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Abstract

Picture selection is a time-consuming task for humans and a real challenge
for machines, which have to retrieve complex and subjective information
from image pixels. An automated system that infers human feelings from
digital portraits would be of great help for profile picture selection, photo
album creation or photo editing. In this work, two models of facial pictures
evaluation are defined. The first one predicts the overall aesthetic quality
of a facial image, and the second one answers the question “Among a set of
facial pictures of a given person, on which picture does the person look like
the most friendly?”. Aesthetic quality is evaluated by the computation of 15
features that encode low-level statistics in different image regions (face, eyes,
mouth). Relevant features are automatically selected by a feature ranking
technique, and the outputs of 4 learning algorithms are fused in order to make
a robust and accurate prediction of the image quality. Results are compared
with recent works and the proposed algorithm obtains the best performance.
The same pipeline is considered to evaluate the likability of a facial picture,
with the difference that the estimation is based on high-level attributes such
as gender, age, smile. Performance of these attributes is compared with
previous techniques that mostly rely on facial keypoints positions, and it
is shown that it is possible to obtain likability predictions that are close
to human perception. Finally, a combination of both models that selects a
likable facial image of good quality for a given person is described.
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1. INTRODUCTION

1.1. Context

Social psychological studies have shown that people form impressions
from facial appearance very quickly [1]. With the widespread use of digi-
tal cameras and photo sharing applications, selecting the best picture of a
particular person for a given application is a time-consuming task for hu-
mans. Thus, an automated system providing a feedback about facial images
would be an interesting and useful tool. Sorting images automatically, edit-
ing images to enhance their visual aspect or selecting a few images among
an entire collection would be simplified for home users. Generally, images
with low aesthetic quality are manually rejected whereas appealing images
are selected.

In the particular case of facial pictures, features have to be adapted to
the considered use: profile pictures on social networks are different from
pictures presented in a professional purpose (resumes, visiting cards). To
this end, this work focuses both on predicting the overall aesthetic quality of
a facial image and selecting images that infer a feeling of likability. Ideally,
the models developed in this work should encode relevant information about
the global image aesthetics adapted to facial pictures as well as information
related to facial expressions and high-level attributes (smile, age, gender,
etc.). Facial beauty is not considered at all: the main idea is to estimate
the feeling induced by a given facial picture (especially in term of likability),
which is not necessarily correlated with the reality.

1.2. Previous Work

1.2.1. Aesthetic Photo Quality Evaluation

Automated aesthetic evaluation of facial pictures is a challenging task
that requires to understand subjective notions that are implicitly encoded
in the image. To solve this problem, different approaches exist. In most
of recent works, a large number of features describing the image aesthetics
are extracted and machine learning algorithms are applied to fit the feature
values to ground truth images obtained from human evaluation. Features
can either be explored at pixel level (e.g. Fisher Vectors) [2] or by estimation
of high-level attributes (smiles, eyes closeness) [3, 4] that are closer to human
interpretation. To encode both local and global information into the models,
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the main approach for evaluating portraits aesthetic quality is characterized
by computing a set of features about the subject (face) and background (non-
face) regions. Often, low-level image statistics such as contrast, sharpness or
color distribution are computed in addition to features that describe subject-
background relationship [5, 6].

To the best of our knowledge, few researches have been done on the par-
ticular case of pictures containing a unique and centered frontal face [7]. Plus,
there are no publicly available datasets containing facial images and human
aesthetic ratings, which makes comparison with previous models difficult. In
previous work [8], we developed a method that segments precisely a portrait
(hair, shoulders, skin, background) and computes features in each region.
The main result of this previous work is that facial area is almost sufficient
to describe efficiently the global aesthetic of the entire facial picture. This
idea is exploited in the proposed work, where features are extracted in small
and informative facial ares (eyes, mouth).

1.2.2. Likability Evaluation

The feeling induced by a facial picture depends on facial expression, face
shape and other cues such as make-up or face adornments. However, state-
of-the-art face evaluation systems do not consider many of these attributes.
A first attempt to create a data-driven model of several evaluation traits is
discussed in [9], in which 300 faces are generated by the Facegen Modeller
software (http://www.facegen.com) with different shape parameters. A sub-
jective experiment is conducted, where participants evaluate each face with
respect to a particular trait: aggressiveness, attractiveness, threat, etc. Fi-
nally, shape parameters are fitted to the ground truth scores provided by
participants to build a regression model for each social judgment.

Besides, behavioral studies have shown that facial image quality estima-
tion does not only rely in face shape and that reflectance (cues such as skin
illumination and texture) also plays an important role in face perception [10].
A more complete model including reflectance parameters is elaborated and
validated in [11]. However, the faces considered in all their experiments are
synthetic and without facial hair, make-up or accessories. Real 3-D scanned
faces have been used in [12] to identify relevant shape and reflectance fea-
tures. Even in recent attempts of automated face expression evaluation in
videos [13], the use of facial keypoints is still predominant. The disadvantage
of these models is that it only takes into account the position of facial key-
points and reflectance parameters. Plus, facial keypoints are heavily related
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to the face shape whereas our goal is to predict the most likable image of a
given person which is not entirely defined by the face shape.

High-level attributes are defined as abstract and global concepts describ-
ing an image. They correspond to descriptors that cannot directly be ob-
tained by extracting visual data due to the semantic gap between information
contained in pixels and human analysis. Many attributes (age, gender, pres-
ence of glasses, beard, smile, etc.) have already been successfully used in
various research domains such as face recognition or verification [14] and
portraiture aesthetics [3]. A small set of such attributes provides more sig-
nificant information than the relative positions of many facial keypoints.

1.3. Objectives

The main contribution of this paper is to propose the first model that com-
bines both aesthetic quality assessment and likability estimation for frontal
facial pictures, in order to perform automatic picture selection. For each
criterion (aesthetic quality and likability), a model that outperforms state-
of-the-art methods is presented, and the most relevant features are described.

Aesthetic quality of facial pictures is evaluated using the same feature set
than in our recent work [15]. The difference rely on the use of 4 learning
algorithms that are combined to provide a more accurate and robust pre-
diction, which outperforms our previous results. This work also focuses on
demonstrating the advantages of using high-level attributes in order to build
likability evaluation models. 3 tools are considered to compute the attributes:
Betaface (http://betaface.com), SkyBiometry (http://skybiometry.com) and
SHORE [16]. It is shown that for real images, these features are significantly
more efficient to predict likability.

This work is organized as follows. Section 2 describes the main steps
of the proposed method, including feature computation and selection and
learning algorithms. Section 3 demonstrates the relevance of the algorithm
combination and compares the results with previous recent works. In Section
4, the same pipeline is applied to perform likability evaluation. The major
difference between aesthetic quality and likability evaluation is the feature
extraction process, which rely either on low-level statistics or on high-level
attributes. Finally, both predictions are combined in Section 5 to perform au-
tomatic selection that retains automatically good quality images with friendly
faces.
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2. Proposed Method for Aesthetic Quality Estimation

In this work, headshots are defined as frontal portraits cropped to the ex-
tremes of the target’s head and shoulders. A method predicting the aesthetic
quality of headshots is described in this section. To the best of our knowl-
edge, it reaches the best state-of-the-art results on headshots, and performs
well on every dataset containing frontal portraits.

The proposed method consists in computing 15 low-level features in 4
image regions corresponding to the face and its facial attributes (Section
2.1). To eliminate non relevant features, a feature selection algorithm is
presented. Then, automated aesthetic prediction is performed by using the
learning algorithms that are described in Section 2.2. Prediction performance
is evaluated by the metrics defined in 2.2.2 and a fusion technique is proposed
in order to combine the advantages of each algorithm in 2.2.3.

2.1. Feature Computation

2.1.1. Facial Attributes Segmentation

Appealing headshots presents a clear architecture: a face located near
the image center and well contrasted with respect to the background. Thus,
in the proposed model, features of different regions are computed to encode
the subject/background relationship. To locate the face area, bounding box
detection is performed by using Viola-Jones algorithm [18] and the OpenCV
library. Inside the face region, observers are more likely to focus on eyes
and mouth, which provide information about the subject: facial expressions,
presence of make up, etc. The proposed method relies on the fact that
decisive information about facial image aesthetic quality can be obtained by
computing features in these small areas only [15] (eyes and mouth). Each
image is finally decomposed into the 4 regions described in Figure 1: entire
image RA, face area RB, eyes area RC and mouth area RD. Eyes and mouth
areas are also detected by Viola-Jones algorithm and both eyes are considered
to be part of the same region.

2.1.2. Features Extraction

State-of-the-art methods implement a lot of different low-level features (76
in [19], including brightness, contrast, color and sharpness information) in
order to assess aesthetic quality of facial images. In this work, the 15 low-level
features presented and tested in [15] are considered. They consist in image
statistics that can be computed in each region: each face picture is described
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Figure 1: Example of an image and its 4 regions.

by a set of 60 values (15 features in each of the 4 regions). Features correspond
to sharpness, illumination, contrast and color distribution measures. These
categories have been chosen because they are close to human perception.
Thus, it is possible to have feedback about relevant features, which can be
helpful for photo editing and feature design. Features are grouped into the
4 categories described below.

Sharpness is evaluated by 3 different values: F1, F2, F3. The first sharp-
ness measure F1 is computed by using the blur estimation method described
in [20], which compares the difference between an original image I and its
low-pass filtered version Ib. More precisely, gradients are measured in I and
in Ib: the greater the gradient differences between both images, the sharper
the original image I. Indeed, high differences mean that the original image
has sharp edges, and loses a lot of its sharpness through the filtering pro-
cess. On the contrary, blurry images do not change a lot after filtering. This
method appeared to be very discriminant in our previous work [8].

Since a sharp facial picture contains high gradients located in the face
region, the average gradient value F2 is computed. The size of the bounding
box containing 90% of the image gradients F3 is calculated as described in
[21] in each region.

Illumination is characterized by 2 values, F4 and F5, evaluated by the
means of two channels: Value V and Luminance L∗ (respectively from HSV
and L∗a∗b∗ color spaces). Both measures are considered in several articles
[21, 22, 23]. They provide information about the image global brightness
if computed on the entire image, or local brightness if computed on facial
regions. Even if these values are highly correlated, both are implemented
because the less discriminant measure will automatically be removed by the
feature selection process. Combination of local and global measures also gives
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some indications about the brightness difference between face and non face
regions, which influences our perception of aesthetics [24, 25]. This infor-
mation is implicitly encoded through the learning process, where brightness
values from different regions are fused.

Contrast is measured by 4 values, from F6 to F9. Two of them correspond
to the standard deviation of V and L∗ (respectively F6 and F7). Then, the
width of the middle 90% mass of L∗ histogram F8 [21, 24] and the Michelson
contrast value F9 [26] are computed. Michelson contrast is obtained by the
ratio (L∗max−L∗min)/(L∗min +L∗max) where L∗max and L∗min are the highest and
lowest L∗ values in the considered region.

Color information is extracted with the measurement of 6 values, from
F10 to F15. The Dark Channel (DC), introduced to perform haze removal
[27], provides information about sharpness and colors. High values are related
with dull colors or blurry areas. DC corresponds to a minimal filter applied
on the RGB color space. Each pixel p(i, j) of an image I is computed as
follows: p(i, j) = minc∈R,G,B(min(i′,j′)∈Ω(i,j) Ic(i

′, j′)) where Ic is a channel of
I and Ω(i, j) corresponds to the 5 × 5 neighborhood of p(i, j). It has been
shown that DC evaluation helps to increase performance of image aesthetic
assessment [6]. Since faces are composed of area with low DC values (skin
for example) and high DC values (eyes), the DC mean and its standard
deviation are considered (respectively F10 and F11).

Hue H and Saturation S standard deviations (from HSV color space) are
also computed (F12 to F13). The number of different hues F14 in each area
is an indicator of its complexity [21, 3]. Finally, the colorfulness measure F15

described in [28] is implemented, providing information about the mean and
standard deviation of the channels a∗ and b∗ of L∗a∗b∗ color space. In recent
work [29], it is shown that F15 is highly correlated to the human perception
of colorfulness and that this measure is an indicator of the overall image
aesthetic quality.

The features described above are represented by numerical values between
0 and 1.

2.1.3. Feature and Region Selection

Some of the considered features may be more relevant when computed
in limited regions only. For instance, facial images often have blurred back-
ground and sharp edges in the face. Measuring each feature inside all the
regions may also add noise in the data due to redundant or irrelevant values.
Thus, selecting the most discriminant features for a given area can enhance
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the prediction performance, or at least reduce the number of features needed
to obtain the optimal result.

In this work, the 60 feature couples (Feature, Region) are ranked using
the Relief metric, implemented as described in [30]. This metric provides
feedback about the ability of each couple to separate images with similar
features but different subjective aesthetic quality scores. The Relief metric
is preferred to other feature selection methods because it can be adapted to
both classification and regression problems and can compute ranks for each
feature couple simultaneously. Plus, it is possible to consider both discrete
and continuous features. This will be helpful for likability evaluation in
Section 4, for which both types of features are considered.

In case of classification, the Relief value of a given feature f , Relief(f)Class,
is computed as follows. First, an image i is randomly selected in the training
set. For each class, the K closest images to i (measured by the euclidean
distance in the feature space) are considered, and the value Relief(f, i)Class

is computed:

Relief(f, i)Class =
1

Nc − 1

Nc∑
c 6=ci

∑K
k=1 dFikcDikc∑K

k=1Dikc

−
∑K

k=1 dFikci
Dikci∑K

k=1Dikci

(1)

where dFik is the relative difference of feature f for images i and k. Dik is
the Euclidean distance between images i and k in the feature space. ci is
the class of image i and Nc corresponds to the total number of classes. K
is set to 10, as it has been advised in [30]. The contribution of each nearest
neighbor kc is weighted with respect to the distance between i and kc.

This process is repeated Nt times, for several images in the training set.
Due to the small number of images in the available datasets, in our imple-
mentation, the entire training set is considered. For classification, the Relief
value is obtained by summing the contribution of each image:

Relief(f)Class =
Nt∑
i=1

Relief(f, i)Class (2)

The sum of the first term of Equation 1) represents the probability that
two close images (for the Euclidean distance in the feature space) belonging
to different classes have close values of f , and the sum of the second term
estimates the probability that two close images from the same class have
close values of f . As a result, discriminant features are associated to high
Relief values, while the value of noisy or irrelevant features are close to 0.
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For regression models, it is not possible to consider images that belong
to different classes, and the previous formula is adapted as described in [30].
Using the same notations as for Equation 1, the following values are defined:

PDF
=

1

Nt

Nt∑
i=1

∑K
k=1 dFikDik∑K

k=1Dik

(3)

PDS
=

1

Nt

Nt∑
i=1

∑K
k=1 dSikDik∑K

k=1Dik

(4)

PDS ,DF
=

1

Nt

Nt∑
i=1

∑K
k=1 dSikdFikDik∑K

k=1 Dik

(5)

where dSik is the relative score difference between images i and k. Equations
3, 4 and 5 represent respectively the estimation of the probabilities that two
similar images have different values of f (high dF values), different scores
(high dS values) and both different scores and different values of f . The
expression of Relief(f)Reg is finally:

Relief(f)Reg =
PDS ,DF

PDS

− (PDF
− PDS ,DF

)

1− PDS

(6)

The first term of Equation 6 represents the probability of having similar
images with different scores and different values of f , and the second term
represents the probability of having similar images with close scores and
close values of f . More information about the choice of parameters and
implementation details is provided in [30].

2.2. Aesthetic Prediction

2.2.1. Description of the Learning Algorithms

In this work, 4 learning algorithms are considered. They have been chosen
due to their ability to perform both classification (separation between low and
high aesthetic quality images) and regression (aesthetic quality rating) tasks.
These algorithms are implemented in the OpenCV library, and are described
below. For each algorithm, OpenCV default parameters are considered, and
no significant improvement have been observed by tuning the parameters.

Support Vector Machine. SVM [31] is often used as a classifier in aesthetic
prediction [25, 23, 19, 7, 6, 15] and can also be considered for regression
analysis [3]. In this work, a Gaussian kernel are used.
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Artificial Neural Networks. ANN [32] is a powerful and adaptable algorithm
which can be designed for a particular problem by modifying the number of
hidden layers and the number of neurons in each layer. In this work, neural
networks are built using one hidden layer, containing Nf/2 neurons, where
Nf is the number of features.

Random Forest. Like SVM, RF [33] is frequently used as a learning algorithm
in recent works on automatic aesthetic prediction [25, 19, 34]. It outputs the
average of several decision trees (50 in default OpenCV implementation) built
using randomly different subsets of the training features and samples. Such
a statistical tree-based model makes RF robust to very noisy data, and able
to deal with both discrete and continuous features.

Gradient Boosted Trees. GBT [35] is a boosting algorithm using decision
trees as weak learners. Thus, it combines the advantages of classical boosting
algorithm like Adaboost, and the ability to learn from both discrete and
continuous data due to its tree-based structure. OpenCV default parameters
are considered: 200 × c trees are built during the learning process, where c
is the number of considered classes (c = 1 for regression).

2.2.2. Performance Evaluation

In this work, for each experiment, 10-fold cross validation is performed
by selecting randomly the testing and training images. This task is repeated
10 times to avoid sampling bias, and only average results are reported.

Classification performance is evaluated by the Cross-Category Error (CCE)
and the Multi-Category Error (MCE). Let ci be the ground truth class and
ĉi the predicted class of image i. CCE is a function of the error magnitude:

CCE(k) =
1

Nt

Nt∑
n=1

χ(ci − ĉi = k) (7)

where Nt is the number of test images, Nc the number of classes and k is the
difference between ground truth and prediction. χ is the function defined by
χ(x) = 1 if x is true, χ(x) = 0 otherwise. The Multi-Category Error MCE
is the weighted sum of the errors:

MCE =

∑Nc−1
k=−(Nc−1) |k|CCE(k)

MCERand

(8)
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MCERand is a normalization constant that is related to the number of classes
and corresponds to the MCE value obtained by using a random classifier:

MCERand =
Nt

Nc

N2
c − 1

3
(9)

The Good Classification Rate GCR = CCE(0)/Nt is defined as the ratio
between the number of images correctly classified CCE(0) and the number
of test images Nt. In the case of 2-class categorization, performance can also
be measured by the Area Under the ROC Curve AUC. Ideally, GCR and
AUC should be the highest (close to 1) and MCE the lowest possible (close
to 0).

Regression performance is computed by Pearson’s correlation R. Let si
be the ground truth and ŝi the predicted score of picture i. R is calculated
by the formula:

R =

Nt∑
n=1

(ŝi − ¯̂s) · (si − s̄)√√√√ Nt∑
n=1

(ŝi − ¯̂s)2 ·

√√√√ Nt∑
n=1

(si − s̄)2

(10)

where ¯̂s =
1

Nt

Nt∑
n=1

ŝi and s̄ =
1

Nt

Nt∑
n=1

si.

2.2.3. Late Score Fusion

For each set of features and data, each learning algorithm will produce
different performance. In the case of 2-class categorization, it is possible that
one classifier predicts the erroneous class for a particular image, and the 3
other algorithms predicts the correct class. To improve the overall classifica-
tion performance, the choice has been done to combine the outputs of each
algorithm to obtained a fused prediction that corresponds to a weighted vote
of each algorithm.

In the case of regression, the combined prediction P for an image i is
defined as:

P(i) =

∑4
A=1PA(i) ·Rp

A∑4
A=1R

p
A

(11)
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where A is the considered algorithm (SVM, ANN, RF, GBT). RA is the
correlation obtained by cross validation of A on the training set, and PA(i)
is the quality score predicted by algorithm A for image i.

p is a user-defined parameter that increases or decreases the weight of each
algorithm: for p = 0, each algorithm will have the same weight and the final
prediction corresponds to the mean of each prediction. For a large value
of p (e.g. 100), only the algorithm with the highest Pearson’s correlation
will be considered. In practice, algorithms with low Pearson’s values should
not be considered, while two algorithms with high values should both be
considered. Thus, in all the following experiments, we use p = 10 to both
remove algorithms that are significantly worse than the best one and retain
those producing almost the same performance.

In the case of classification, instead of Pearson’s correlation, we consider
the GCR and the MCE value to obtain information about the number of
images that are correctly classified and the error magnitudes. Since a good
classifier presents high GCR and low MCE values, the following formula is
used:

P(i) =

∑4
A=1PA(i) · ( GCRA

MCEA
)p∑4

A=1( GCRA

MCEA
)p

(12)

PA(i) is the class predicted by A, and P(i) is the final prediction. Since
classes are designed by integer labels, the overall prediction corresponds to
the nearest integer of P(i). In the following sections, this Late Score Fusion
technique is referred as LSF .

3. Validation of the Proposed Method

3.1. Datasets

Experiments are made on 4 different datasets that have been considered
for comparison with previous works. Most of state-of-the-art research present
results on only one dataset, which can limit the ability of the method to be
extended to other type of pictures.

CUHKPQ [6] is a dataset containing 17673 images with manually la-
beled ground truth, downloaded from the DPChallenge website. Images are
separated in seven categories corresponding to different subjects: human,
landscape, architecture, etc. For each category, the top and bottom 10%
images are labeled respectively as high and low quality images. In this work,
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Figure 2: 7 pictures of 3 persons
from the HFS dataset.

Figure 3: Samples from the
FAVA dataset.

Figure 4: Samples from the
Flickr dataset.

Figure 5: Histograms of ground truth scores for HFS (250 images rated from 1 to 6),
FAVA and Flickr (respectively 636 and 500 images rated from 1 to 10).

only the human category is considered, and 335 high quality and 285 low
quality headshots are automatically extracted. Due to the significant quality
difference between both groups, recent works [2, 6, 34] achieve classification
performance above 90%. Since these images are associated to classes and not
to scores, it is not possible to perform regression with this dataset.

HFS, for Human Face Scores [8], contains 250 portraits that have been
gathered and manually cropped to fit our definition of headshots. More
precisely, it contains a set of 7 different images for each of 20 different persons,
and 110 additional portraits. Examples of images for 3 particular persons
are given in Figure 2. Each image has been rated by 25 persons on a 1 to 6
scale (6 means the highest quality).

FAVA, for Face Aesthetic Visual Analysis, is a subset of the AVA database
[36] containing various images from which headshots are extracted. More
precisely, each picture is scored from 1 to 10 by internet users (10 means the
highest quality). This dataset is similar to the one used in [23] and is used
for comparison with previous works. Samples are shown in Figure 3.

Flickr is a website hosting a lot of pictures and portraits. [3] created a
dataset of 500 images gathered on this website and scored by the Amazon
Mechanical Turk system. Each image is associated to a ground truth score
between 0 and 10 (10 means high quality). Photos are either portraits or
group portraits. In this work, only the biggest detected face is considered
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in each picture, while [3] consider all the faces as well as the relationship
between them (distances between faces, face pose and expressions). Images
with extremes poses, occluded or very small faces (with a relative size below
1% of the entire image) are automatically removed and finally, 412 pictures
are retained for our experiments.

The histograms presented in Figure 5 show that HFS presents a higher
variance than FAVA, for which there is a lot of images with medium scores
that makes the learning step more difficult. Thus, prediction performance
is likely to be lower for FAVA than for HFS. Since Flickr does not contain
only frontal and centered faces but also group portraits, the prediction per-
formance may also be lower than for HFS.

3.2. Influence of the Feature Selection Process

15 features and 4 regions (RA, RB, RC , RD) are a priori considered.
Finding the most discriminant couples (Feature, Region) in the case of aes-
thetic quality estimation presents multiple advantages. First, it helps to
design more efficient metrics, adapted to the considered problem. It also
enables to compute fewer features, reducing the implementation and com-
putational cost, and finally improving the overall accuracy of the prediction.
In this section, the HFS dataset is considered because it contains only cen-
tered standardized facial portraits, so that there is no bias related to subject
placement or image/face size. For more details about the relevance of each
features and regions, refer to [15].

The experimental procedure is the following. Features are computed and
sorted using the Relief metric described above. Then, 2-class categorization
and regression are performed using SVM on the couple (Feature, Region)
with the highest rank. The process is repeated by adding the second most
discriminant couple in the model, the third, etc. After the addition of the
60 features, Figure 6 is obtained. 2 observations can be made from this
figure. First, less than half of the features are enough to obtain the same
performance as the entire set(about 25 for both classification and regression).
The second is that by retaining the 35 most relevant features, performance
is optimal: GCR and R increase respectively from 86% to 87% and from
0.71 to 0.73. This can be explained by the fact that noisy or less relevant
values are removed from the data. In our experiments, the couples with the
highest Relief values are (F{1,2},R{B,C,D}): sharpness measures in the facial
areas are the most discriminant values for aesthetic quality assessment. This
observation is coherent with the model proposed in [29], where sharpness

14



Figure 6: Influence of the number of most discriminant features retained in the model
(according to the Relief metric), for 2-class categorization and regression.

metrics are clearly presented as essential because the absence of sharp edges
in the subject’s area automatically results in low aesthetics ratings.

3.3. Influence of Algorithms

In this section, the entire feature and region sets are considered. 2-class
categorization and regression are performed for each of the dataset previ-
ously presented. For categorization, datasets are separated in two equally
distributed groups (except CUHKPQ which is already separated by labels),
containing respectively the images with the lowest and highest aesthetic
scores. If SVM generally outputs satisfying performance, in this section it is
shown that sometimes it is better to consider different algorithms, and the
optimal solution is to combine the algorithms as described in 2.2.3.

For classification, as shown in Table 1, LFS outputs the optimal perfor-
mance. There are however large disparities among the datasets: CUHKPQ is
easily separated (GCG = 95%) whereas FAVA is a difficult dataset (GCR <
70%). This is mostly explained by the fact that there are many average
images in FAVA which can be classified in both categories (see Figure 5).
Removing 50% of the images with average scores from FAVA leads to approx-
imately 81% of good classification. Pearson correlations R for each dataset
are summarized in Table 2. The same observation can be made: LSF en-
hances performance. CUHKPQ is not considered here since images are not
associated to a ground truth score.
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Table 1: GCR (%) of the classification
algorithms for each dataset.

Datasets SVM ANN RF GBT LSF
CUHKPQ 93.9 93.0 90.7 91.4 94.8

HFS 77.8 76.6 76.3 76.0 79.3
FAVA 65.1 62.7 65.9 66.2 67.1
Flickr 69.1 65.2 67.5 67.7 69.3

Table 2: Correlation (R) of the regression
algorithms for each dataset.

Datasets SVM ANN RF GBT LSF
CUHKPQ / / / / /

HFS 0.71 0.60 0.69 0.67 0.73
FAVA 0.44 0.46 0.47 0.50 0.51
Flickr 0.46 0.44 0.43 0.44 0.49

Figure 7: ROC curves obtained by using
usual regions (entire image RA and face
RB) and the proposed regions, including
eyes and mouth.

Figure 8: Performance of [3] is compared
to the Proposed Method (PM) using ei-
ther SVM or the LSF.

3.4. Comparison with Previous Works

To compare the proposed method with previous work, the experiments
of [3, 23, 25, 8, 34] are reproduced, using the same learning algorithms and
databases with the proposed feature set. These works use images containing
both group pictures and portraits [3, 34], only portraits [23, 25] or headshots
[8, 15]. The method is first compared with previous works performing image
categorization, then with works performing score prediction.

3.4.1. Comparison with Previous Categorization Models

CUHKPQ has been considered in several recent works [6, 34] to perform
2-class categorization, and performance is measured by the AUC. [6] and [34]
obtain respectively an AUC of 0.974 (SVM) and 0.972 (RF). These results
show that this dataset is not very challenging for state-of-the-art methods:
only very low and very high quality images are considered, for which very
discriminant features exist. Figure 7 presents two curves obtained with the
proposed method and SVM classifiers. Without considering eyes and mouth
(regions RC and RD are excluded from the model), performance is very
close to [6] and [34] (second curve : AUC = 0.968). The first ROC curve is

16



Table 3: GCR (%) of State-of-the-Art
(SotA) is compared with the Proposed
Method (PM) for each dataset, using Late
Score Fusion.

Dataset SotA PM
CUHKPQ 90.0 [6, 34] 94.8

HFS 86.5 [15] 86.9
Flickr 68.0 [3, 15] 73.2
FAVA 81.0 [15] 81.0

Table 4: Correlation (R) of State-of-the-
Art (SotA) is compared with the Pro-
posed Method (PM) for each dataset, us-
ing Late Score Fusion.

Dataset SotA PM
CUHKPQ / /

HFS 0.74 [15] 0.74
Flickr 0.47 [15] 0.49
FAVA 0.46 [15] 0.51

obtained with the entire feature set computed in each region: AUC = 0.989.
This value is above the results of [6, 34] and it shows, as demonstrated in [15],
that computing features in eyes/mouth regions adds significant information
to the model in the case of frontal portrait evaluation.

[3] consider 500 images from the Flickr dataset, which are separated in
5 classes with respect to their ground truth aesthetic score. They perform
5-class categorization and measure accuracy within one cross-category error:
(CCE(−1) + CCE(0) + CCE(1))/Nt = 0.68. Even if our method is not
designed to evaluate group pictures, the same accuracy is obtained using the
SVM classifier and by performing feature selection. LFS achieves 73% of
accuracy as shown in Figure 8, which is above previous performance. This is
due to the combination of SVM accuracy (GCR = 0.32) and the low error
magnitudes obtained from the tree-based classifiers (MCE < 0.68 for RF and
GBT, 0.71 for SVM). For other datasets, our recent work [15] showed that
computing features in additional relevant face regions significantly outper-
forms methods that are designed to evaluate portraits but do not consider
the particular case of headshots. The classification performance for each
dataset is compared to state-of-the-art results in Table 3. In some cases,
state-of-the-art is not outperformed. This happens when a classifier outputs
results that are significantly above other classifiers, so that the combination
does not improve the overall performance.

3.4.2. Comparison with Previous Regression Models

Among the 4 works previously cited, only [3] and our previous work
[15] performed aesthetic score prediction. [3] calculated the residual sum-
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of-squares error RSE to measure performance:

RSE =
1

Nt − 1

Nt∑
i=1

(Ŝi − Si)
2 (13)

where Nt is the number of test images, Si is the ground truth score and Ŝi

the predicted score. They perform SVM regression to make score prediction.
Using the same dataset and learning algorithm, their features lead to RSE =
2.38 while the proposed features lead to RSE = 2.17, which is slightly better.
RSE can be reduced to 2.12 by combining the algorithms.

Other regression results are directly compared with our previous work
[15] in Table 4, showing that most of our previous results are slightly out-
performed with the late score fusion.

3.5. Discussion

The results obtained in this section reveal several crucial steps related
to aesthetic quality estimation of facial portraits. First, feature extraction
and selection are key parts of the process: reduced feature sets can perform
equally or better than the entire feature set. By comparing the proposed
results with the method developed in [8], it can be observed that it is not
necessary to compute precise contours of the face. Simple regions, defined by
the face, eyes and mouth bounding boxes add sufficient information to the
model. This makes the model easily reproducible with a low computational
cost: features can be computed in small regions that are detected in real time
via the Viola-Jones algorithm.

If several learning algorithm produce satisfying performance, there is no
optimal choice adapted to each feature and dataset. Thus, a trade-off that
combines the advantages of the 4 algorithms has been proposed. This step
enhances the robustness of the method and is a good alternative to time-
consuming parameter tuning that makes the model very dependant. More-
over, it enables to work with both continuous and discrete data, as it is shown
in the next section.

Finally, the method described here can be applied to aesthetic quality
estimation of other type of pictures, by replacing the face detection step by
any other object detection or pyramidal decomposition of a picture. Learning
models can also be added in the combination. The proposed method has been
limited to the computation of low-level statistics and it is likely that the
model would benefit from the addition of other specific features, such as the
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lighting templates considered in [25], features that encode directly subject
and background relationship [34], or by combining the outputs of each of the
feature categories (texture, illumination, contrast, color) as described in [37].

4. LIKABILITY ESTIMATION

The method proposed for facial picture aesthetic estimation is used with
a different feature set in order to evaluate how much likable a person looks
like on a given picture. Features considered for likability evaluation are high-
level descriptors (such as smile, eyes openness, eyebrow position) obtained
from the 3 different face analyzers described in Section 4.2. Performance
is measured on two types of dataset, involving either synthetic or natural
faces. Experiments are made using the feature selection method and the al-
gorithms proposed in Section 2. To the best of our knowledge, few works have
explored the automatic evaluation of human traits (trustworthiness, domi-
nance, threat) except for attractiveness due to its application in marketing
and cosmetics. In this work, likability estimation is proposed because of its
possible application in automatic picture selection for home users, but the
same framework can be applied to any other trait.

4.1. Datasets

4.1.1. Synthetic Faces used for Validation

Few datasets containing facial pictures have been built and annotated
with respect to likability. In this section, synthetic faces are considered,
without any extra-facial cues such as hairstyle, beard, glasses or jewelry.

Using human-rated synthetic facial pictures, models of face evaluation are
computed in [9] with respect to the following traits: attractive, competent,
dominant, extroverted, likable, threatening, trustworthy. For each model, a
dataset of 25 distinct faces is created. These faces are manipulated along
the respective traits to generate 7 variations corresponding to 7 different
levels of the considered dimension, producing sets of 25 × 7 = 175 images.
Subjective experiments [11] revealed that these synthetic faces are greatly
correlated with the models built in [9]. 7 variations of likability for a given
face are presented in Fig. 9. Only the dataset corresponding to likability is
considered, and it is used to verify that our evaluation is consistent and to
prove that high-level attributes can be good likability descriptors.
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Figure 9: Examples of synthetic faces manipulated for likability [9]. From left to right:
unlikable, neutral and very likable.

4.1.2. Human Study on Natural Images

To evaluate our model on natural images, the set of 140 frontal and cen-
tered pictures of 20 different persons (10 men and 10 women) from HFS
dataset is considered (see Figure 2). To obtain ground truth scores, partici-
pants were asked to evaluate each image in the same viewing conditions, and
to rate how likable the person on the image seems. Images were presented in
a random order, after a preliminary learning process where participants had
to rate images that are not part of the dataset. A discrete scale from 1 (not
at all likable) to 6 (very likable) has been considered. Finally, 27 participants
aged from 20 to 55 rated each image. Scores average and standard deviation
are respectively 3.37 and 0.79.

4.2. High-Level Attributes for Face Evaluation

In this work, attributes extraction is performed by 3 tools provided “as
is”: the SHORE software [16] and two free cloud based applications: Betaface
and SkyBiometry. Each tool T returns a total of NT distinct features. Values
may either be discrete (is it a male or a female ?) or continuous (how much is
the person smiling ?). Some features have both a discrete component (“yes”
or “no”) and a continuous component (“how much ?”): Does this person
smile (yes or no) ? How much (from 0 to 1) ?

A total of 63 attributes is gathered: 37 from Betaface, 20 from SkyBiom-
etry and 6 from Shore. A simplified list of these attributes is given in Tab.
5. Note that Betaface and SkyBiometry also return a list of facial keypoint
positions (respectively 94 and 73 points); detection examples are given in Fig-
ure 10. Thus, it is possible to compare keypoints and high-level attributes.
Performance of each distinct tool is not discussed in this work (see [17] for
more details) and attributes are fused so that each image is described by a
vector containing 63 values.
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Table 5: Simplified list of high-level attribute categories computed by each tool. The
number of values (discrete or continuous) describing each category is reported in each cell.

Gender Age Smile Mood Beard Mustache Glasses Eyes Mouth Eyebrows Nose Skin Hair Shape
Betaface 2 1 3 3 3 3 4 3 3 2 2 5 3

SkyBiometry 2 2 8 4 2 2
SHORE 1 1 1 2 1

Figure 10: Examples of facial keypoint positions for synthetic and natural images. a) and
c) show Betaface points, b) and d) SkyBiometry points.

4.3. Experiments

4.3.1. Validation on Synthetic Faces

In a first set of experiments, synthetic faces are considered to verify that
face likability models can be built using the proposed set of high-level at-
tributes. The dataset contains faces grouped in seven categories, correspond-
ing to seven levels of likability (cf Figure 9). Since the faces are generated by
keypoints distortion, models based on facial keypoints should provide high
classification performance. Our first attempt in creating a likability model
requires the facial keypoints provided by either Betaface or SkyBiometry.
Applying each learning algorithm, the results presented in the first two lines
of Table 6 are obtained.

The performance of a random classifier is approximately GCR = 14% and
MCE = 1. Low MCE values reported in the table (between 0.28 and 0.52)
and high GCR (between 30 and 50%) indicate that not only our classifier is
able to classify correctly many faces (high GCR), but also makes only minor
mistakes (low MCE). It is noticeable that SkyBiometry facial keypoints are
slightly more efficient than Betaface’s: the keypoints detected are not the
same for both tools (see Figure 10). Finally, for this configuration of features
and images, Neural Networks outperform any other learning algorithms. A
possible explanation is that the synthetic faces are very similar, and the high
number of keypoints enables the network to fit very well to the learning
data. Further experiments on natural images in Section 4.3.2 show that this
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Table 6: Experimental results for 7-class categorization using either Betaface / SkyBiom-
etry facial keypoints (KP) or high-level (HL) attributes.

Algorithm SVM ANN RF GBT LSF
Criterium GCR MCE GCR MCE GCR MCE GCR MCE GCR MCE

KP Betaface 29.9 0.39 33.2 0.40 17.1 0.52 27.7 0.41 35.3 0.38
KP SkyBiometry 34.5 0.33 43.3 0.28 22.5 0.41 33.0 0.35 43.3 0.33

HL Attributes 24.9 0.42 43.8 0.28 22.5 0.41 35.9 0.32 44.3 0.28

observation cannot be generalized.
The principal contribution of this article in the domain of automatic lik-

ability evaluation is the use of high-level attributes. Results are significantly
above chance and close to the results obtained with keypoints, even on this
particular case of synthetic faces based on keypoint manipulation. This val-
idates the use of HL descriptors as a possible alternative to facial keypoints
for likability evaluation. Like the low-level set of features proposed in Section
2, HL attributes provide concrete feedback and can be summarized by a very
small number of values that corresponds to human analysis: is the subject
smiling ? Is he/she happy ? In the following section, it is shown that in the
case of natural images, it is more difficult to evaluate likability by using only
facial keypoints.

4.3.2. Application on Natural Images

The dataset of natural images is used for an ultimate validation of the
proposed model. Since each picture has a ground truth likability score, it is
possible to build regression models. This section validates the use of high-
level attributes in the case of natural faces, and shows that facial keypoints
are significantly less efficient. In the case of natural pictures, many facial
cues play a role in face likability evaluation: hairs, beard, glasses, etc. This
is confirmed by the experimental results presented in Table 7. Using at-
tributes instead of keypoints enhances the performance: Pearson’s correla-
tion increases from about 20%. In this example, GBT and RF are the most
efficient algorithms. ANN is outperformed by tree based algorithms that can
efficiently work with features that contain both discrete and continuous data
and missing attributes (e.g. eyes that cannot be seen behind sunglasses).

Table 7 shows the correlation between ground truth and predicted scores
for the model based on attributes. In the case of natural images, some
missing attributes in the feature space (background or reflectance cues are
not considered) and errors during the feature extraction process may lead
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Table 7: Average correlation (R) for natural images, using either keypoints or combined
attributes.

Algorithm SVM ANN RF GBT LSF
KP Betaface 0.43 0.43 0.37 0.46 0.50

KP SkyBiometry 0.36 0.27 0.25 0.18 0.39
HL Attributes 0.74 0.72 0.81 0.82 0.84

to erroneous predictions. This is discussed in the following section, which
presents an example of a possible application of this method and its limits.

5. APPLICATION TO AUTOMATED PICTURE SELECTION

Automated picture selection of a given person is a practical application
of the proposed method and its results. People may have hundreds of pic-
tures from which they want to select a small set that is relevant for a given
application. Since this work focuses on aesthetic quality and likability assess-
ment, possible applications may relate to profile pictures for social networks
or meetings websites. The objective is to combine both models (aesthetic
and likability) and to sort the pictures with respect to these criteria. The
problem is the lack of ground truth data that take both parameters in consid-
eration. Subjective experiments are not a satisfying solution because partic-
ipants would have to judge simultaneously aesthetic quality and likability. It
is possible to ask participants the following question: “Among these images,
which one would you choose for this particular application ?”. However, this
operation ranks the images but does not produce the ground truth scores
that are needed for applied the proposed regression models. Thus, in this
section, a combination of the aesthetic quality and likability ground truth
scores is considered, even if there may be some bias due to the fact that
both evaluations are completely different. Several combination are possible
(e.g. a weighted linear combination of both ground truth) and the product of
both ground is considered in the proposed experiments. Using the product
instead of a linear combination ensures that both aesthetic quality and lika-
bility evaluations have to be satisfying in order to obtain a high score. The
experimental procedure as well as the performance are described in details in
Section 5.1. Discussion about the proposed method is given in Section 5.2.
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Figure 11: Point clouds obtained from computing with the proposed method, from left to
right: aesthetic quality estimation, likability estimation, the product of both evaluations.
Ground truth scores of the third image are obtained by multiplying the aesthetic quality
and likability ground truth scores.

5.1. Experiments

Since both likability and aesthetic ground truth scores are required, the
only dataset that is considered in this section is the subset of HFS contain-
ing 7 images of 20 different persons. The objective is to classify pictures
for a given person, therefore instead of performing 10-fold cross validation
and random sampling, the model is learned using 19 persons and the pre-
diction is made for the remaining 7 pictures of the last person. This task
is performed for the 20 different persons, for both aesthetic and likability
predictions. Performance is similar to the performance obtained by 10-fold
cross validation in the previous sections: the Pearson’s correlation for aes-
thetic quality and likability estimation are respectively 0.75 (0.74 in Section
3.4.2) and 0.85 (0.84 in Section 4.3.2). The small increase of correlation may
be due to the use of 20-fold cross validation instead of 10-fold, and in the
case of aesthetic quality assessment, only a subset of the entire HFS dataset
is considered. Figure 11 presents the point clouds obtained by performing
either likability or aesthetic quality estimation and by multiplying the values
of both estimations for each picture. The combined prediction, that takes
both aesthetic quality and likability estimation into account still presents a
correlation of 0.83, implying that it is possible to select pictures that are
both of good quality and showing a likable face.

5.2. Discussion

In this section are presented and discussed examples of image automati-
cally selected. Using appropriate thresholds (see Figure 12, it is possible to
retain automatically good quality images with likable faces (pictures above
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Figure 12: Examples of ground truth and prediction scores for several images of a given
person. Images above the green line are selected and images below are rejected.

the green line). Threshold can either be user defined, implying more or fewer
accepted images, or by selecting the number of pictures to be selected. This
method presents the following drawbacks.

First, it is sensitive to the feature extraction process: it is possible that
faces are not correctly detected, or that facial attributes present erroneous
measurements. Figure 13 show examples of such mistakes. Face a) is over-
rated by the aesthetic predictor, which is likely due to the lack of information
provided by the color channels. The system has been trained on colored im-
ages, as a result the evaluation of an image that does not present the 3 color
channels is biased. Faces b) and c) have high likability ratings even if they
present non smiling faces: facial expressions are not correctly evaluated for
extreme emotions. Rating details are presented in Table 8. Pictures d) to
f) are nicely predicted by the model. Note that the system considers closed
eyes (picture d)) as satisfying pictures if the person is smiling. This particu-
lar case may be solved either by adapting the learning data (which currently
does not include poorly rated images with closed eyes) or by performing an
additional filtering step where images with closed eyes are removed.

To give more weight to one of the criteria (likability or aesthetics), it is
possible to replace the combination function which is currently the product
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Figure 13: Images a) to c) are erroneously rated by the system and images d) to f) present
correct predictions. Details about prediction values are given in Table 8.

Table 8: Ground Truth (GT) and Prediction (P) results obtained by applying the proposed
method on the images presented in Figure 13.

a) b) c) d) e) f)
GT P GT P GT P GT P GT P GT P

Aesthetics 2.52 2.58 1.72 2.00 1.36 2.63 3.72 3.76 2.64 2.77 3.12 2.58
Likability 1.59 2.75 2.11 3.38 2.63 3.14 3.67 3.62 2.85 2.72 3.26 3.92

Aes. x Lik. 4.01 7.10 3.63 6.79 3.57 8.26 13.6 13.6 7.52 7.55 10.2 10.1

of both predictions. It has to be noticed that the proposed dataset is very
limited: only 140 images are considered. The accuracy of the model is both
limited by the feature extraction step and the learning data. However, the
point cloud presented in Figure 11 show promising applications.

5.3. CONCLUSION

In this paper, a framework for automated facial picture selection has been
proposed. To assess aesthetic quality, features are extracted in different face
regions (entire face, eyes, mouth) that contain the most relevant information
about the portrait. Few pixel-level statistics are computed in each region and
late fusion of several learning algorithms is performed to enhance the global
prediction performance. Likability is evaluated by extracting different high-
level descriptors such as the presence of a smile, eyes closeness or eyebrow
position. Then, the process of feature selection and algorithm combination
is applied, and satisfying performance is obtained on the considered dataset.
A method to combine both predictions is presented, and enables the user to
select appealing images, facial images that look likable, or images that fit
to both criteria. A major limitation of the proposed likability estimation is
that it requires the use of tools that can extract automatically and evaluate
correctly high-level attributes.

Results regarding aesthetic quality estimation are promising since recent
works are outperformed. The same method is applied to likability evaluation,
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and our hypothesis is that the same selection and learning process can be
applied to other type of images, by adapting the features and the selected re-
gions. Another possible way to enhance the results would be to add classifiers
to the model, and/or to optimize the parameters of the learning algorithms
which are currently OpenCV default parameters. It is also possible to employ
several times the same algorithm, using different parameters for each time
(more trees in the tree based algorithms, different neuron numbers in ANN,
etc.). Though, the proposed set of algorithms is quite robust and presents
satisfying results.

The choice of the features in this article was motivated by their ability to
provide directly feedback to users since they can be easily interpreted: blurry
image, poor face enlightening, non smiling face, etc. Plus, the proposed
framework can be directly applied for profile picture selection and can be
easily applied for other applications, by adapting the learning data and/or
the features. In future work, other state-of-the-art features will be added in
the model in order to enhance the performance. Also, the feature selection
process enables us to decrease the feature number, and by avoiding heavy
feature combination it is possible to make the process usable in real-time.
Finally, this work focused on likability evaluation, but the framework can be
applied to evaluate other traits. For instance, competence evaluation may
enable users to select images for professional purposes: resumes, visiting
cards, etc. But competence evaluation requires the addition of attributes
related to clothes (men in suits are often rated as competent) that are not
considered in the proposed model.
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