Parallel Image Gradient Extraction Core For FPGA-based Smart Cameras

Abstract : One of the biggest efforts in designing pervasive Smart Camera Networks (SCNs) is the implementation of complex and computationally intensive computer vision algorithms on resource constrained embedded devices. For low-level processing FPGA devices are excellent candidates because they support massive and fine grain data parallelism with high data throughput. However, if FPGAs offers a way to meet the stringent constraints of real-time execution, their exploitation often require significant algorithmic reformulations. In this paper, we propose a reformulation of a kernel-based gradient computation module specially suited to FPGA implementations. This resulting algorithm operates on-the-fly, without the need of video buffers and delivers a constant throughput. It has been tested and used as the first stage of an application performing extraction of Histograms of Oriented Gradients (HOG). Evaluation shows that its performance and low memory requirement perfectly matches low cost and memory constrained embedded devices.
Type de document :
Communication dans un congrès
International Conference on Distributed Smart Cameras, Sep 2015, Seville, Spain. 2015
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01199197
Contributeur : Cedric Bourrasset <>
Soumis le : lundi 28 septembre 2015 - 09:34:36
Dernière modification le : mardi 11 septembre 2018 - 16:56:02
Document(s) archivé(s) le : mardi 29 décembre 2015 - 10:18:11

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01199197, version 2

Citation

Luca Maggiani, Cédric Bourrasset, François Berry, Jocelyn Sérot, Matteo Petracca, et al.. Parallel Image Gradient Extraction Core For FPGA-based Smart Cameras. International Conference on Distributed Smart Cameras, Sep 2015, Seville, Spain. 2015. 〈hal-01199197v2〉

Partager

Métriques

Consultations de la notice

160

Téléchargements de fichiers

336