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Abstract—In this work, Wireless Sensor Network (WSN)
applications that require long-term sustainability are considered.
Energy harvesting forms a promising technology to address
this challenge, by allowing each node to be entirely powered
by energy harvested from its environment. To be sustainable,
each node must dynamically adapt its Quality of Service (QoS),
regarding the harvested energy using a power management
strategy. This strategy is implemented on each node by the Power
Manager (PM). In this paper, GRAPMAN (GRAdual Power
MANager) is proposed, a novel PM for Energy-Harvesting WSN
(EH-WSN) powered by pseudo-periodic energy sources. Unlike
most state of the art PMs, GRAPMAN aims to achieve high
average throughput while maintaining consistent QoS, i.e. with
low fluctuations with respect to time, by looking for the highest
throughput that can be supplied by the node over a finite time
horizon while remaining sustainable. We show through extensive
trace-driven network simulations that GRAPMAN outperforms
state of the art PMs in both average throughput and throughput
consistency.

I. INTRODUCTION

WSNs play an important role in many military, industrial
and consumer applications such as battlefield monitoring, ma-
chine health monitoring and home automation. Typical WSN
nodes are powered by individual batteries that provide a finite
amount of energy which limits the lifetime of the network.
For many long-term applications, replacing the batteries of
each node is not a feasible solution if they are deployed in a
harsh environment or if the network size is large. A promising
approach to tackle this problem is to enable the nodes to be
entirely powered by the energy harvested in their environments
[1]–[5]. In an EH-WSN, each node is equipped with at least
one energy harvester and one or more energy storage devices.
The purpose of the storage devices is to buffer energy in
order to allow the nodes to survive periods during which the
harvested energy is not enough to power the node.

While energy management schemes targeting battery-
powered WSN aim to maximize the network lifetime, the
challenge is substantially different when regarding EH-WSN.
In the latter case, the purpose of the power management
policies is to attain long-term sustainability, which is achieved
when over long time periods the harvested energy is greater
than or equal to the consumed energy, an operating mode called
Energy Neutral Operation (ENO) [1].

Energy management policies are implemented on each
node by a PM responsible for dynamically adjusting nodes
performance according to the harvested energy. In this paper,

we present a novel power manager for EH-WSN that, unlike
most state of the art PMs, considers QoS consistency as a main
design goal. GRAPMAN enables EH-WSN nodes to achieve
long-term sustainability while maximizing the QoS, which is
evaluated as the throughput in this paper. Moreover, GRAP-
MAN achieves a consistent QoS, i.e. that does not fluctuate
strongly with time. Reducing the QoS variance is an important
consideration, e.g. in the cases of multihop WSNs [4] or
surveillance applications [6]. To reach this goal, GRAPMAN
estimates the highest invariable QoS that can be supplied by
the node over a finite time horizon. Our contributions to the
research on EH-WSN are the following:

‚ Designing GRAPMAN, a novel PM for EH-WSN
nodes powered by pseudo-periodic sources that
achieves remarkable performance.

‚ Designing a new light power trace model to allow the
evaluation of the PMs in different energy harvesting
conditions. This model can produce different power
profiles depending on parameters set by the user.

‚ Implementing and evaluating GRAPMAN and three
other state of the art PMs using extensive network
simulations. Moreover, we have also evaluated the
PMs using a real power light trace from [7].

The remainder of this paper is structured as follows.
Section II discusses related works. Section III introduces our
energetic model and the process of calculating the storage
device capacity. Section IV presents GRAPMAN. The power
trace model and the simulations results are presented in Sec-
tion V. Finally, Section VI concludes this paper and discusses
future works.

II. RELATED WORKS

The first dynamic duty-cycling scheme was proposed by
Kansal et al. in their seminal work on energy harvesting
theory [1]. In their approach, the energy source is assumed
to be periodic and a single period is discretized into slots
of equal duration. As the energy input is expected to be
similar to the energy input at the same time on previous
periods, the expected energy generation for each slot is learned
using an Exponentially Weighted Moving Average (EWMA)
of recorded harvested energy inputs for a given slot on past
periods. Then, each slot duty-cycle is computed by taking into
account the difference between predicted and observed energy
inputs. The main drawbacks of this approach come from the



limited accuracy of the predicted energy computation and the
high duty-cycle variability incurred by the adaptation scheme.

With LQ-Tracker [2], Vigorito et al. proposed to use
Linear-Quadratic Tracking, a technique from adaptive control
theory, to adapt the duty-cycle considering only the battery
State-of-Charge (SoC). It aims to keep the SoC at a predefined
value, and thus maintain the node in ENO state. Similarly, Le
et al. [5] proposed to use a Proportional Integral Derivative
(PID) controller. These approaches are model-free, i.e. do not
make any assumptions about the energy source.

In [3], Castagnetti et al. introduced two PMs, the Open-
Loop PM (OL-PM) and the Closed-Loop PM (CL-PM). The
former one takes into account only the harvested energy in
its power management strategy, which aims to maintain the
node in the ENO state by keeping the SoC constant over time.
The harvested energy is approximated by a function of the
light intensity measured using a luminance sensor. CL-PM is
more sophisticated and uses two distinct power management
strategies, one for periods during which environmental energy
is available, and one for periods during which the harvested
energy is below a fixed threshold, referred to as Zero Energy
Interval (ZEI). The power management strategy uses an esti-
mation of the ZEI duration and adjusts the duty-cycle so that
the node will not run into a power outage before the end of the
non-energy harvesting interval. When environmental energy is
available, the same energy neutral power management strategy
as for OL-PM is used. Therefore, only a small amount of the
harvested energy is saved for the ZEI, leading to low QoS and
power outages when there are no harvested energy available.

Le et al. proposed the Wake up Variation Reduction PM
(WVR-PM) in [4], an improvement of CL-PM. The idea is
that when environmental energy is available, the PM does not
try to maintain the SoC at a constant value, but instead saves
some of the harvested energy for the non-energy harvesting
interval. Moreover, this PM does not need an additional sensor
in order to approximate the harvested energy. WVR-PM aims
to achieve similar QoS during ZEI as when environmental
energy is available. It uses a quantizer to reduce the duty-cycle
variance, which can lower the performance significantly.

Like WVR-PM, GRAPMAN considers QoS consistency
as a main design goal. While WVR-PM uses a quantizer to
reduce the QoS variance, GRAPMAN uses a novel approach
by finding the highest invariable QoS that can be supplied
by the node over a finite time horizon. This new approach
produces significant reduction of the throughput variance while
achieving high average throughput.

III. ENERGETIC MODEL AND STORAGE DEVICE
DIMENSIONING

A. Energetic model

A current method to reduce the energy consumption of
WSNs is duty-cycling [8]. As communication is usually the
most energy consuming task, the idea of duty-cycling is to
allow the nodes to turn their radio off ("sleep state") and on
periodically according to a schedule. The time interval between
two consecutive activations of the radio is called the wake up
interval. In the proposed model, the time is divided into equal
length slots of duration T . GRAPMAN intends to compute for
each slot k the wake up interval TWI rks that a node can use

Fig. 1: Dynamic adaptation of the wake up interval.

while remaining sustainable. Thus, GRAPMAN is executed at
the beginning of every slot. At each wake up, a node performs a
measurement and sends the so obtained value. Fig. 1 illustrates
this operating model. Therefore, the throughput of a node for
the slot k is defined by the packet rate Rprks:

Rprks “
1

TWI rks
. (1)

For any cycle k, energy conservation for a node leads to:

eSrk ` 1s “ eSrks ` eH rks ´
1

η
PC pTWI rksqT ´ PLT, (2)

where PC pTWI rksq is the power consumed by a node when
the wake up interval is set to TWI rks, eSrks is the SoC at
the beginning of the cycle k, eH rks is the energy harvested
over the cycle k, PL is the leakage power assumed to be
constant and the factor η Ps0; 1s takes into account the power
efficiency caused by the power conversion. Moreover, the
storage capacity is supposed to be finite, meaning that the SoC
is subject to the following constraint:

@k, eSrks ď EC ă `8, (3)

where EC is the storage capacity.

B. Storage device dimensioning

Let us suppose that in order to preserve the required QoS,
the wake up interval should be TWI . If TmaxNE is the longest
period of non-harvesting energy, estimated by modeling the
energy source, then the storage device capacity EC must fulfill
the following constraint:

EC ě
1

η
PC pTWIqT

max
NE ` PLT

max
NE ` EMIN `M, (4)

where EMIN is the minimum charge level necessary for the
node to operate, and M is a safety margin used to prevent
predictor errors (see Section IV-A).

In our simulation setup, the energy buffer is a superca-
pacitor of capacitance C. We denote VMAX the maximum
charge voltage of the supercapacitor, and VMIN is such that
EMIN “ 1

2CV
2
MIN . Therefore, the required capacitance can

be computed as follows:

C ě 2

1
ηPCpTWIqT

max
NE ` PLT

max
NE `M

V 2
MAX ´ V

2
MIN

. (5)



IV. GRADUAL POWER MANAGEMENT

A. Harvested energy predictor

The energy source is assumed to be pseudo-periodic with
a period H , such that H “ N ˆ T . GRAPMAN computes
at the beginning of each time slot a wake-up interval that the
node can use while remaining sustainable on a time horizon
equal to the energy source period. As we are not aware of the
future harvested energy, a predictor is used to estimate it. The
predicted harvested energy over the slot k is denoted xeH rks.
The predictor must be able to estimate the harvested energy
over the next source period. The predictor from [1] is used,
which works by assuming that the energy input at a given slot
will be similar to the energy inputs at the same slot on previous
periods. The expected energy generation is learned using an
EWMA filter:

xeH rk `N s “ αxeH rks ` p1´ αqeH rks, (6)

where eH rks is the observed harvested energy for the slot k
and α P r0, 1s is the filter weight.

However, the EWMA predictor suffers from a low accu-
racy in situations where harvested energy fluctuates strongly.
Therefore, a correction factor βrks, computed for each cycle
k, similar to the adjustment factor defined in [9] is used. The
idea is to use the recent observations of the harvested energy
in order to adjust the predictions of the EWMA filter. βrks is
defined as follows:

βrks “

řNC

i“1 eH rk ´ is
řNC

i“1 xeH rk ´ is
, (7)

where NC is the observation window size. Using the predicted
harvested energy, (2) can be rewritten in a slightly modified
form:

eSrk`1s “ eSrks`βrksxeH rks´
1

η
PC pTWI rksqT´PLT. (8)

B. Dynamic performance adaptation

A wake up interval TWI is said to be sustainable for the
next N time slots if when used for the next N slots, the
following constraint is satisfied:

@i P t0, . . . , N ´ 1u, eSrk ` is ě EMIN `M, (9)

where k is the current time slot and M is a safety margin
used to prevent predictor errors. The Algorithm 1 is used to
determine if a wake up interval is sustainable.

The wake up interval adaptation mechanism works as
follows. At the beginning of each time slot, GRAPMAN
tests the wake up interval used at the previous slot using the
Algorithm 1. If the wake up interval is not sustainable, then it
is increased. Otherwise, it is decreased only if the so obtained
wake up interval is sustainable. The Algorithm 2 shows this
procedure. In this algorithm, ∆TWI is the wake up interval
adjustment step. GRAPMAN thus works by gradually adapting
the wake up interval. At each time slot, the wake up interval
either stays the same, or is incremented by ˘∆TWI .

Algorithm 1 Determines if a wake up TWI is sustainable over
the next N time slots.

function ISSUSTAINABLE(TWI , eSrks, βrks, xeH rks . . . xeH rk`
N ´ 1s)

sustainable Ð True
iÐ 0
eÐ eSrks
loop

eÐ e` βrksxeH rk ` is ´
1
ηPCpTWIqT ´ PLT

if e ą EC then
eÐ EC

if e ă EMIN `M then
sustainable Ð False
break

if i “ N ´ 1 then
break

iÐ i` 1
return sustainable

Algorithm 2 GRAPMAN main algorithm

Input: TWI , eSrks,xeH rks . . . xeH rk `N ´ 1s
survive Ð ISSUSTAINABLEpTWI , eSrks, βrks,xeH rks . . .xeH rk`
N ´ 1sq
if survive “ True then

TWI Ð mintTWI ´∆TWI ,Minimum wake up intervalu
survive Ð ISSUSTAINABLEpTWI , eSrks, βrks,xeH rks . . .xeH rk`

N ´ 1sq
if survive “ False then

TWI Ð Previous value of TWI

else
TWI Ð maxtTWI `∆TWI ,Maximum wake up intervalu

C. Complexity and memory footprint

The complexity of the proposed algorithm is OpNq corre-
sponding to the calls to IsSustainable in the Algorithm 2.
At least one call to IsSustainable is required, two if the
first call returns True.

The memory footprint is also OpNq because the prediction
algorithm requires N memory words to store the harvested
energy estimations xeH rks, . . . ,xeH rk `N ´ 1s.

As N is usually small (e.g. if H “ 24 hours and T “

30 min then N “ 48) GRAPMAN incurs few computation
and memory overhead, and therefore is well-adapted to WSN
nodes.

V. PERFORMANCE EVALUATION

A. Trace generation

The Algorithm 3 is used to generate light power traces.
The time granularity is one second. The purpose of the trace
generator is to allow the evaluation of the PMs in regard to
energy source characteristics that influence significantly their
behaviors, and which can be set by the user using input
parameters in the proposed model. These characteristics are
the average harvested power during daytime, the difference of
harvested power from one day to another and the night-to-
day duration ratio. The input parameters allow the user to set
up these characteristics. More precisely, PENV is the average



power harvested during daytime and ϕ P r0, 1s is the night-
to-day duration ratio. The difference of harvested power from
one day to another is simulated using a coefficient (m in the
Algorithm 3) that follows a normal distribution with a mean
equal to one and a variance of σ2

D. Moreover, L is the trace
length in seconds, and small disturbances of the harvested
energy are considered as noise (n in the Algorithm 3) and are
simulated using a normal distribution with a zero mean and
a variance of σ2

N . Also, in real power traces, these variations
do not occur as fast as every second. Therefore, we use the
parameter NW to set the duration between two variations of
the noise variable.

Algorithm 3 Trace generation

Input: L, PENV , ϕ, σD, σN , NW
Trace Ð Empty Trace
tÐ 0
loop

dÐ t % H
if d “ 0 then

mÐ RandomGaussp1, σDq
if d ă p1´ ϕqH then

if t % NW “ 0 then
nÐ RandomGaussp0, σN q

y Ð mPENV

´

sin
´

πd
T p1´ϕq

¯

` n
¯

if y ă 0 then
y Ð 0

else
y Ð 0

Trace[t] Ð y
tÐ t` 1
if t “ L then

break

In our simulation, we set ϕ “ 0.5, σN “ 0.1 and
NW “ 1800 s (half an hour). Moreover, all the simulations
last 50 days and thus L “ 50 ˆ 24 ˆ 3600 s. We generated
different power traces using different values of PENV and σD
in order to evaluate the PMs in different harvesting conditions.
Fig. 2 shows three generated traces using the Algorithm 3 with
different values of PENV and σD.

B. Simulation setup

We compare our approach with several state of the art
PMs. In particular, we implemented the schemes from Kansal
et al. [1] (KAN-PM), WVR-PM [4] and LQ-Tracker [2] in
GreenCastalia [10], an open-source energy-harvesting simu-
lation framework for the Castalia/OMNeT++ simulator [11].
The simulated network consists of a star network with one
sink that uses batteries as energy supply, and four nodes that
are powered using solar cells. For each node (except the sink),
the solar panel area is set to 30cm2 and the panel efficiency to
20%, which is a realistic value regarding current photovoltaic
technologies [12]. Moreover, each node (except the sink)
is equipped with a supercapacitor. The simulated hardware
platform is PowWow [13] which has a power conversion
efficiency η equal to 0.85 and a leakage power of 73 µW.
Also, PowWow embeds a TI CC2420 that consumes 62.0 mW
in active state and 1.4 mW in sleep state. Finally, simulations
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Fig. 2: Examples of generated power traces using the Algorithm 3
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Fig. 3: Power consumed as a function of the wake up interval. The
energy consumption was obtained using the GreenCastalia simulator.

were done using both energy traces generated using the model
presented in Section V-A and a real trace from [7] (more
precisely, the setup F).

Consumed power model and MAC Protocol: The proposed
model in Section III supposes that the power consumed by
a node as a function of the wake up interval PC pTWIq is
known and decreases. Castalia proposes an implementation of
the well known TMAC protocol [14]. The power consumed
by a node using TMAC is shown on Fig. 3. Using simulation,
we have found that TMAC consumes too much energy for
the kind of hardware we target, even when the throughput
is low, i.e. TWI is high. Indeed, as TMAC is a synchronized
protocol, it requires frequent periodic radio activity even when
the nodes have nothing to send. Thus, we implemented a
simple CSMA/CA [14] protocol in Castalia without RTS/CTS
handshaking. Transmission errors are handled with acknowl-
edgment and resending (the maximum number of retries is
fixed to 3). The power consumption of a node using CSMA/CA
is shown on Fig. 3.

The average power consumed by a node is modeled by:

PCpTWIq “ PS `
Ttask
TWI

pPA ´ PSq (10)



where PS is the power consumed in sleep state, PA is the
power consumed in active state, and Ttask is the time required
to perform a single measurement and to send the so obtained
data, as shown on Fig. 1. This model has shown to be sufficient
in the case of EH-WSN because of the low throughput and
thus the infrequent collisions. Using the least squares method,
the value of these parameters were estimated to be 62.0 mW,
1.4mW and 134.4ms respectively for PA, PS and Ttask. Fig. 3
shows the accuracy of the so obtained model, which was used
in the implementation of GRAPMAN.

From Fig. 3, the wake up interval was bounded to the
interval r1, 100s s as the power consumption barely decreases
when the wake up interval is greater than 100 s. Furthermore,
the capacitance of the supercapactiors which equipped the
nodes were set to 15F, with VMAX “ 5.2V and VMIN “ 1.8V.
Calculation using (5) shows that this value is enough to ensure
nodes sustainability when power consumption equals 2 mW,
safety margin M is set to 10 J and night lasts for 14 hours.

Evaluation metrics: The following metrics were used to
compare the PMs:

‚ The downtime ratio, denoted DR, corresponding to
the ratio of time spent in the power failure state.

‚ The average wake up interval denoted ĘTWI .

‚ The standard deviation of the wake up interval, de-
noted σpTWIq. This metric is used to measure the
throughput consistency.

C. Results

GRAPMAN was implemented with α “ 0.5 as recom-
mended in [1], NC “ 2, T “ 1800 s, ∆TWI “ 5 s and
M “ 10 J. Using simulation, we found that these values are
appropriate. For the three other PMs, the parameters indicated
in the reference papers were used. Simulations were run for
multiple values of PENV and σD. Each run last for 50 days
(simulated time). The metrics presented in the Section V-B are
computed by averaging the metrics values obtained for each
node.

Fig. 4 and Fig. 5 show the downtime ratio DR when PENV
and σD vary respectively. As we can see, only GRAPMAN and
WVR-PM achieve downtime ratio lower than 10%. KAN-PM
power outages can be explained by its slow response to varia-
tions of energy harvesting rate due to its predictor. Moreover,
the power management strategy of KAN-PM does not take into
account the SoC. LQ-Tracker considers only the SoC but not
the harvested power in its power management scheme. Thus
it reacts slowly to variations of the harvested power, which
explains the power failures. Considering these results, we only
focus on WVR-PM and GRAPMAN thereafter.

Fig. 6 exposes the impact of PENV and σD on the average
wake up interval when GRAPMAN and WVR-PM are used.
The average wake up interval is significantly lower when
GRAPMAN is used than when WVR-PM is used, which
implies from (1) that the throughput is higher. Moreover,
it is not surprising to notice that the greater PENV is, the
lower TWI is due to higher energy harvesting rates. When
GRAPMAN is used, the wake up interval stops decreasing
when PENV exceeds 20 mW because the finite energy buffer
storage prevents the nodes from taking advantage of all the
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Fig. 4: DR as a function of PENV . σD is set to 0.4.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
σD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
R

LQ-Tracker GRAPMAN KAN-PM WVR-PM
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harvested energy. The surplus of harvested energy is thus
“wasted”. Furthermore, we observe that for low values of
PENV , the impact of σD on the throughput is significant .
For high values of PENV , the variations of harvested energy
from one day to another have less effects on the throughput.

Fig. 7 shows the impact of PENV and σD on the stan-
dard deviation of the wake up interval σpTWIq. GRAPMAN
incurs significantly lower variations of the wake up interval,
and thus the throughput, than WVR-PM. Furthermore, the
standard deviation of the wake up interval decreases when
PENV increases. In the case of GRAPMAN, the variations
of the throughput become almost null when PENV exceeds
40 mW. Moreover, we can observe that higher variations of
the harvested energy from one day to another incur higher
variations of the wake up interval for low values of PENV .
This is because the PM must adapt the wake up interval to the
harvested energy in order to avoid power failures, and these
changes are more substantial when the harvested power is low.

Finally, Table I presents the evaluations of GRAPMAN
and WVR-PM using a real power trace from [7] over 50 days
of simulation (simulated time). As we can see, GRAPMAN
outperforms WVR-PM in both average wake up interval and
wake up interval consistency. Furthermore, the downtime ratio
are similar for both PMs. These results are similar to the
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ones obtained when generated power traces were used, which
supports the previously exposed results.

VI. CONCLUSION

This paper presents the design of GRAPMAN, a power
manager for EH-WSN. GRAPMAN is able to supply high
average throughput while maintaining a low throughput vari-
ability with respect to time. GRAPMAN computes for each
slot the wake up interval, i.e. throughput, that a node can use in
order to remain sustainable. Moreover, this work presents the
evaluations of GRAPMAN when compared to three other state
of the art PMs using extensive trace-driven simulation. Results

PMs GRAPMAN WVR-PM

Metrics ĘTWI (s) σpTWIq(s) DR
ĘTWI (s) σpTWIq(s) DR

Results 12.33 20.35 0.056 26.58 33.88 0.040

TABLE I: Evaluation of GRAPMAN and WVR-PM using a real
power trace.

show that GRAPMAN and WVR-PM outperform KAN-PM
and LQ-Tracker in terms of downtime ratio. Furthermore,
GRAPMAN outperforms WVR-PM in terms of both average
throughput and throughput consistency, while having the same
downtime ratio. In our future work we intend to implement
GRAPMAN on real hardware platforms.
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