.4). 

Although the most commonly used method is the quadric surface approximation, the fitted quadrics 

are unsuitable for approximating arbitrary data according to Sapidis and Besl [30]. 

The basic idea of the discrete Laplace-Beltrami operator [31] adopted by Meyer et al [26], which 

illustrates the second category, is that a mesh is considered as either the limit of a family of smooth 

surfaces, or a linear approximation of an arbitrary surface. Considering a surface at a vertex 𝑝𝑝𝑖𝑖, the 

geometry properties are defined as the spatial average around this vertex. Thus, it is important to 

choose the appropriate associated surface patch over which the average will be computed for each 

vertex. Two main types of local regions are commonly used in practice, but it has been proved by 

Meyer et al [26] that the Voronoi region presents a better performance than barycentre-based-cell. 

Similar to the methods based on local quadric surface association, the method of Meyer et al [26] 

begins with the calculations of mean curvature and Gaussian curvature. The mean curvature normal 

operator that is also known as Laplace-Beltrami operator is introduced to the discrete case. Since 

the Gaussian and mean curvatures are both solved, the principal curvatures can be easily computed. 

To determine the two principal directions, the method uses the tensor based technique and computes 

the eigenvectors of the curvature tensor. The curvature tensor of a surface S is the map that assigns 

each point 𝑝𝑝𝑖𝑖 of S to the function that measures the normal curvature Kn of S at 𝑝𝑝𝑖𝑖 in the direction of 

the unit vector 𝑢𝑢�, tangent to S at 𝑝𝑝𝑖𝑖 [27].  

Cohen-Steiner and Morvan proposed a method belonging to the third category that estimates the 

discrete curvature tensor on polygon mesh [29] by elaborating a curvature measure over a given 

local region to define the shape operator matrix for each vertex. A variant of their approach has 

been implemented in our program. 

 

 

 

𝑟𝑟(𝑢𝑢, 𝑣𝑣) = �𝑥𝑥(𝑢𝑢,𝑣𝑣),𝑦𝑦(𝑢𝑢,𝑣𝑣), 𝑧𝑧(𝑢𝑢, 𝑣𝑣)� ( Eq.4) 
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C. The adopted dicrete curvature calculation method 

Unlike Cohen-Steiner and Morvan, additional weight coefficient 𝜆𝜆𝑒𝑒 has been introduced in the 

shape operator formulation for the discrete curvature calculation method we propose, in order to 

consider the contribution of line curvature tensor along each mesh edge to the given vertex. For the 

local region B definition, Voronoi-cell is generated on the one-ring neighbourhood of the vertex. 

The shape operator matrix 𝑯𝑯 at each vertex is given by the equation (Eq.5) where 𝑛𝑛�⃗ (𝑒𝑒) is the edge 

normal at edge e, which is equal to the average normal vectors of the two triangles incident to the 

edge. 

The equation (Eq.5) depends on several parameters such as n�⃗ (e), λe, A, e, B and 𝛽𝛽 illustrated in 

Fig.1. For any polyhedral mesh surface, the normal to the edge e, n�⃗ (e), is calculated using Eq.7, 

while the normal vector n�⃗ (𝑝𝑝𝑖𝑖) at each vertex 𝑝𝑝𝑖𝑖 is estimated as the weighted average of the normal 

vectors of the adjacent triangle facets around it (Eq.8). The unit normal vector n�⃗ i (i = 1…N) of the 

ith triangle facet is calculated by Eq.9, which depends on the three unit edge vectors 𝑒𝑒𝑖𝑖1 (j = 1,2,3) of 

each ith triangle facet in counter-clockwise. 𝜔𝜔𝑖𝑖 (i = 1…K) represents the weight coefficients 

corresponding to the normal vectors of the facets 𝑓𝑓𝑖𝑖. The weight coefficients are defined from the 

area of each adjacent triangle facet and the distance between the given vertex and the barycenter of 

each adjacent facet (Eq.10).  Ai (i = 1...K) represent the area of the ith triangle facet and di (i = 1...N) 

are the distances between the vertex 𝑝𝑝𝑖𝑖 and the barycenter of the ith triangle facet. N is the number 

of all the triangle facets adjacent to the given vertex. 

𝑯𝑯 =  
1
𝐴𝐴�𝜆𝜆𝑒𝑒.  𝛽𝛽(𝑒𝑒). 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑒𝑒 ∩ 𝐵𝐵). (𝑒𝑒 × 𝑒𝑒)
𝑒𝑒∈𝐸𝐸

 (Eq.5) 

𝜆𝜆𝑒𝑒 =
𝒄𝒄𝒄𝒄𝒄𝒄−𝟏𝟏 ( 𝒏𝒏(𝒑𝒑),����������⃗ 𝒏𝒏(𝒆𝒆)���������⃗ )

∑  𝒄𝒄𝒄𝒄𝒄𝒄−𝟏𝟏( 𝒏𝒏(𝒑𝒑),����������⃗ 𝒏𝒏(𝒆𝒆))�����������⃗
𝒆𝒆∈𝑬𝑬

 ( Eq.6) 

𝑛𝑛�⃗ (𝑒𝑒) =  
𝑛𝑛�⃗ 1 + 𝑛𝑛�⃗ 2
‖𝑛𝑛�⃗ 1 + 𝑛𝑛�⃗ 2‖

 ( Eq.7) 

𝑛𝑛�⃗ (𝑝𝑝𝑖𝑖) =  
∑ 𝜔𝜔𝑖𝑖 . 𝑛𝑛�⃗ 𝑖𝑖𝐾𝐾
𝑖𝑖=1

�∑ 𝜔𝜔𝑖𝑖 . 𝑛𝑛�⃗ 𝑖𝑖𝑁𝑁
𝑖𝑖=1 �

 ( Eq.8) 

𝑛𝑛�⃗ 𝑖𝑖 =  
𝑒𝑒𝑖𝑖1 × 𝑒𝑒𝑖𝑖2 + 𝑒𝑒𝑖𝑖2 × 𝑒𝑒𝑖𝑖3 + 𝑒𝑒𝑖𝑖3 × 𝑒𝑒𝑖𝑖1
‖𝑒𝑒𝑖𝑖1 × 𝑒𝑒𝑖𝑖2 + 𝑒𝑒𝑖𝑖2 × 𝑒𝑒𝑖𝑖3 + 𝑒𝑒𝑖𝑖3 × 𝑒𝑒𝑖𝑖1‖

 ( Eq.9) 
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D. Shape index, curvedness and surface type calculation  

The shape index and the curvedness are two other surface descriptors deduced from the two 

principal curvatures like the Gaussian and mean curvatures. The shape index first introduced by 

Koenderink and Doorn [32] is a single value within the range [-1, 1] characterizing the local surface 

type. Regardless of discrete or continuous shapes, the shape index is calculated using Eq.11 where 

𝐾𝐾1 and 𝐾𝐾2 represent the maximum and the minimum principal curvatures of the local surface. 

The surface type is derived from the shape index value as highlighted in Tab.1.  

The curvedness 𝒞𝒞 is a positive number defined as a bending energy specifying the amount of the 

surface curvature. Its formulation is given in Eq.12 [32]. The curvedness is inversely proportional to 

the local size of the object and has the dimension of reciprocal length. It only vanishes at planar 

vertices, while Gaussian curvature vanishes on parabolic surface and mean curvature vanishes on 

saddle surface. 

2- Coarse registration 

The previous works on coarse registration are generally achieved manually from known 

correspondences. Since the correspondences are unknown, the existing automatic methods mostly 

suffer from the problems of larger matching errors [12] or complex computations [33]. Therefore, 

different methods are suggested in literature to roughly align the data sets thus avoiding the 

matching step. Among them, PCA is the most common approach used when the overlapping 

sections are almost complete and the objects present no symmetries. 

In this paper, Hough transformation method has been adopted to automate the rough alignment of 

two data sets (scene data P and model data Q) while coping with PCA limitations. An initial HT 

approach was attempted by Merlin and Farber [34] where only translations of the target object were 

considered. More recently, Ballard [35] extended the HT approach by including rotations and scale 

changes for the detection of non-parametric curves. These publications point out the algorithm 

𝜔𝜔𝑖𝑖 =

𝐴𝐴𝑖𝑖
𝑑𝑑𝑖𝑖2
�

∑ 𝐴𝐴𝑖𝑖
𝑑𝑑𝑖𝑖2
�𝐾𝐾

𝑖𝑖=1

 (Eq.10) 

𝛿𝛿 = −
2
𝜋𝜋 𝑡𝑡𝑡𝑡𝑡𝑡

−1 �
𝐾𝐾1 + 𝐾𝐾2
𝐾𝐾1 − 𝐾𝐾2

� , (𝐾𝐾1 ≥ 𝐾𝐾2) (Eq.11) 

𝒞𝒞 = �𝐾𝐾1
2 + 𝐾𝐾22

2  
(Eq.12) 
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complexity which increases with the data volume since HT is based on an exhaustive search. 

Hence, the combination of the curvature parameters in the HT principle is aimed at reducing the 

number of the exhaustive search operations which consequently decreases the computational time 

as well as the memory storage necessary for the Hough table.  

A. Curvature-based Hough Transformation method 

First, local frames defined by the Eigen vectors (𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗) related to the Eigen value decomposition of 

the shape operator matrix 𝑯𝑯 are calculated for all vertices in both data sets (respectively in scene 

data P and in model data Q). 

The precalculated local frames (𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗) are afterwards employed to compute the possible global 

transformation parameters �𝑹𝑹𝒊𝒊→𝒋𝒋,𝑻𝑻𝒊𝒊→𝒋𝒋� for all combinations between each point 𝑝𝑝𝒋𝒋 in P and each 

point 𝑞𝑞𝒊𝒊 in Q using Eq.13. 

Each new transformation parameters are stored in the Hough table (also called 6D Hough Counting 

Space (HCS) or the 6D accumulation table) while initializing the corresponding counter to one, 

which will be incremented according to the number of the transformation parameters occurrences. 

The correct point correspondences in the scene data and in the model data results in rather identical 

transformation parameters (𝑹𝑹𝒄𝒄,𝑻𝑻𝒄𝒄), when the residual 𝜀𝜀𝑐𝑐 in (Eq.14) is less than 10−2, while the 

other transformation parameters are distributed randomly in the HCS. 

The retained transformation is selected regarding the counter values. The counter associated with 

the searched transformation is expected to provide the highest number of votes in HCS. 

Furthermore, the peak value would be equal to the number of points correspondences in the 

overlapping surface when the model data and the scene data match perfectly. The application of the 

HT requests one to calculate the local transformation parameters between each point in the model 

data and each point in the scene data, which presents o(NxM) complexity if N and M denotes 

respectively the number of points in P and in Q (Fig.2). Hence, the HT approach is a very time-

consuming algorithm for two large cloud data. To solve this problem, we propose to reduce the 

number of operations by considering curvature parameters precalculated at each point in HT 

process. Therefore, transformation operations (Eq.13) are only executed between points presenting 

the same surface type (which is of the number of 10 (Tab.1)). The complexity becomes 

𝑅𝑅𝑖𝑖→𝑗𝑗 = 𝑉𝑉𝑗𝑗 .𝑉𝑉𝑖𝑖𝑇𝑇  𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑖𝑖→𝑗𝑗 = 𝑝𝑝𝑗𝑗 − 𝑅𝑅𝑖𝑖→𝑗𝑗𝑝𝑝𝑖𝑖  (Eq.13) 

dist ��𝑹𝑹i→j,𝑻𝑻i→j� − (𝑹𝑹,𝑻𝑻)HCS� < 𝜀𝜀𝑐𝑐   (Eq.14) 
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𝑜𝑜(∑ (𝑁𝑁𝑖𝑖′ × 𝑀𝑀𝑖𝑖
′)10

𝑖𝑖=1 ) where 𝑁𝑁𝑖𝑖′ and 𝑀𝑀𝑖𝑖
′ are the number of points presenting identical surface type i in 

P and in Q (Fig.3). 

E.g.: 45 local transformation parameters �𝑹𝑹𝒊𝒊→𝒋𝒋,𝑻𝑻𝒊𝒊→𝒋𝒋� are calculated for the selected 3 points with 

the blue colour in the model data covering all possible combinations in Fig.3, while only 21 local 

transformation parameters �𝑹𝑹𝒊𝒊→𝒋𝒋,𝑻𝑻𝒊𝒊→𝒋𝒋� are calculated for the same selected 3 points with blue 

colour in the model data point when considering the curvature parameters in Fig.3. For both cases 

local transformation parameters �𝑹𝑹𝒊𝒊→𝒋𝒋,𝑻𝑻𝒊𝒊→𝒋𝒋� corresponding to the blue peak are selected for the 

coarse alignment. 

3- Fine registration 

The classical ICP or its variant used for fine registration is mainly operated in two separate and 

successive steps: the correspondences searching and the optimization. The searching of point pairs 

in the overlap area of the two discrete shapes constitute an important part of the registration process 

impacting the quality of the final result. The closest point criterion according to Euclidean distance 

is traditionally used for the correspondences searching, while point-to-point minimization algorithm 

or point-to-plane minimization algorithm is generally implemented to find the optimal 

transformation parameters (the rotation matrix Rg and the translation vector Tg). The introduction of 

the curvature information in the two main steps of the fine registration process has been 

investigated into three approaches. 

A. Method 1: ICP variant using shape index and curvedness for correspondences 
searching 

Since the curvature information is geometry invariant, the points corresponding to the same point 

on a physical object should have similar curvature attributes. The similarity between two points can 

be defined based on second order geometric attributes such as the shape index (surface type) and the 

curvedness. During the matching step, three criteria related to the closest point position and 

curvature parameters similarity have been implemented to perform ICP algorithm. For a given point 

pi in scene data P, its corresponding point in model data Q is the closest point qi presenting the 

same surface type (shape index) and the same curvature as pi, equation (14 bis). The feature 

distance 𝑑𝑑𝑓𝑓 defined in Eq.15 is used to measure the curvature parameters similarity between two 

points, pi in P and qi in Q. 

𝑑𝑑𝑓𝑓 = �
𝒞𝒞𝑝𝑝𝑖𝑖 − 𝒞𝒞𝑞𝑞𝑖𝑖 if 𝑇𝑇𝑠𝑠(𝑝𝑝𝑖𝑖) = 𝑇𝑇𝑠𝑠(𝑞𝑞𝑖𝑖) 
∞        else 𝑇𝑇𝑠𝑠(𝑝𝑝𝑖𝑖) ≠ 𝑇𝑇𝑠𝑠(𝑞𝑞𝑖𝑖)

 (Eq.15) 



  - 10 - 

Thus, for any given point 𝑝𝑝𝑖𝑖 in P, the feature distance 𝑑𝑑𝑓𝑓 is first calculated if the corresponding 

point 𝑞𝑞𝑖𝑖 in Q presents the same surface type as 𝑝𝑝𝑖𝑖 (Eq.16). 

The final corresponding point is then selected among 𝑞𝑞𝑖𝑖 points in the subset 𝛹𝛹(𝑝𝑝𝑖𝑖)  by applying the 

closest point criterion within Euclidian distance. 𝛹𝛹(𝑝𝑝𝑖𝑖) is defined using a feature distance threshold 

𝑇𝑇ℎ𝑑𝑑𝑑𝑑, which delimits the matching resolution of two points 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 while influencing the accuracy 

of the correspondences searching results. A large value of 𝑇𝑇ℎ𝑑𝑑𝑑𝑑 causes the matching resolution to be 

too large by the algorithm. As a consequence, many point pairs with bad correspondences will be 

found and considered for the next step of the process. By contrast, a too small value of 𝑇𝑇ℎ𝑑𝑑𝑑𝑑 leads 

to discount several good correspondences penalizing the determination of the optimal global 

transformation parameters �𝑹𝑹𝒈𝒈,𝑻𝑻𝒈𝒈�. Both conditions can lead the coarse alignment to failure. In 

general, if the curvature estimation is reliable, a compromised value of 𝑇𝑇ℎ𝑑𝑑𝑑𝑑 fixed in the interval of 

[10−3 10−7] can induce a satisfying rough alignment. 

Once the matched points are stored, the next step consists of computing the global transformation 

parameters �𝑹𝑹𝒈𝒈,𝑻𝑻𝒈𝒈� by solving the optimization problem in Eq.17 using SVD (Singular Value 

Decomposition) or UQ (Unit Quaternion) in closed-form. Moreover, Levenberg Marquardt and L-

BFGS methods were also respectively studied and discussed by NIST and LNE [36] for an optimal 

solution of the problem (Eq.17). 

Where 𝑛𝑛 is the number of point pairs. 

After numerous iterations, normally less than 10, the overlapping sections between P and Q can be 

aligned with good performance. 

B. Method 2: ICP variant based on curvature distance and Euclidean distance 
combination 

The accuracy of the found corresponding point pairs affects the estimation of the transformation 

parameters. The output of this step has a major impact over the downstream stages and influences 

the overall performance of the registration approach. In order to enhance the performance of this 

phase, the geometric distance has been introduced for a better recognition of the similarity between 

points in the overlapping area of P and Q. Thus, assuming an arbitrary vertex 𝑝𝑝𝑖𝑖 in P and an 

arbitrary vertex 𝑞𝑞𝑗𝑗 in Q, the proposed geometric distance 𝑑𝑑𝑔𝑔 defined in the equation (Eq.18) 

𝑅𝑅𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑞𝑞𝑖𝑖∈𝜓𝜓(𝑝𝑝𝑖𝑖)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖) where 𝛹𝛹(𝑝𝑝𝑖𝑖) =  𝑑𝑑𝑓𝑓 < 𝑇𝑇ℎ𝑑𝑑𝑑𝑑  (Eq.16) 

𝑓𝑓�𝑅𝑅𝑔𝑔,𝑇𝑇𝑔𝑔� =  𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅𝑔𝑔,𝑇𝑇𝑔𝑔

1
𝑛𝑛�

�𝑅𝑅𝑔𝑔𝑝𝑝𝑖𝑖 + 𝑇𝑇𝑔𝑔 − 𝑞𝑞𝑖𝑖  �
2

𝑛𝑛

𝑖𝑖=1

 (Eq.17) 
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depends on both Euclidean distance 𝑑𝑑𝑒𝑒 (Eq.19) and curvature ratio distance 𝑑𝑑𝑐𝑐 (Eq.20) between 𝑝𝑝𝑖𝑖 

and 𝑞𝑞𝑗𝑗. 

and 𝜌𝜌1 = 1
𝐾𝐾1� , 𝜌𝜌2 = 1

𝐾𝐾2�  , 𝜆𝜆 ∈ [0,1].  

The coefficient k is a constant that normalizes the curvature ratio distance 𝑑𝑑𝑐𝑐, while 𝜆𝜆 is a 

coefficient set by the operator to balance the contribution of 𝑑𝑑𝑐𝑐 and 𝑑𝑑𝑒𝑒. 

Once points are matched using the closest geometric distance criterion, the global transformation 

parameters �𝑹𝑹𝒈𝒈,𝑻𝑻𝒈𝒈� are computed in the same manner as the previous approach. 

A compromising threshold is used to retain or not the found closest point for the sake of reducing 

the matching errors. 

C. Method 3: ICP variant combining point-to-surface and point-to-plane algorithms  

For the third proposed approach, the research of correspondences can be based on Euclidean 

distance criterion or on geometric distance criterion previously defined. However, unlike the rigid 

registration where only known point pairs (pi, qi), using separately point-to-point or point-to-plane 

algorithm, are considered, the proposed novel objective function combines both point-to-point and 

point-to-plane minimization while introducing additional correspondences (pi, 𝑞𝑞𝑖𝑖∗) for the point-to-

point part (Eq.21), where 𝑞𝑞𝑖𝑖 ∗ is estimated from the initial qi of (pi, qi) and its neighbours using the 

MLS surface technique. 

𝜔𝜔𝑖𝑖
∗ are weights close to one indicating the reliable correspondences.  

(𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖) are automatically set according to the preliminary surface type value estimated for each 

point (Tab.1). The idea behind this is based on the following assumption: the higher the surface type 

value is, the higher the value of 𝛼𝛼𝑖𝑖 and the lower the value of 𝛽𝛽𝒊𝒊 are and vice versa (Tab.2). For 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑗𝑗� = 𝑑𝑑𝑔𝑔�𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑗𝑗� = 𝜆𝜆. 𝑑𝑑𝑒𝑒 +  (1− 𝜆𝜆).𝑘𝑘. 𝑑𝑑𝑐𝑐 (Eq.18) 

Where 

 𝑑𝑑𝑒𝑒 = �𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑗𝑗� 
(Eq.19) 

  𝑑𝑑𝑐𝑐 =  �(𝜌𝜌1𝑝𝑝 − 𝜌𝜌1𝑞𝑞)2 + (𝜌𝜌2𝑝𝑝 − 𝜌𝜌2𝑞𝑞)2 (Eq.20) 

𝑓𝑓�𝑅𝑅𝑔𝑔,𝑇𝑇𝑔𝑔, 𝑝𝑝, 𝑞𝑞� = �𝜔𝜔𝑖𝑖
∗ �𝛼𝛼𝑖𝑖�𝑅𝑅𝑝𝑝𝑖𝑖 + 𝑇𝑇 − 𝑞𝑞𝑖𝑖∗ �

2
+  𝛽𝛽𝑖𝑖 ��𝑅𝑅𝑝𝑝𝑖𝑖 + 𝑇𝑇 − 𝑞𝑞𝑖𝑖�

𝑇𝑇
𝑛𝑛𝑖𝑖�

2
�

𝑛𝑛

𝑖𝑖=1

 (Eq.21) 
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example, if the surface type of a point pair (p1,q1) is a dome, 0.8 is attributed to 𝛼𝛼1 and 0.2 for 𝛽𝛽1. 

Hence, if the surface type of a point pair (p2, q2) is a plane, 0.1 is attributed to 𝛼𝛼2 and 0.9 to 𝛽𝛽2. 

The calculation of the point 𝑞𝑞𝑖𝑖∗ based on MLS approach is carried out by applying Algebraic Point 

Set Surfaces (APSS) method [23] (Fig.4). The APSS approximating the point cloud (formed here 

by the neighbour points of 𝑞𝑞𝑖𝑖, 𝑁𝑁(𝑞𝑞𝑖𝑖)) yields as the zero set of an implicit scalar function 𝑓𝑓(x), 

representing the algebraic distance between the evaluation point 𝑋𝑋 ∈ 𝑁𝑁(𝑞𝑞𝑖𝑖) and the local fitted 

sphere 𝑢𝑢(𝑋𝑋), (Eq.22). 

Where 𝑢𝑢 = �𝑢𝑢0,  𝑢𝑢1,  𝑢𝑢2,  𝑢𝑢3,  𝑢𝑢4�
𝑇𝑇
 is the vector of scalar coefficients describing the local sphere 

𝑢𝑢(𝑋𝑋) estimated by solving the following optimization problem:  

Where  

𝑛𝑛�⃗ 𝑖𝑖 is the surface normal of 𝑞𝑞𝑖𝑖 . 𝛻𝛻𝑠𝑠𝑢𝑢(𝑞𝑞𝑖𝑖) is the gradient of 𝑓𝑓(𝑋𝑋). 𝜔𝜔𝑖𝑖
𝑎𝑎𝑎𝑎 is a weight associated to each 

considered X formulated in equation (Eq.24). 

Where 𝜙𝜙 is a smooth decreasing weight function, 𝑟𝑟𝑖𝑖 is the radius representing the local point 

spacing and ℎ ∈ ℝ is a global scale factor adjusting the influence of the radius of every point. 𝑟𝑟𝑖𝑖 is 

computed as the distance from 𝑞𝑞𝑖𝑖 to its farthest neighbour point using a neighbourhood definition 

while ℎ is set intuitively. 

Finally the point 𝑞𝑞𝑖𝑖∗ is found by iteratively projecting the point 𝑞𝑞𝑖𝑖 onto the local sphere. The point-

to-plane minimization method has been proved to be robust to noise. However, inaccuracies can be 

induced if the neighbouring points present high curvatures due to the least squares estimation of the 

tangent plane. The reason is that the new proposed formulation of the objective function includes 

both the point-to-plane approach to handle points presenting low curvatures and the point-to-point 

approach to handle points with high curvatures. The proposed ICP variant can be considered as non-

rigid registration method and has been proved to be robust to noise. 

4- Implementation of the coarse and fine registration algorithm 

The combination of HT method and curvature parameters which guarantees the coarse registration 

as well as the three ICP variants described above for fine registration, have been implemented using 

𝑓𝑓(𝑋𝑋) = 𝑠𝑠𝑢𝑢(𝑋𝑋) = [1 𝑋𝑋𝑇𝑇 𝑋𝑋𝑇𝑇𝑋𝑋]𝑢𝑢(𝑋𝑋) = 0 (Eq.22) 

𝑢𝑢(𝑋𝑋) =  𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢

�𝜔𝜔𝑖𝑖
𝑎𝑎𝑎𝑎(𝑋𝑋)(𝑠𝑠𝑢𝑢(𝑞𝑞𝑖𝑖)2 + ‖𝛻𝛻𝑠𝑠𝑢𝑢(𝑞𝑞𝑖𝑖) − 𝑛𝑛�⃗ 𝑖𝑖‖2)

𝑖𝑖

 (Eq.23) 

𝜔𝜔𝑖𝑖
𝑎𝑎𝑎𝑎(𝑋𝑋) = 𝜙𝜙 �

� 𝑞𝑞𝑖𝑖 − 𝑋𝑋�
𝑟𝑟𝑖𝑖. ℎ

� (Eq.24) 
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MATLAB software on a pc characterized by an Intel core i7/×64 platform with 8 GB of RAM and a 

2.0 GHz processor. 

The proposed curvature-based registration process which offers three possibilities for fine 

registration is illustrated in Fig.5 interpretable as follows:   

Method 1/ Searching correspondences using Euclidean distance 𝑑𝑑𝑒𝑒�𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑗𝑗� for points of 

identical shape index and curvedness followed by the application of the point-to-point minimization 

method (rigid registration method). This procedure corresponds to the flows a and c in Fig.5. 

 Method 2/ Searching correspondences using specific distance 𝑑𝑑𝑔𝑔�𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑗𝑗� for all points and 

application of the point-to-point minimization. This procedure corresponds to the flows b and c in 

Fig.5. 

Method 3/ Searching correspondences using specific distance 𝑑𝑑𝑔𝑔�𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑗𝑗� for all points and 

application of the   point-to-point combined with point-to-plane minimization (non-rigid registration 

method). This procedure corresponds to the flows b and d in Fig.5. 

 For any selected procedure, the program terminates only if one of the stopping criteria is  satisfied: 

if the difference of the mean squared errors (MSE) between two iterations is weaker than 𝜀𝜀 = 10−3 

or if the number of the iterations N is greater than 100. 

III.  Results 

1- Evaluation of the robustness of the developed algorithms on simulated data 

Two simulations were handled in order to study the robustness of the algorithms when 

confronted to measurements of different levels of noise and when dealing with data fusion. The 

developed three methods were applied on simulated data collected from the CAD data of a LEGO 

connector. Initially, more than one million points are generated to define the scene data (the moving 

set). The corresponding curvature 𝒞𝒞 and shape index 𝛿𝛿 parameters are illustrated respectively in 

Fig.6(a) and (b). The model data (the fixed set) is thereafter built by combining a generated 

Gaussian noise to a copy of the CAD data. For the first simulation, three tests involve generating 

Gaussian noise with controlled mean and standard deviation (𝜇𝜇 = 0,𝜎𝜎 = 5, 50 and 100 nm). The 

considered values of the standard deviation correspond to typical noise values observed on the 

measuring system. 𝜎𝜎 = 5 nm corresponds to the noise caused by the probing system integrated on 

ultra-high precision CMM [5,6], while 𝜎𝜎 = 50  nm corresponds to the noise that can be seen on 

classical CMM. 𝜎𝜎 > 100 nm corresponds to the noise produced by the measuring system integrated 

on µCT. 
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The Matlab function “randn” is used to generate the Gaussian noise (Fig.7), added in the 

orthogonal direction at each model data point. The execution of this function returns actual standard 

deviation that slightly differs from the imposed value. For the analysis, RMS and PV values 

calculated from the generated Gaussian noise are consequently considered as the true generated 

values. Once the model data is created, it is translated (Tx = 2 mm, Ty = -3 and Tz = -1 mm) and 

rotated (Rx = -0.5 rad, Ry = -0.01 rad and Rz = 0.5 rad) along x-, y- and z-axis to generate the initial 

alignment between the two data sets, Fig.8(a). 

Afterwards, the three developed registration methods, which have in common the enhanced HT 

registration method, are applied. The coarse and the fine registration results obtained using the first 

approach, are respectively illustrated in Fig.8(b) and in Fig.8(c). 

Finally, the RMS and PV of the residual registration errors are evaluated and compared to the RMS 

and PV of the generated noise since they transcribe the form specifications of the LEGO connector. 

For the first method, the influence of  𝑇𝑇ℎ𝑑𝑑𝑑𝑑 (Eq.15) and the Euclidean distance threshold 𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (to 

delimit the accepted closest points distance) on MSE are evaluated for a noise level of 𝜎𝜎 = 5 nm. 

For such a level of noise the algorithm converges only if  𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 varies between 0 and 0.05 and if  

𝑇𝑇ℎ𝑑𝑑𝑑𝑑 varies between 0 and 0.1. The results illustrated in Fig.9, considered as an abacus, reveal that 

the MSE values are low for 𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 less than 0.01 mm and for  𝑇𝑇ℎ𝑑𝑑𝑑𝑑 varying between 0.001 and 

0.005 range. For a noise level of 𝜎𝜎 = 50 nm, the algorithm converges only if  𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 varies 

between 0 and 0.5 and if  𝑇𝑇ℎ𝑑𝑑𝑑𝑑 varies between 0 and 0.1. The MSE values are low when 𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is 

less than 0.2 mm or when  𝑇𝑇ℎ𝑑𝑑𝑑𝑑 varies between 0.0001 and 0.003 range. 

For the second and third methods (for which we recall that the parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are set 

automatically in the program according to the shape index parameter as indicated in Tab.2), the 

influence of the parameter 𝜆𝜆 (𝜆𝜆 ∈ [0 1]) (Eq.6) on MSE values is investigated with the three 

proposed levels of noise. The obtained MSE using Euclidean distance (𝜆𝜆 = 1) is more satisfying 

compared with the MSE values obtained by varying 𝜆𝜆. 

 Focussing on results obtained using the methods (1) and (3), the difference between the generated 

and the estimated RMS and PV, respectively denoted ∆(𝑃𝑃𝑃𝑃) and ∆(𝑅𝑅𝑅𝑅𝑅𝑅), is small within low MSE 

values too (Tab.3). Additionally, the MSE values issued of the first method increase from ~10-31 to 

~10-11 when the amplitude of noise increases. Regarding the third method, MSE values increase 

slowly from ~10-11 to ~10-9. 

For the data fusion simulation, the model data is combined with the Gaussian noise of σ =

5 nm and the scene data is combined with the Gaussian noise of σ = 100 nm. The results reported 

in Tab.4 confirm that the methods (1) and (3) are more accurate than the proposed method (2). The 
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deviations ∆(𝑃𝑃𝑃𝑃) and ∆(𝑅𝑅𝑅𝑅𝑅𝑅) related to the methods (1) and (3) are below a nanometre. The test is 

repeated again for which the model data is combined with Gaussian noise of σ = 100 nm and the 

scene data is combined with Gaussian noise of σ = 5 nm. The results reported in Tab.5 are similar 

to those presented in Tab.4 and endorse the accuracy of the methods (1) and (3) at a nanometre 

level. 

 
2- Application of the algorithms on µCT measurement 

The concept of X-ray computer tomography (CT) is based on the attenuation of the X-ray 

beam through the specimen. According to Beer–Lambert law, the ratio between the transmitted and 

the incident photons depends on the integral of the absorption coefficient of the material µ along the 

path that the photons follow through the specimen. The absorption coefficient µ is linked to the 

density, the atomic number and the energy [1-4]. The resulting image is a projection of a volume in 

a 2D plane. To get 3D information, numerous radiographs should be taken while rotating the 

specimen between 0 and 180°. These projected images allow one to mathematically reconstruct the 

volume of the measured specimen using a specific algorithm. 

CT requires an X-ray source, a rotation stage and an X-ray detector. Fan, cone and parallel 

X-ray sources are commonly used. A fluorescent detector is usually used and devoted for the 

changing of the X-rays into visible light which is transferred to the CCD camera by a set of optic 

lenses (Fig.10). Both the specimen and the rotary stage can move between the detector and the 

source using a high precision bearing or air-bearing system in order to adjust the resolution which 

generally lies between 10 and 500 µm. The necessary time for a complete scan is strongly 

influenced by the resolution, the size of the CCD camera and the source therefore is difficult to set a 

general rule. 

Nowadays the term micro-CT (µCT) is usually used to refer to tomography with an image spatial 

resolution in the micron range, which can be achieved if the spot size is within the order of few 

microns, or via an adequate set of optics in the detector. 

The µCT used here for the LEGO connector scanning is the Carl Zeiss METROTOM 800. 

METROTOM 800 was specially achieved through the use of maintenance-free micro-focus X-ray 

tube technology (Fig.10). Extremely small focal points enable razor-sharp projection images on the 

detector, leading to the foundation of a high measuring accuracy. The METROTOM 800 detector 

delivers almost three million pixels for very high detail recognition (Tab.6). 

In the METROTOM 800, the specimen can be located at any position along the beam path via a 

continuously adjustable travel mechanism. The detector is always optimally illuminated with the 
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part projection. Together with the vertical adjustment, this function allows one to enlarge specific 

areas of the parts to measure details in relation to the entire specimen. 

The described µCT is used for the scanning of the connector prototype provided from the LEGO 

Company which is a supporter of the JRPMICR (IND59) project. The connector is made of 

polycarbonate materials and manufactured by an injection moulding process. The dimensions of the 

connector are of 25 mm length and 5 mm diameter (Fig.11). 

More than one million points are recorded to cover the entire specimen surfaces. The 

registration of the µCT measurement data with the CAD data is carried out using the three 

implemented methods. For the second and third methods, the impact of the 𝜆𝜆 parameter on MSE is 

investigated and the results are reported in Fig.12. 𝜆𝜆 = 0.4 gives the smallest MSE value for both 

methods (2) and (3) and is considered as the optimal value selected for the fine registration. The 

obtained results are illustrated in Tab.7. The initial alignment is presented in Fig.13(a), while the 

coarse and fine registration results are illustrated in Fig.13(b) and (c) respectively. According to the 

results in Tab.7, the methods (1) and (3) are more accurate than method (2). The average of the 

three obtained PV values is 87.941 µm while the average of the three obtained RMS values is 

4.183 µm. 

 
1- Analysis of the results 

The entire process involving the coarse and the fine registration algorithms are applied and 

evaluated firstly on simulated data of the LEGO connector CAD and secondly on its measurement 

performed by the previously described µCT system. 

A. Registration of simulated data 

We recall for the first simulation that the model data is defined by the CAD data while three 

levels of noise (𝜎𝜎 = 5, 50 and 100 nm) are generated and combined with a copy of the CAD data 

to create the scene data. The algorithms are then applied to ensure the coarse and fine registrations. 

Regarding the investigated case, both methods (1) and (3) are more accurate than method (2). The 

MSE obtained with the method (1) leans towards 10-31 especially when the generated noise has 𝜎𝜎 ≤

50 nm. The deviation between both generated and estimated PV and RMS is less than 10-15 (Tab.3). 

It corresponds to the scanning of a freeform standard or a high surface quality of a complex 

specimen by means of a high precision CMM or an ultra-high precision CMM (accurate at the 

nanometre level). Thus, in order to guarantee an evaluation at nanometre level, the data registration 

and its analysis can be performed using method (1) due to its negligible error, which can be 

assimilated to the software operation inaccuracy. The MSE provided by method (1) is distinctly 
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more accurate than the one obtained using the other methods (2) and (3) since it is calculated only 

on corresponding points of the same curvature parameters (shape index and curvedness) while the 

MSE related to the two other methods (2) and (3) are calculated without applying this constraint. 

For method (1), both threshold 𝑇𝑇ℎ𝑑𝑑𝑑𝑑 and threshold of the Euclidean distance 𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 should be 

selected carefully in the abacus (Fig.9), which can be considered as the detriment and weakness of 

this method (1). Moreover, the three developed methods allow one to analyse a large number of 

data, more than 1,000,000 points. 

For the simulation with noise amplitude higher than 400 nm, both proposed methods (1) and (3) 

provide deviations ∆(𝑃𝑃𝑃𝑃) and ∆(𝑅𝑅𝑅𝑅𝑅𝑅) below the nanometre level. The analysis of the deviations 

∆(𝑃𝑃𝑃𝑃) between the generated and estimated PV reveals again that method (1) is more accurate. 

Nonetheless, method (2) presents least satisfying results among all presented cases. 

Simulations for which model and scene data are both combined with Gaussian noise of 

different amplitudes (20 nm Gaussian noise amplitude (𝜎𝜎 = 5 nm) for the model data and 400 nm 

Gaussian noise amplitude (𝜎𝜎 = 100 nm)  for the scene data and inversely) are performed in order to 

investigate the ability of the proposed methods to fuse data provided from different systems of 

measurement (tactile and optical probing system, from an high precision CMM and an ultra-high 

precision CMM, from CT system, vision system, etc). 

The application of the methods (1), (2) and (3) on simulated data confirms that method (1) is more 

accurate than the method (3) which both are more accurate than method (2) (Tab.4 and 5). 

Regarding the amplitude of noise in model and scene data, which is less than 400 nm, the obtained 

results emphasize once again that the methods (1) and (3) are promising. According to these results, 

we can consider that the method (1) and (3) are more suitable for dimensional metrology at the 

nanometre level of uncertainty. 

B. Registration of CAD data and measured data from CT tomography 

The second test consists of aligning the CAD data and the measured data using our three 

implemented algorithms. We recall that the measurement is performed by Carl Zeiss METROTOM 

800 µCT, offering us a large surface dataset covering the entire connector. The obtained 

measurement is composed of more than 1,000,000 points. The results reported in Tab.7 show that 

the average PV value is 87.941 µm and the average RMS value is 4.183 µm. The high value of PV 

can be explained by a combination of the form errors of the connector with the resolution and 

linearity errors of the µCT. These µCT errors generally exceed some tens of micrometres. The form 

errors of the connector are caused by the manufacturing process based on the injection moulded 

polycarbonate and by the physical phenomena that appear during cooling. The shape of the 
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connector etched in the mould presents form errors related to the error motions of the mechanical 

guiding stages supporting the movable table of the electrical discharge machining, where the mould 

is fixed and manufactured. These errors can be considered as systematic errors since they appear in 

all the manufactured specimen using the same mould. In the other side, the errors generated by µCT 

can be distinguished into systematic and random errors depending if those are repeatable or not. 

Numerous errors sources in the µCT can be identified such as: resolution of the source of the X-ray, 

resolution and linearity errors of the detector, positioning errors of the artefact in the working space, 

error motions and positioning errors of the spindle, positioning of the detector, reconstruction of the 

numerous collected 2D radiology, number of orientations of the artefact, etc.. 

IV.  Conclusion 

Three curvature-based registration methods have been reported in this paper to deal with 

automated alignment of two data sets in dimensional metrology. The classical markers manually 

identified by the user during the matching step of the coarse registration in industrial applications 

(such as in reverse-engineering, quality control, etc.) are replaced by the curvature features of the 

workpiece. These ones are recognized and quantified automatically using a discrete curvature 

calculation method on meshed data for which a variant of tensor-based techniques has been 

implemented. 

For coarse registration, the three implemented methods are commonly based on an enhanced 

HT method applied on local regions of similar surface type to improve the basic algorithm while 

dealing with PCA limitations. Satisfying rough alignments were obtained observing that the result 

accuracy is curvature quality depending. 

For fine registration, curvature parameters were exploited to come up with three variants of 

ICP methods. The two first approaches adopt point-to-point algorithm for the minimization step, 

however, the specificity lies in the introduction of curvature features in the matching step. For the 

first approach, two constraints defined from the shape index and the curvedness are applied during 

the matching step to prune the correspondences searching area. For the second approach, a new 

geometric distance merging Euclidean distance with curvature distance defined from principal 

curvatures, has been elaborated for the correspondences searching. 

For the third approach, the objective function of classical ICP algorithm has been substituted by a 

combination of point-to-point and point-to-plane algorithms with automatic weights determined 

from the surface type. Moreover, MLS technique has been introduced to find the final 

corresponding point used in the point-to-point algorithm part. For correspondences searching, 
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Euclidean distance or a mixture of this one with a curvature distance can be used to further reduce 

registration error in some cases. 

To evaluate the robustness of the implemented three ICP variants, two simulations were undertaken 

using the CAD data of a LEGO connector combined with Gaussian noise. The first simulation aims 

at evaluating the robustness of our algorithms on three measurements issued from a measuring 

system with three given levels of noise while the second one simulates the data fusion of different 

levels of noise. The proposed three curvature-based fine registration approaches provide 

preliminary promising results. The first approach provides the most satisfying registration error in 

most cases while the second and the third registration errors are more or less convincing depending 

on the cases. The algorithms have been applied on the LEGO connector measurement performed by 

Carl Zeiss METROTOM 800 µCT with its CAD data. Through the exposed applications the 

performance induced by curvature parameters introduction for enhanced HT approach has been 

emphasized. Additionally, the influence of the curvature similarity measure utilized for fine 

registration as well as the advantage of the novel objective function have been highlighted. Thus, 

the results revealed the benefit of the new automated proposed registration approaches pointing out 

the curvature exploitation. 
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(a) 

 

  
(b) 

 
(c) 

Fig.1. (a) Illustration of Voronoi-cell generation; (b) Illustration of the parameters used for H 

formulation; (c) Illustration of the surface normal estimation. 
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Fig.2. Schema of the basic Hough Transform (HT) method where the 6D HCS is represented by 2D 

space for the illustration. 
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Fig.3. Schema of the improved Hough Transform (HT) method where the 6D HCS is represented 

by 2D space for the illustration. 
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Fig.4. Local fitted algebraic sphere u(X). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  - 27 - 

 
Fig.5. Sequential algorithm for the whole registration process. 
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(a) (b) 

 
Fig.6. Curvature parameters maps of the LEGO connector: (a) Curvatness 𝒞𝒞 map; (b) Surface type 

𝑇𝑇 map. 
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Fig.7. Simulated Gaussian noise (µ = 0, σ = 8 nm): (a) 3D plot; (b) 2D distribution at the middle 

section in the xz-plane. 
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(a) 

 
 

 
 
  

(b) (c) 
 
Fig.8. Study of the robustness of the developed three algorithms on simulated connector data: (a) 

Initial alignement (red: model data, blue: scene data), translations: Tx = 2 mm, Ty = -3 and Tz = -1 

mm) and rotations: (Rx = -0.5 rad, Ry = -0.01 rad and Rz = 0.5 rad); (b) Coarse alignement; (c) Fine 

alignement. 
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Fig.9. Evolution of the MSE versus the threshold of 𝑑𝑑𝑓𝑓 denoted as 𝑇𝑇ℎ𝑑𝑑𝑑𝑑 and the threshold of the 

Euludien distance 𝑅𝑅𝑝𝑝𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞𝑖𝑖∈𝜓𝜓(𝑝𝑝𝑖𝑖)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖) denoted as 𝑇𝑇ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
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Fig.10. Schema of the µCT equipped with 2D flat panel detector with cone beam (Carl Zeiss 

METROTOM 800CT). 
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Fig.11. Photo of LEGO connector. 
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Fig.12. Influence of λ parameters on MSE results related to the application on the µCT 
measurement data. 
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(a) 

 
(b) 

 
(c) 

  
 

(d) 
 
Fig.13. LEGO connector: registration of both CAD data and CT measurement data: (a) Intial 

alignement (red: CAD, blue: CT measurement); (b) Corse alignement; (c) Fine alignement; (d) 

Evolution of the MSE versus the number of iteration. 
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Surface type Shape index interval Type label Standardized colour 

Spherical cup 𝛿𝛿 ∈ �−1,−
7
8� 

𝑇𝑇 = −4  

Through 𝛿𝛿 ∈ �−
7
8 ,−

5
8� 

𝑇𝑇 = −3  

Rut 𝛿𝛿 ∈ �−
5
8 ,−

3
8� 

𝑇𝑇 = −2  

Saddle rut 𝛿𝛿 ∈ �−
3
8 ,−

1
8� 

𝑇𝑇 = −1  

Saddle 𝛿𝛿 ∈ �−
1
8 ,

1
8� 

𝑇𝑇 = 0  

Saddle ridge 𝛿𝛿 ∈ �
1
8 ,

3
8� 

𝑇𝑇 = 1  

Ridge 𝛿𝛿 ∈ �
3
8 ,

5
8� 

𝑇𝑇 = 2  

Dome 𝛿𝛿 ∈ �
5
8 ,

7
8� 

𝑇𝑇 = 3  

Spherical cap 𝛿𝛿 ∈ �
7
8 , 1� 𝑇𝑇 = 4  

Plane 𝛿𝛿 = 2 𝑇𝑇 = 5  
 

Tab.1. Surface types specified by shape index intervals. 
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Surface type Parameter 𝜶𝜶𝒊𝒊  Parameter 𝜷𝜷𝒊𝒊  
Spherical cup (T=-4)  0.9 0.1 

Through (T=-3) 0.8 0.2 

Rut (T=-2) 0.7 0.3 

Saddle rut (T=-1) 0.6 0.4 

Saddle (T=0) 0.5 0.5 

Saddle ridge (T=1) 0.4 0.6 

Ridge (T=2) 0.3 0.7 

Dome (T=3) 0.2 0.8 

Spherical cap (T=4) 0.1 0.9 

Plane (T=5) 0 1 

Tab.2. Specification of the parameters 𝛼𝛼𝑖𝑖 and  𝛽𝛽𝑖𝑖 according to the surface type T. 
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Tab.3. Results related to the first simulation (Gen.: Generated, Est.: Estimated).   

 
 
 
 
 
 
 
 
  

Method Gen. PV 
(nm) 

Est. PV 
(nm) 

|∆(𝑃𝑃𝑃𝑃)| 
(nm) 

Gen. RMS 
(nm) 

Est. RMS 
(nm) 

|∆(𝑅𝑅𝑅𝑅𝑅𝑅)| 
(nm) MSE 

(1) 
1.995 10-5 1.995 10-5 2.314 10-15 4.650 10-6 4.650 10-6 9.848 10-17 7.751 10-31 

2.084 10-4 2.084 10-4 1.159 10-15 4.417 10-5 4.417 10-5 3.590 10-17 7.962 10-31 

4.179 10-4 4.119 10-4 5.632 10-8 9.195 10-5 9.200 10-5 5.632 10-8 6.099 10-11 

(2) 
1.94 10-5 6.105 10-5 4.110 10-5 4.64 10-6 1.43310-4 1.387 10-4 1.115 10-4 

2.05 10-4 1.375 10-4 7.086 10-5 4.41 10-5 1.499 10-4 1.056 10-4 3.081 10-6 

4.15 10-4 3.608 10-4 5.705 10-5 9.19 10-5 1.702 10-4 7.824 10-5 3.083 10-6 

(3) 
1.995 10-5 1.919 10-5 7.601 10-7 4.650 10-6 4.651 10-6 8.836 10-10 2.025 10-11 

2.084 10-4 2.055 10-4 2.446 10-6 4.417 10-5 4.413 10-5 2.715 10-8 1.842 10-9 

4.179 10-4 4.159 10-4 1.996 10-6 9.195 10-5 9.195 10-5 1.719 10-9 8.106 10-9 
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Tab.4. Results related to the second simulation. Gaussian noise amplitude of 20 nm is added to 

model data Q, while Gaussian noise amplitude of 400 nm is added to scene data P. 

 
  

Method Gen. PV 
(nm) 

Est. PV 
(nm) 

|∆(𝑃𝑃𝑃𝑃)| 
(nm) 

Gen. RMS 
(nm) 

Est. RMS 
(nm) 

|∆(𝑅𝑅𝑅𝑅𝑅𝑅)| 
(nm) MSE 

(1) 
1.995 10-5 - 

6.465 10-8 
4.650 10-6 - 

3.841 10-7 7.390 10-31 
4.179 10-4 4.179 10-4 9.195 10-5 9.233 10-5 

(2) 
1.995 10-5 - 

1.618 10-4 
4.650 10-6 - 

1.911 10-4 2.320 10-8 
4.179 10-4 5.798 10-4 9.19 10-5 2.830 10-4 

(3) 
1.995 10-5 - 

3.002 10-6 
4.650 10-6 - 

4.307 10-7 8.170 10-9 
4.179 10-4 4.149 10-4 9.195 10-5 9.238 10-5 
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Tab.5. Results related to the second simulation. Gaussian noise amplitude of 400 nm is added to 

model data Q, while Gaussian noise amplitude of 20 nm is added to scene data P. 

 
 
 
 
 
  

Method Gen. PV 
(nm) 

Est. PV 
(nm) 

|∆(𝑃𝑃𝑃𝑃)| 
(nm) 

Gen. RMS 
(nm) 

Est. RMS 
(nm) 

|∆(𝑅𝑅𝑅𝑅𝑅𝑅)| 
(nm) MSE 

(1) 
4.179 10-4 - 

6.465 10-8 
9.195 10-5 - 

3.841 10-7 7.390 10-31 
1.995 10-5 4.178 10-4 4.650 10-6 9.239 10-5 

(2) 
4.179 10-4 - 

1.342 10-4 
9.195 10-5 - 

1.133 10-4 2.470 10-8 
1.995 10-5 4.316 10-4 4.650 10-6 2.052 10-4 

(3) 
4.179 10-4 - 

3.337 10-6 
9.195 10-5 - 

4.414 10-7 8.180 10-9 
1.995 10-5 4.145 10-4 4.650 10-6 9.239 10-5 
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Performances features 

Tube 130kV/39W 

2D detector 1900 x 1512 pixels 

Measuring range Ø125 x 150 mm 

Lifting table 290 mm 

Source-detector distance 800 mm 

Tab.6. Carl Zeiss METROTOM 800 specifications. 
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Tab.7. Results related to the CAD and the µCT measurement alignement. 
 
 

Method PV (mm) 𝑅𝑅𝑅𝑅𝑅𝑅(mm) MSE 

(1) 8.7951 10-2 4.178 10-3 3.050 10-5 

(2) 8.7846 10-2 4.197 10-3 1.241 10-4 

(3) 8.8027 10-2 4.173 10-3 
 

1.682 10-5 
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