Absolute geo-localization thanks to Hidden Markov Model and exemplar-based metric learning

Abstract : This paper addresses the problem of absolute visual ego-localization of an autonomous vehicle equipped with a monocular camera that has to navigate in an urban environment. The proposed method is based on a combination of: 1) a Hidden Markov Model (HMM) exploiting the spatio-temporal coherency of acquired images and 2) learnt metrics dedicated to robust visual localization in complex scenes, such as streets. The HMM merges odometric measurements and visual similarities computed from specific (local) metrics learnt for each image of the database. To achieve this goal, we define some constraints so that the distance between a database image and a query image representing the same scene is smaller than the distance between this query image and other neighbor images of the database. Successful experiments, conducted using a freely available geo-referenced image database, reveal that the proposed method significantly improves results: the mean localization error is reduced from 12.9m to 3.9m over a 11km path.
Type de document :
Communication dans un congrès
6th international Workshop on Computer Vision in Vehicle Technology, Jun 2015, CHICAGO, United States. 2015
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01198673
Contributeur : Cédric Le Barz <>
Soumis le : lundi 14 septembre 2015 - 11:02:58
Dernière modification le : samedi 24 novembre 2018 - 01:42:30
Document(s) archivé(s) le : mardi 29 décembre 2015 - 01:38:35

Fichier

CVPR_2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01198673, version 1

Citation

Cédric Le Barz, Nicolas Thome, Matthieu Cord, Stephane Herbin, Martial Sanfourche. Absolute geo-localization thanks to Hidden Markov Model and exemplar-based metric learning. 6th international Workshop on Computer Vision in Vehicle Technology, Jun 2015, CHICAGO, United States. 2015. 〈hal-01198673〉

Partager

Métriques

Consultations de la notice

217

Téléchargements de fichiers

69