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2Université de Toulouse, UPS-OMP, CNRS, IRAP, F-31028 Toulouse, France

(Dated: September 13, 2015)

Conceptual tests are widely used by physics instructors to assess students’ conceptual under-
standing and compare teaching methods. It is common to look at students’ changes in their answers
between a pre-test and a post-test to quantify a transition in student’s conceptions. This is often
done by looking at the proportion of incorrect answers in the pre-test that changes to correct answers
in the post-test – the gain – and the proportion of correct answers that changes to incorrect answers
– the loss. By comparing theoretical predictions to experimental data on the Force Concept Inven-
tory, we shown that Item Response Theory (IRT) is able to fairly well predict the observed gains
and losses. We then use IRT to quantify the student’s changes in a test-retest situation when no
learning occurs and show that i) up to 25% of total answers can change due to the non-deterministic
nature of student’s answer and that ii) gains and losses can go from 0% to 100%. Still using IRT,
we highlight the conditions that must satisfy a test in order to minimize gains and losses when no
learning occurs. Finally, recommandations on the interpretation of such pre/post-test progression
with respect to the initial level of students are proposed.

I. INTRODUCTION

Conceptual tests are widely used by physics instructor
to asses students’ conceptual understanding and compare
teaching methods. In particular, the Force Concept In-
ventory [1] (FCI) evaluate student’s mastering of Newton
laws [2]. It consists of 30 multiple-choice questions where
incorrect answers are based on the most frequently an-
swers given by students in interviews. Many topics are
covered by the FCI : kinematics, identification of forces
and the three Newton’s laws [1, 3]. Instructors usually
use the raw score or the Hake gain [2] to evaluate global
student’s progression. Item Response Theory (IRT) pro-
vide a more theoretically grounded measure of student’s
progression [4–6]. Over the past decade, IRT have been
applied with success to concept inventories, in particu-
lar to the FCI [7–11]. Student’s raw score or student’s
proficiency given by IRT provide a global measure of the
acquisition of the Newtonian concepts.

A closer look to student’s answer in a test-retest situ-
ation has shown that while the total score to the test is
highly reliable, 31% of the student’s answers change from
test to retest, suggesting weak reliability for individual
answers [12]. Looking how answers of students change
between a pre-test – before instruction – and a post-test
– after instruction – using a database embedding more
than 13 000 students’ answers, Lasry et al. [13] revealed a
strong positive correlation between the initial score and
the proportion of incorrect answers on the pre-test that
were changed to correct answers on the post-test – the
gains. A symmetric result was found for the losses – the
proportion of correct answers on the pre-test that were
changed to incorrect answers on the post-test, strongly
and negatively correlated to the initial score. This result
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suggests that students with higher prior level learn more
and forget less than students with lower prior level.

In this article we show that IRT can be used to qual-
itatively predict those experimental data while offering
another interpretation of the previous results. The ob-
served correlation mainly comes from inherent properties
of the test rather than reflecting the level of progression of
students. We show in particular that the student’s profi-
ciency progression, as obtained by IRT, increases for low
proficiency students, a conclusion at the opposite of the
previous interpretation.

The article is organized as follow : section II provides
definition of gains and losses; section III introduces IRT
theory and the underlying assumptions; section IV com-
pares theory’s predictions with experimental data; sec-
tion V exploit IRT to predict answer’s changes; finally
section VI and VII discuss and conclude this work.

II. GAINS AND LOSSES

Consider the situation of students taking a same test
two times : the first one before instruction and the sec-
ond one after instruction. It is hoped that the score of
each student increases, so that a part of answers which
were initially wrong becomes correct. Following Lasry
et al. [13], we define the gain G as the proportion of in-
correct answers on the pre-test that change to correct
answers on the post-test. Similarly, the loss L is de-
fined as the proportion of correct answers on the pre-test
that change to incorrect answers on the post-test. We
then introduce ICi as the proportion of students who
change from an incorrect (I) to a correct (C) answer
at the question i and Ii as the proportion of initial in-
correct answers. gains and losses are then defined by
G = ICi/Ii and L = CIi/Ci, where ( . ) denotes the
average over the questions of the test. Ci is the propor-
tion of initial correct answers to question i so that Ci is
the average pre-test score of the students. Using data
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FIG. 1. Gain (blue) and loss (yellow) as a function of pre-
test score at the FCI. Points are measurements from a large
pool of students [13] and lines are theoretical predictions using
questions parameters of the IRT analysis obtained in [9].

from more than 13,000 students’ answers on the Force
Concept Inventory (FCI), Lasry et al. [13] measured de-
pendance of gains and losses with prior knowledge (pre-
test score). As shown in Fig. 1, students with higher
prior knowledge have higher gain and smaller loss than
students with lower prior knowledge. In order to inter-
pret these results, it is first necessary to draw the same
graph when no learning occurs. That is to say when the
same test is taken two times consecutively, with student
not memorizing their previous answers and not having
learned anything between the two tests. We show in the
next sections how IRT is able to answer this question.

III. THE ITEM RESPONSE THEORY

Item Response Theory (IRT) belongs to the family of
latent trait modeling [14]. In those models, each student
is described by a number of latent traits, also call profi-
ciencies. The answer of a student to a question is thought
of as the result of the interaction between the capabili-
ties of the person taking the test and the characteristics
of the test items. The score of a student to an item is
modeled by a probabilistic function of his proficiencies
and the item’s characteristics. A consequent number of
knowledge and skills are always necessary to give a cor-
rect answer [15] but in many cases, only one proficiency
is sufficient to determine the student score. This is call
unidimensional Item Response Theory but is often sim-
ply called IRT. This assumption was shown to be valid
to model student’s answer to the FCI [8, 9] and will be
assumed in the following.

Let’s note θ the proficiency of a student. Each question
i is modeled by a function Pi(θ) which describes the prob-
ability of a student with proficiency θ to correctly answer
to the question i. Pi functions, called item characteristic
curves, are often assumed to be generic ”S-shape” func-
tions (see Fig. 2), called logistic function, whose varia-

FIG. 2. Item characteristic curves for questions 1 (dashed
line) and 13 (continuous line) of the FCI. Questions parame-
ters are taken from [9].

tions characterize each questions. In the three-parameter
item model, Pi(θ) is given by

Pi(θ) = ci +
1− ci

1 + exp [−1.7 ai(θ − bi)]
, (1)

where ai, bi and ci are parameters of the question : ai
is its discrimination power, bi its difficulty and ci the
probability of guessing. The parameters are estimated
by statistical techniques using a large pool of students
answers. Other models exist such as the two-parameter
model (ci = 0), the Rasch model (ci = 0 and ai = 1) and
the non-parametric kernel smoothing approach [16]. All
these models have been applied to the FCI [7–11]. For
instance, Pi functions for question 1 and 13 of the FCI
are plotted in Fig. 2. Question 13 is more difficult than
question 1 (b13 > b1) so its curve is more ”on the right”
of the graph. Its discrimination is also larger (a13 >
a1) so that the S-shape is steeper. Finally, the guessing
parameter is lower (c13 < c1), as seen on the value of Pi

when θ goes to −∞.

The true score (in %) of a group of students with pro-

ficiency θ is given by S(θ) = Pi(θ). Because of the prob-
abilistic nature of IRT, the score S(θ) for a given pro-
ficiency θ differs from the observed score of a student
with that proficiency θ – the number of correct answer
given by the student divided by the number of questions.
The true score S(θ) is only recovered as an average over
a large number of equal-proficiency student’s individual
observed scores. The observed score is also named the
raw score and one strength of IRT is to convert this raw
score, which is a discrete bounded variable, into a con-
tinuous unbounded variable, θ, which is assumed to be
an interval scale – i.e. a scale which can be used to quan-
tify a progression or a difference of proficiency between
students [4].
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IV. IRT PREDICTION OF GAINS AND LOSSES

The objective of a course is to increase student’s profi-
ciency. Let’s write θpre the proficiency of a student before
instruction and θpost its proficiency after instruction. By
definition, the probability of choosing the correct answer
to the question i during the pre-test is Pi(θpre). For the
same reason, this probability is Pi(θpost) for the post-test.
For a wide group of student with the same proficiencies,
we get Ii = 1−Pi(θpre) and ICi = (1−Pi(θpre))Pi(θpost).
Reporting these equations into the definition of the gain
and the loss leads to

G = Spost −
δPi(θpre) δPi(θpost)

1− Spre
, (2)

L = (1− Spost)−
δPi(θpre) δPi(θpost)

Spre
, (3)

where δPi(θ) is the difference between probability of suc-
cess of question i and average test score S for a given
proficiency :

δPi(θ) = Pi(θ)− Pi(θ). (4)

By definition δPi(θ) = 0. In the particular case when
θpre = θpost (i.e. when no instruction occurs), δPi δPi is
the variance of the Pi’s for a given θ and is a characteristic
of the test.

Equations (2) and (3) show that IRT enables us to
predict measured values for G and L once θpre, θpost and
all the Pi’s are known. However, data of Lasry et al. [13]
give values ofG and L as functions of Spre so informations
about θpre, θpost and all the Pi’s function are missing.

First Pi functions are taken form literature. Using the
three-parameter model, Wang and Bao [9] performed an
IRT analysis of the FCI using their own database of 2 800
student’s answers, leading to the knowledge of the 30 Pi

functions. The measurements obtained by Wang and Bao
with their students can be used for any students because
characteristics of questions are independent of the popu-
lation used to obtained them. This property is known as
parameter invariance [17]. Hence there Pi functions are
used here.

Secondly, foreach values of Spre we estimated Spost

from data of Lasry et al. [13] using

Spost = Spre (1− L) + (1− Spre)G , (5)

which comes from the definition of G and L and the fact
that Spre = Ci.

And finally θpre and θpost are estimated by reversing

the relation giving S as a function of θ : S(θ) = Pi(θ).
This is an approximation where the observed raw score
is assumed to be equal to the true score. The sample of
Lasry et al. [13] contains 13 000 students divided into 9
bins leading to an average of 1 400 students for each raw
score. In this case the hypothesis of equating the raw
score to the true score seems reasonable.

Figure 1 shows that eqs. (2) and (3) match fairly well
the experimental measurements, indicating that IRT is
able to correctly predict gains and losses. Discrepan-
cies can be attributed to both uncertainties of measure-
ments of Pi and to an unperfect parameter invariance.
Such a case can occur in particular when the hypoth-
esis of unidimensionality does not hold. As shown by
Scott and Schumayer [3], while a unique proficiency can
be used to describe student’s characteristic, a 5 dimen-
sional model seems preferable. Our results show that
a one-dimensional model is able to give the global ten-
dency for the gain and the loss. A more detailed analysis
is reported for future work.

As seen in Fig. 1, gain is an increasing function of stu-
dent’s initial score. A tempting interpretation is to say
that students with higher initial knowledge learn more
than students with lower initial knowledge. The reverse is
also true for loss : students with higher initial knowledge
have lower loss than students with lower initial knowl-
edge. However this argument implicitly assumes that
gains and losses are zero when no learning occurs. We
now show that this is not the case, which at least makes
the previous conclusion unsecured. To do so, we use IRT
to estimate G and L when θpost = θpre, using equa-
tions (2) and (3). Results are plotted in Fig. 3, which
clearly show that even when no learning occurs gain is
an increasing function of the pre-test score and raise up
to one. Similarly, loss goes down from one to zero as
pre-test score increases. For a pre-test score value of
50% both gains and losses have the same value around
35%. Such a change in student answers at the same ques-
tion has been observed between two successive passes of
the FCI [12]. Reported values of gains and losses were
18% and 20% for a population mean score of 47%. Dis-
crepancy between their experimental measures and IRT
prediction could largely be attributed to a memory effect
because students took the tests two times in the same
week so they may have memorized some of there initial
answers. At the contrary, our IRT model assumes the
independence between the test-retest, i.e. that students
have not memorized any of their previous answers.

V. PROPORTION OF ANSWER’S CHANGE

In order to interpret why gains and losses can have
such high values even when no learning occurs, we focus
directly on the global proportion of answer’s change. In
a test-retest situation, we have :

ICi = CIi = S (1− S)− δP 2
i , (6)

where S = Spre = Spost. The explicit dependence of S
and δPi with θpre = θpost have been omitted for clarity.
The first term of the right hand side of equation (6) is
a parabolic function of S and does not depend on the
considered test. Hence, for any conceptual test, this part
is identical. The second term on the right hand side of
equation (6) depends on the item characteristic curves
and consequently on the test. Values of ICi have been
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FIG. 3. Gain (blue lines) and loss (yellow lines) as a function
of pre-test score at the FCI. Continuous lines are IRT predic-
tions when learning occurs, dashed lines are IRT predictions
when no learning occurs (i.e. assuming θpost = θpre).

FIG. 4. Proportion of answer’s changes from a right (resp.
wrong) answer to a wrong (resp. right) answer (continuous
line) for the FCI. Dashed line is S (1 − S).

plotted for the FCI as a function of the score in Fig. 4. It

is clear that in this case, the contribution of δP 2
i , while

not negligible, is rather small. Consequently, for a group
of students with a true score of 50 %, nearly 18 % of
answers change from correct (resp. incorrect) to incorrect
(resp. correct) in a test-retest situation. This result has
a consequence on the reliability of the test and on the
interpretation of gains and losses. In order to interpret
gains and losses in term of learning outcome, their values
should be as small as possible in a test-retest situation.
As a consequence, values of ICi should also be as small
as possible. Because the first term of equation (6) does

not depend on the test, one can only influence the δP 2
i

term in order to make it as high as possible (so that ICi

decreases). It immediately leads to the conclusion that
one has to choose questions – therefore the Pi’s functions

– in order to maximize values of δP 2
i for all θ.

In order to understand how to choose those Pi’s func-

tions, we consider the simple case of a test with only
3 questions. Three different cases are considered, each
one corresponding to a particular set of Pi’s functions.
The three cases are named test A, B and C and their
item characteristic functions are plotted in Fig. 5 (left
column). For each θ, the proportion of answer’s change

is given by CIi = Pi (1− Pi), where ( . ) denotes the
averaging over the 3 questions of the test. Hence, each
individual question i has a contribution of Pi (1 − Pi).
This contribution is null when Pi = 0 or 1 and has a
maximal value of 0.25 when Pi = 0.5.

Test A has three questions whose characteristic curves
overlap for a wide range of θ. As a consequence, for a
wide range of θ all individual questions will contribue to
the proportion of answers that change. For instance, for a
true score of 50% (θ = 0), P1(θ) = 0.88, P2(θ) = 0.5, and
P3(θ) = 0.12, leading to P1 (1− P1) = P3 (1− P3) = 0.1
and P2 (1 − P2) = 0.25. Hence, for a score of 50%, the
proportion of change, which is the average of these three
values, is about 15%. The representative curve of ICi is
very similar to the one obtained for the FCI, indicating
that a lot of item characteristic curves of the FCI overlap,
as already noted in previous studies analyzing the FCI
using a unidimensional IRT [7–11].

At the opposite, test C has three questions whose char-
acteristic curves do not overlap - i.e. the range of θ where
these functions go from a value close to 0 to a value close
to 1 are well separated (see Fig. 5). As a consequence,
each question will contribute separately to the proportion
of answer’s change. For instance, for a true score of 50%
(θ = 0), P1(θ) ' 1, P2(θ) = 0.5, and P3(θ) ' 0, leading
to P1 (1− P1) = P3 (1− P3) ' 0 and P2 (1− P2) = 0.25.
Hence, for a score of 50%, the proportion of change –
which is the average of the Pi values – is 0.25/3 ' 0.08.
This value is much smaller than for test A. In a test
with N separated questions, the maximal value of ICi is
0.25/N and is obtained for values of S = 0.5/N , 1.5/N ,
... , (N − 0.5)/N . In a test with N = 30 separated-
questions, maximal value for ICi is about 1%. Hence the
change of answers occurs very rarely, and values of gains
and losses remain very small.

Finally test B shows the transition between test A and
the extreme case of test C.

VI. INTERPRETATION OF GAINS AND
LOSSES WHEN LEARNING OCCURS

According to the discussion of the previous section, the
interpretation of gains and losses should be separated
in two extreme cases : when a wide majority of item
characteristic curves overlap – like in test A – and when
none of the item characteristic curves overlaps – like in
test C.

In the first case, δP 2
i is small and equations (2) and (3)

reduce to G = Spost and L = 1 − Spost. Hence the gain
is more or less the post-test score and does not add any
supplementary informations on student’s learning. One
can still want to isolate the part of the gain due to in-
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FIG. 5. Each row corresponds to given tests (A, B or C) comprising 3 questions. Left : item characteristic curves of the three
questions (dashed lines) and true score (continuous lines) as functions of proficiency θ. Right : proportion of answer’s change
ICi = CIi (continuous line) and S(1 − S) (dashed-line) as functions of the true score S.

struction by defining ∆G = Glearning−Gno learning. In the
case of type A test, ∆G = Spost−Spre = graw, leading to
the so-called raw gain (because G = Spre when no learn-
ing occurs). The analysis of Lasry et al. [13] data shows
that graw is a decreasing function of the pre-test score.
Does it mean that students with lower initial knowledge
gain more than students with higher initial knowledge
? No because student’s post score is limited to 100% so
the raw gain graw tends to zero when the pre-test score
tends to 100%. Also the score is an ordinal scale and
not an interval scale [4–6]. As a consequence, the raw
score can only lead to a sorting of students but an in-
crease of 1 point for a student with a low initial score
does not reflect the same learning than an increase of 1
point for a student with a high initial score. A correct

comparison of progress has to invoque an interval scale
such as the student proficiency θ introduced in the previ-
ous sections [4–6]. Fig. 6 plots the raw gain as a function
of the pre-test score for given values of students learning
increase ∆θ. As seen on this figure, a given value of graw
corresponds to various value of student’s progression ∆θ,
depending of the initial student’s score.

In the second case (test of type C), where all ques-
tions are well separated, the proportion of questions that
changes when no learning occurs is nearly null – it is
lower than 5% for N ≥ 5. Assuming a student positive
progression ∆θ = θpost−θpre greater than the error range
of all questions (i.e. ∀i, ∆θ � 1/ai with ai the discrimi-
nation power), the number of answers that change from
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FIG. 6. Evolution of the raw gain with initial pre-test score
for three fixed values of student’s learning ∆θ. The raw gain
corresponds to ∆G for a type A test.

incorrect to correct is Spost−Spre leading for the gain to

G = (Spost − Spre) / (1− Spre) = GHake . (7)

Interestingly, one recovers in this limit the Hake’s
gain [2], which can be interpreted as the proportion of
questions changing from incorrect to correct in a test
comprising seperated item response curves (like test C).
The number of answers that change from correct to in-
correct is null and L = 0. However, like the raw gain, the
Hake gain is not an interval scale [6] and has to be taken
with due care when comparing student’s progression, as
already emphasized. To illustrate this, let’s consider an
hypothetical test where the true score is a logistic func-
tion of the proficiency : S = (1 + exp(−θ))−1. This
model is characteristic of a test where question’s difficul-
ties are distributed over the proficiency scale following
a gaussian law : there are few easy questions, few hard
questions and a wide majority of questions with an in-
termediate level of difficulty. The Hake gain is plotted
on Fig. 7 as a function of the pre-test score for various
fixed value of student’s learning ∆θ that are typical of
student’s learning (see for instance Fig. 8 for typical val-
ues of ∆θ in a mechanic course). As can be seen, the
gain is an increasing function of the pre-test score for a
fixed value of student’s learning. Hence, the fact that
the gain is larger for initial high level students than for
initial low level students does not necessarily reveal that
the initial high level students have learned more. More-
over, a given value of G corresponds to various value of
student’s progression ∆θ, depending of the initial stu-
dent’s score. As shown in Fig. 7, a fixed value of the
gain – for instance 0.34 – correspond to a strong learn-
ing for low pre-test score (∆θ = 2 for S=8%), a medium
learning for medium pre-test score (∆θ = 1 for S=30%)
and a low learning for high pre-test score (∆θ = 0.5 for
S = 80%). This clearly shows that the Hake gain should
not be used to compare student’s progression when they
have different pre-test score, even in test of type C.

Table I summarizes values of G and L for the two limit

FIG. 7. Evolution of the Hake gain with initial pre-test
score for three fixed values of student’s learning ∆θ. Green
dashed line is G = 0.34 and correspond to ∆θ = 2 for S=8%,
∆θ = 1 for S=30% and ∆θ = 0.5 for S = 80%. The Hake
gain corresponds to ∆G for a type C test.

Type of test G L ∆G

A Spost 1 − Spost graw

C GHake 0 GHake

TABLE I. Summary of gains and losses for the different types
of test. ∆G = Glearning − Gno learning is the difference in
gain between a situation when learning occurs and a situa-
tion when no learning occurs, that is to say the part of the
gain which is due to learning.

cases. As can be seen, ∆G reduces to the raw gain for
type A tests and to the Hake gain for type C tests.

We conclude this section by discussing the efficiency
of instruction with respect to the initial level of the stu-
dents. As already emphasized, the proficiency θ has good
properties [4–6] and hence could be used to determine
the learning ∆θ of a student, ∆θ = θpost − θpre. This
increase of proficiency is plotted in Fig. 8 as a function
of the pre-test score for the data of Lasry et al. [13]. We
have evaluated θ using the scores by inverting the rela-
tion S(θ). According to Lasry et al. [13], uncertainties
on pre-test scores, gains and losses are about 2%, leading
to uncertainties on the post-test score of the same order
of magnitude. These uncertainties lead to uncertainties
on the proficiencies, particularly for low or high scores
due to the ’S’ shape of the curve, and are represented in
Fig. 8. If θ is assumed to be the good scale for measuring
the learning, Fig. 8 clearly shows that learning decreases
as the pre-test score increases. This is an opposite con-
clusion with the first interpretation of the evolution of
gains and losses with pre-test score, but in accordance
with the evolution of graw with pre-test score. It seems
to state that our teaching methods are more efficient on
students with low prior knowledge. We recall that this
result is based on data from more than 13,000 students
who had taken the FCI at the beginning and at the end
of an introductory physics course in a large variety of
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FIG. 8. Evolution of student’s learning (∆θ = θpost − θpre)
with the pre-test score evaluated from data of Lasry et al.[13].

institutions: US high schools (10,007) , three Canadian
two-year colleges (971), a US public university (1560)
and three top-tier private universities (884) [13]. Due to
possible correlations between students’ prior knowledge
and student’s institution, this could reflect a difference
between institutions. But this also could mean that it is
more difficult in an introductory physics course to give
the same increase of learning to students with high prior
level knowledge than to students with low prior level
knowledge. This discussion is out of the scope of this
article but in order to answer this question one would
have to evaluate ∆θ for each student in a group follow-

ing the same course with the same teacher, plotting the
same curve as in Fig. 8 and finally perform a comparison
across institutions.

VII. CONCLUSION

We have shown that IRT is able to fairly well predict
experimental measurements of gains and losses with the
FCI when learning occurs. In addition, IRT shows that
values of gains and losses for the FCI are rather high
even when no learning occurs. The reason being that
item characteristics curves overlap. All errors associated
to individual questions contribute together to the prob-
ability of answer’s change, leading to a difficult interpre-
tation of gains and losses. In such a case the gain is more
or less the post-test score and does not reveal that ini-
tial high level students have learned more that initial low
level students.

In the case where item characteristic curves do not
overlap, answer’s changes are very low, the gain reduces
to the Hake gain while the losses drop to zero.

We have shown that the effect of instruction can be
assessed by looking to the proficiency increase instead of
looking to the gain increase. The proficiency increases
more for low-level student (i.e. low pre-test score).
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