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Abstract. In [17], Lubicz and Robert generalized the Tate pairing over any abelian variety and more
precisely over Theta functions. The security of the new algorithms is an important issue for the use
of practical cryptography. Side channel attacks are powerful attacks, using the leakage of information
to reveal sensitive data. The pairings over elliptic curves were sensitive to side channel attacks. In
this article, we study the weaknesses of the Tate pairing over Theta functions when submitted to side
channel attacks.
Key words: pairing based cryptography, Theta function, side channel attacks, differential power anal-
ysis, fault attacks.

1 Introduction

Since they appeared in cryptography, the efficient computation of pairings is a very active
area of research. Originally defined over elliptic curves in Weierstrass model [19], pairings
have been computed in other models of elliptic curves (for example Edwards [13], Huff [14],
Jacobi [5]). They have also been studied in different systems of coordinates such as affine
[16], Jacobian, projective, Chudnovsky [3] or in original representation of finite fields RNS
[2]. The main algorithm to compute pairings is the Miller algorithm [19]. It is based on a
double and add scheme. Several works aimed to reduce the number of iterations of Miller’s
algorithm and to develop the notion of optimal pairings [12]. In both Optimal Pairings [21]
and Pairings Lattices [11] the authors present methods to find the Miller algorithm with
the smallest number of iterations. All these works deal with a computation of pairing over
elliptic (or hyper elliptic) curves.

The latest improvement in the computation of pairing was the description of efficient
pairing computation in a more general case for any algebraic variety; and in particular
pairings over Theta functions. In [17], Lubicz and Robert generalize the notion of the Weil
and the Tate pairings to any abelian variety. To do so, they made an explicit link between
the Weil and the Tate pairings and the intersection pairing on the degree 1 homology of an
abelian variety. The result is a general definition of pairings and they explicit the formulas
for the case of level 2 and 4 Theta functions in order to obtain the most efficient algorithm,
considering time and memory consumption. Their algorithm to compute pairing is based on
a Montgomery Ladder’s approach.

Each time new formulas for pairing are proposed, the security and implementation of the
new algorithms are an important issue for the use in practical cryptography. As for every
cryptographic protocol constructed nowadays, the size of groups involved in pairing compu-
tation are chosen to be large enough to avoid the discrete logarithm attack. Consequently,
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pairing implementations are secured against mathematical attacks. Nevertheless, considering
side channel attacks, we cannot predict if an algorithm is more or less secure than another
given the representation of the groups. Weaknesses to side channel attacks of pairing based
cryptography over elliptic curve have been highlighted [20, 22, 23, 7, 8]. Then, wondering if
a pairing implemented in Theta function would be vulnerable to side channel attacks is an
important issue for pairing based cryptography and this is the main objective of this contri-
bution. The remaining of the article is organized as follows. The Section 2 is devoted to the
definition of pairings over Theta functions. In Section 3 we describe the application of side
channel attacks to pairing over Theta functions, we highlight the weaknesses of the pairing
and provide countermeasures to secure the computation. We conclude in Section 4.

2 Pairings over Theta Function

This Section is a brief review of the results in [17]. We present the notations and background
of Theta functions in Section 2.1. We give the definition of the Weil and the Tate pairings
and of the algorithm to compute the Tate pairing in Section 2.2.

2.1 Background on Theta function

Let Hg be the g dimensional Siegel upper-half space which is the set of g × g symmetric
matrices Ω whose imaginary part is positive definite. For Ω ∈ Hg, let ΛΩ = ΩZg × Zg the
lattice of Cg defined by Ω. If A is an abelian variety of dimension g over the number field
K with a principal polarization then A is analytically isomorphic to Cg/ΛΩ. Let Π : C →
Cg/ΛΩ = A be the canonical projection. The classical theory of Theta functions gives a lot of
functions on Cg that are pseudo-periodic with respect to ΛΩ and can be used as a projective
coordinate system for A. For a, b ∈ Qg, the Theta function with rational characteristics (a, b)
is an analytic function on Cg ×Hg given by

θ

[
a
b

]
(z,Ω) =

∑
n∈Zg

exp
[
Πit(n+ a).Ω.(n+ a) + 2Πit(n+ a).(z + b)

]
,

where t represents the transpose of a vector.
In order to describe the pseudo-periodicity relations verified by the Theta function, we

introduce a certain pairing on Cg. We have that Cg is isomorphic to R2g via the map{
R2g −→ Cg

(x1, x2)−→ Ωx1 + x2.

For α, β ∈ R2g, let α = (α1, α2) and β = (β1, β2), we define eΩ : R2g → C by eΩ(α, β) =
exp (2iΠ(α1β2 − α2β1)).

The pseudo periodicity of θ is given by

θ

[
a
b

]
(z +Ω.m+ n,Ω) = eΩ(Ωa+ b, Ωm+ n)× e(−ΠitmΩm−2Πitmz) × θ

[
a
b

]
(z,Ω).
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A function f on Cg is ΛΩ-Theta-periodic of level l ∈ N if for all z ∈ Cg and m ∈ Zg, we
have f(z+m) = f(z), f(z+Ω.m) = exp(−Πiltm.Ω.m−2Πiltz.m)f(z). For any l ∈ N?, the
set HΩ,l of ΛΩ-quasi-periodic functions of level l is a finite dimensional C-vector space whose

basis can be given by the Theta functions with characteristics

(
θ

[
0
b/l

]
(z, l−1.Ω)

)
b∈[0,...,l−1]g

.

If l = k2, then an alternative basis of HΩ,l is

(
θ

[
a/k
b/k

]
(kz,Ω)

)
a,b∈[0,...,k−1]g

.

Once the level l ∈ N is fixed, the following conventions are adopted Z(l) = (Z/lZ)g and

for a point zP ∈ Cg and i ∈ Z(l) let θi(zP ) = θ

[
0
i/l

]
(zP , Ω/l). If l = k2, for i, j ∈ Z(k), let

θi,j(zP ) = θ

[
i/k
j/k

]
(k.zP , Ω).

Let P̃ denote the element of Alg(C) with coordinates P̃i = θi(zP ). Let P be the associated
point of A that will be be considered depending on the situation as embedded in Plg−1 or as a
point on the analytic variety Cg/ΛΩ. For n, l ∈ N, if n divides l then Z(n) will be considered
as a subgroup of Z(l) via the morphism x→ (l/n).x. Let Ξ be the Theta divisor of level l on

A, i.e. Ξ is the divisor of zero of

(
θ

[
0
0

]
(z, l−1Ω̇)

)
. There is an isogeny φl : A→ Â = Pic0A,

defined by x → τ ∗xΞl − Ξl where τx is the translation by x morphism on A. Let A[l] be
the kernel of φl. Let K(A) be the function field of A and (f) be the divisor of a function
f ∈ K(A). We then present the definition of the Weil and theTate pairing.

2.2 Definition and computation of pairings over Theta function

The Weil pairing For Ω ∈ Hg, let A = Cg/ΛΩ be the complex abelian variety and denote
by π : Cg → A the natural projection. Let l be a positive integer and µl be the subgroup of
C? of lth roots of unity. For zP , zQ ∈ Cg, let P , Q be the associated points of A. The Weil
pairing is the map eW : A[l]×A[l]→ µl, (P,Q)→ eΩ(zP , zQ)l. The value eW (P,Q) does not
depend on the choice of zP and zQ representing P and Q and eW is a non-degenerate skew
linear form. This pairing can be expressed using certain Theta functions.

Definition 1. Let Ω ∈ Hg, a, b ∈ Qg, l be a positive integer and let zP , zQ ∈ Cg be such
that l.zP = l.zQ = 0 mod ΛΩ. Let P = π(zP ) and Q = π(zQ). Let

L(zP , zQ) =

θ

[
a
b

]
(l.zP + zQ, Ω)

θ

[
a
b

]
(zQ, Ω)

θ

[
a
b

]
(0, Ω)

θ

[
a
b

]
(l.zP , Ω)

,

R(zP , zQ) =

θ

[
a
b

]
(l.zQ + zP , Ω)

θ

[
a
b

]
(zP , Ω)

θ

[
a
b

]
(0, Ω)

θ

[
a
b

]
(l.zQ, Ω)

.
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If L(zP , zQ) and R(zP , zQ) are well defined and non null, then

eW (P,Q) = L(zP , zQ)−1.R(zP , zQ) = eΩ(zP , zQ)l.

The algorithm to compute the Weil pairing is composed of four calls to the function
ScalarMult.

Theorem 1. Suppose that n and l are relatively prime. For X, Y ∈ A(K), denote by X̃,

Ỹ , X̃ + Y any affine lifts of X, Y and X + Y . For i ∈ Z(n), let X̃i be the ith coordinate of

X̃. For ∈ N and i ∈ Z(n), let

fT (X̃, Ỹ , X̃ + Y , 0̃, l, i) =
ScalarMult(X̃ + Y , X̃, Ỹ , 0̃, l)i

ScalarMult(X̃, X̃, 0̃, 0̃, l)i

0̃i

Ỹi
.

Then for P , Q ∈ A[l] and i ∈ Z(n), we have

eW (P,Q)n = fT (P̃ , Q̃, P̃ +Q, 0̃, l, i)−1fT (Q̃, P̃ , P̃ +Q, 0̃, l, i),

whenever the right hand side is well defined.

The Tate pairing For efficiency reasons, the pairing that will be implemented is the Tate
pairing (or a variant of the Tate pairing) so we only consider the side channel attacks against
the Tate pairing. Let K be a number field and suppose that A is defined over K. Recall that
l ∈ N is the level of the Theta function and it is fixed once for all. In this section, we
suppose that µl ⊂ K and that A[l] is rational over K. Let K be the algebraic closure of
K and G = Gal(K/K). Let δ1 : K?/K?l → Hom(G, µl) (respectively δ2 : A(K)/[l]A(K) →
Hom(G,A[l])) be the connecting morphism of the Galois cohomology long exact sequence
associated to the Kummer exact sequence (respectively to the short exact sequence 0 →
A[l]→ A(K)→ A(K)→ 0). There exists a bilinear application often referred to as the Tate
pairing eT : A(K)/[l]A(K) × A[l] → K?/K?l such that for (P,Q) ∈ A(K)/[l]A(K) × A[l],
eW (δ2(P ), Q) = δ1(eT (P,Q)), where eW is the Weil pairing over Theta functions.

Definition 2. Let K be a number field and let A be a dimension g abelian variety over K.
Let Ω ∈ Hg be such that A is analytically isomorphic to Cg/ΛΩ. Let a, b ∈ Qg and l be a
positive integer. Let P ∈ A(K)/[l]A(K), Q ∈ A[l](K) and zP , zQ ∈ Cg such that π(zP ) = P
and π(zQ) = Q where π : Cg → A is the natural projection 1. Suppose that zP , zQ and zP+Q

are chosen such that

θ

[
0
0

]
(zP + zQ, Ω)

θ

[
0
0

]
(zP , Ω)

θ

[
0
0

]
(0, Ω)

θ

[
0
0

]
(zQ, Ω)

∈ K?,

then
1 By abuse of notation we use P , Q to denote the corresponding points of an algebraic and analytic model of A.
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eT (P,Q) =

θ

[
0
0

]
(l.zQ + zP , Ω)

θ

[
0
0

]
(zP , Ω)

θ

[
0
0

]
(0, Ω)

θ

[
0
0

]
(l.zQ, Ω)

.

The algorithm for computation of pairings over Theta functions Let n, l ∈ N and
assume that 2 divides n and that gcd(n, l) = 1. Let A be an abelian variety over C with
period matrix Ω. We represent A as a closed subvariety of Png−1 by the way of level n Theta
functions and suppose that this embedding is defined over K. Let Ã be the pullback of A
via the natural projection κ : An

g → Png−1. For P ∈ A, let P̃ be an affine lift of P that is
a point of An

g
such that κ(P̃ ) = P . Important ingredients of the algorithm in [17] are the

Riemann addition formulas. Suppose that the Theta null point 0̃ = (θi(0))i∈Z(n) is known.

From [17, Theorem 1], we can construct an algorithm that takes as input P̃ =
(
P̃i

)
i∈Z(n)

,

Q̃ =
(
Q̃i

)
i∈Z(n)

and P̃ −Q =
(

(P̃ −Q)i

)
i∈Z(n)

and outputs P̃ +Q =
(

(P̃ +Q)i

)
i∈Z(n)

.

Let P̃ +Q = PseudoAdd(P̃ , Q̃, P̃ −Q). Using the Riemann addition formulas, if n = 4, the
projective point P+Q can be recovered from P and Q. As a consequence, with the knowledge

of P̃ , Q̃ and P̃ −Q there is a unique affine point P̃ +Q above P+Q that satisfies the addition
formulas from [17, Theorem 1]. The result is extended in [17] for n = 2.

Chaining the algorithm PseudoAdd in a classical Montgomery Ladder yields an algorithm

that takes as inputs Q̃, P̃ +Q, P̃ , 0̃ and an integer l and outputs P̃ + lQ.

Let P̃ + lQ = ScalarMult(P̃ +Q, Q̃, P̃ , 0̃, l). In particular, lP̃ = ScalarMult(P̃ , P̃ , 0̃, 0̃, l).
The output of ScalarMult is independent on the particular chain of PseudoAdd calls it uses.

Theorem 2. Suppose that n and l are relatively prime. For X, Y ∈ A(K), denote by X̃,

Ỹ , X̃ + Y any affine lifts of X, Y and X + Y . For i ∈ Z(n), let X̃i be the ith coordinate of

X̃. For ∈ N and i ∈ Z(n), let

fT (X̃, Ỹ , X̃ + Y , 0̃, l, i) =
ScalarMult(X̃ + Y , X̃, Ỹ , 0̃, l)i

ScalarMult(X̃, X̃, 0̃, 0̃, l)i

0̃i

Ỹi
.

Then, for P ∈ A(K)/[l]A(K), Q ∈ A[l], if we suppose that 0̃, P̃ , Q̃ and P̃ +Q are affine
lifts of 0, P , Q and P +Q with coordinates in K, then we have for i ∈ Z(n),

eT (P,Q)n = fT (Q̃, P̃ , P̃ +Q, 0̃, l, i),

whenever the right hand side is well defined.

For example, let E be an elliptic curve defined by Ω ∈ H1 and Ω′ = Ω/2. Put

a = θ

[
0
0

]
(0, Ω′); b =

[
0

1/2

]
(0, Ω′); A = θ

[
0
0

]
(0, 2Ω′); B = θ

[
1/2
0

]
(0, 2Ω′).
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The algorithm ScalarMult is composed by a doubling algorithm and a differential addition
algorithm given in Figure 1.

Doubling Algorithm Differential Addition Algorithm
Input: A point P = (xP : zP ). Input: Two points P = (xP : zP ) and

Q = (xQ, zQ) on E, R = (xR : zR) = P −Q,
with xRzR 6= 0.

Output: The double 2P = (x2P : z2P ) Output: The point P + Q = (xP+Q : zP+Q)
1. x0 = (x2

P + z2P )2 1. x0 = (x2
P + z2P )(x2

Q + z2Q)

2. z0 = A2

B2 (x2
P − z2P )2 2. z0 = A2

B2 (x2
P − z2P )(x2

Q − z2Q)
3. x2P = x0 + z0 3. xP+Q = (x0 + z0)/xR

4. z2P = a
b
(x0 − z0) 4. zP+Q = (x0 − z0)/zR

5. Return (x2P : z2P ) 5. Return (xP+Q : zP+Q)

Fig. 1. Doubling and Differential Addition Algorithms

3 Side Chanel Attacks against the Tate pairing over Theta
function

3.1 Side channel attacks in pairing based cryptography

The general scheme of an identity based encryption is recalled in [9]. The important point
is that to decipher a message using an Identity Based Protocol, a computation of a pairing
between a private key and a public message is performed. Side channel attacks are powerful
attacks using the leakage of information during the execution of a cryptographic protocol.
As soon as the algorithm involves a computation between a secret and a public data, side
channel attacks can be applied in order to reveal the secret, or information about the secret.
The particularity of identity based cryptography is that an attacker can know the algorithm
used, the number of iterations and the exponent. The secret is only one of the arguments
of the pairing. We describe here two attacks, namely the Differential Power Analysis (DPA)
and the fault attack. There are other side channel attacks, but the popular ones are either a
generalization of the DPA (DEMA, CPA) or fault attacks.

3.2 The possible targets

If we compare the efficiency of the Tate and of the Weil pairings, the former is more efficient
than the later at least for the security levels considering today, when pairings are computed
using a Miller’s algorithm. In the case of Theta functions, the algorithmic complexity of the
Tate pairing consists in two applications of the function ScalarMult, while the Weil pairing
consists in four applications of this function described in Appendix 4. It is quite evident
that the Tate pairing over Theta function will always be more efficient than the Weil pairing
over the Theta function. So we study only the weakness of the Tate pairing considering
side channel attacks. Nevertheless, the attacks described for the Tate pairing can easily be
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adapted to the Weil pairing. As a consequence the countermeasure proposed here must be
considered also for the implementation of the Weil pairing.

The Tate pairing is composed of two applications of ScalarMult. First of all, we focus on
side channel attacks against one application of ScalarMult and after that we will consider side
channel attacks against the Tate pairing. The same argument can provide the result of side
channel attacks against the Weil pairing, or any optimizations of the Tate pairing namely Ate,
twisted Ate or optimal pairings. The function ScalarMult is a Montgomery Ladder composed
by the Doubling and Differential Addition algorithms at each step. When the secret is the
exponent this algorithm is an efficient countermeasure to side channel attacks. In the case of
pairing based cryptography, the secret is not the exponent but one of the parameters of the
Mongtomery Ladder algorithm. Consequently, the analysis considering side channel attacks
against Montgomery’s Ladder for the classical use in cryptography (efficient exponentiation)
is no more available. We analyze the weaknesses of the algorithm to compute pairing using
Theta functions. We will focus on the DPA and on the fault attack. The consideration of
the DPA includes also the consideration of the Correlation Power Analysis (CPA) and the
Differential Electromagnetic Attack (DEMA). Indeed the DEMA works exactly like the DPA
and the CPA is an improvement of the DPA.

3.3 Differential Power Analysis Attack and generalization

In order to simplify the explanation, we describe here only the differential power analysis
(DPA) attack. As the concept is the same for all differential attacks, we include in the
same family the differential power analysis (DPA) and the differential electromagnetic attack
(DEMA) [4]. Further on, correlation attack [22] is just a form of DPA using the particular
side-channel distinguisher i.e. Pearson correlation.

We now introduce some theoretical issues that allow the reader to understand the princi-
ple underlying the DPA attack, more details can be found in [15, 18]. We consider the output
of a gate whose state depends on both the plain text to be ciphered (primary inputs) and
the secret key. It is called the target node. We consider now a sequence of input patterns
P0, P1, . . . , Pn that generate the transitions T1(P0 → P1), T2(P1 → P2), . . . , Tn(Pn−1 → Pn)
on the circuit primary inputs. A logic simulation of the circuit while monitoring the target
node allows classifying these input transitions in two sets, according to a guess on the key:

• PA, composed by the transitions that make the target node to commute from 0 to 1 and
therefore that make the target gate to consume current;
• PB, composed by the transitions that do not lead the target gate to participate to the

power consumed by the circuit (i.e., transitions from 0 to 0, 1 to 1 and 1 to 0 on the
target node).

Figure 2 represents the power consumption of the device when stimulated by numerous
input vectors. We assume here that the guess on the secret key is correct. In other word,
the simulation is performed with the key actually used in the circuit from which power con-
sumptions are collected. Each rectangle represents the total power consumed by the circuit
when a new vector is applied to the inputs. In this figure and just for clarity of explanation,
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the power consumption is represented by a rectangle corresponding to the average of the
consumption over the transition time. The set of transitions on the circuit inputs is splitted
in the two sets: in the left part there are the PA transitions and the related consumptions
while in the right part there are the PB transitions and their corresponding consumptions.
A part of the power consumption related to the transitions belonging to PA is due to the
power consumed by the target gate (shaded rectangles). Obviously, the commutation from 0
to 1 of non-target nodes also contributes to the power consumption of the circuit but input
transitions that lead to such commutations are assumed to be evenly distributed to sets PA
and PB. If a large number of transitions are considered, mean consumptions related to sets
PA and PB are almost equal, except for the contribution of the target node. In other words,
since the two sets are classified in such a way that the set PA always leads to a component of
power consumption that is not present in the set PB, the difference between the two mean
powers computed from set PA and set PB must show a noticeable difference.

Fig. 2. Power consumption after pattern partitioning

During a DPA attack, the target node is chosen in such a way that it depends on a small
part of the key only, so that all the key guesses can be considered.

For each key guess, the two sets PA and PB are created according to the results of the
logic simulation and the key guess under evaluation. The power mean values are calculated
for each set using the simulated power traces of the circuit under attack for each transition.
Finally, the differences of the mean values of the two sets are calculated. When the key guess
is correct (and only in this case), PA actually includes the input transitions that lead to a
transition 0 to 1 on the target node while PB does not include any of these transitions. The
difference between the mean power obtained from PA and PB can be observed in this case.
On the contrary, when the curves are classed in PA or PB independently from the actual
value of the secret key, the two average curves do not present any noticeable difference. The
classification process is illustrated in Figure 3 where Kx is assumed to be the correct key,
the one actually used during ciphering.

8



Fig. 3. Pattern classification for several key guesses

3.4 DPA attack

The computations sensitive to the DPA attack are the one involving the coordinates of the
points P and Q. As a consequence, the DPA attack could only be done in the addition step.
Indeed, the doubling step does not involve any computation between the coordinates of P
and Q, the operations are multiplications by constant.

Without protection, the DPA attack is a threat against the addition step, whenever the
secret is (point P or Q). According to the algorithm of ScalarMult, the argument Q of the
pairing is in fact a multiple of the point Q and the point P is fixed.

The target of the DPA attack is the computation of x0 and z0 in the differential addition
algorithm. In order to compute x0, we have to perform a multiplication between (x2P + z2P )
and (x2Q + z2Q). Suppose that the point P is public and that Q is secret, we know the value
of (x2P + z2P ) and the value (x2Q + z2Q) is secret. We perform the DPA attack against the
multiplication (x2P +z2P )× (x2Q+z2Q). Assuming that the multiplication is implemented using
the Schoolbook method, the guesses on the value (x2Q + z2Q) can be done by words of 32 or
64 bits and begin by the less significant bits. The result of the DPA attack against x0 is
(x2Q + z2Q).

During the computation of x0 the Differential Addition Algorithm would give us the
value x̃Q

2 + z̃Q
2. In parallel, another DPA attack during the computation of z0 would give

the value x̃Q
2− z̃Q2. Once we have these two values, it is easy to extract x̃Q

2 and z̃Q
2, which

gives 4 possible couples for the coordinates of point Q.
As the Differential Addition Algorithm is symmetric in the coordinates of P and Q, the

same attack is efficient if the point P is secret and Q is public.
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Classical countermeasures presented in the case of pairing over elliptic curves can easily
be adapted for the computation of pairings over Theta functions [8]. A native countermeasure
is the homogeneity of the projective coordinates. Indeed, the point P = (xP : zP ) is also the
point (λxP : λzQ), for λ a non zero integer and Q = (βxQ, βyQ), for β a non zero integer.
The main hypothesis of a DPA attack is that the secret is the same for several executions
of the algorithm. So, if we modify the coordinates of the secret for each execution the DPA
attack can no longer be performed.

An efficient countermeasure consists in multiplying the coordinates of P by a random
non zero integer λ and the coordinates Q by a random β for every iteration of the ScalarMult
algorithm. This countermeasure is a good protection against any differential attack (power
or electromagnetic) and consequently a protection for the Tate (and the Weil) pairing.

3.5 Description of the fault attack

The goal of a fault injection attack is to provoke mistakes during the calculation of an
algorithm, for example by modifying the internal memory, in order to reveal sensitive data.
This attack needs a very precise positioning and an expensive apparatus to be performed.
Nevertheless, current technologies could allow for this attack [10]. the faults can be performed
using a laser or electromagnetic emissions [4].

We follow the scheme of attack described in [20] and completed in [6]. We assume that
the pairing is used during an Identity Based Protocol, the secret point is introduced in a
smart card or an electronic device and is a parameter of the pairing. In order to find the
secret, we modify the number of iterations in the Tate pairing algorithm by the following
way.

First of all, we have to find the flip-flops belonging to the counter of the number of
iterations (i.e. log2(s)) in the Tate pairing algorithm. This step can be done by using reverse
engineering procedures. In classical architecture, the counter is divided into small pieces of
32 or 64 bits (according to the size of a word). To find it, we make one normal execution
of the algorithm, without any fault. Then we choose one piece of the counter and provoke
disturbances in order to modify it and consequently the number of iterations of the algorithm.
For example the disturbance can be induced by a laser [1]. Nowadays lasers are thin enough
to make this attack realistic [10]. Counting the clock cycles, we are able to know how many
iterations the Tate pairing loop has done. Each time, we record the value of the pairing loop
and the number of iterations we made.

3.6 Fault attack

State of the art The principle of fault attacks in pairing based cryptography consists to
force the algorithm to stop by reducing the number of iterations and by finding the results of
two consecutive iterations τ and τ+1. The results of these two executions give equations that
allow to find the secret. In the case of pairings over Theta function, the fault attack consists

in finding one the coordinates involved during the computation of ScalarMult(P̃ +Q, Q̃, P̃ ).
The ScalarMult algorithm is composed by the doubling and differential addition algorithms,

10



the result of of ScalarMult are the coordinates of P̃ + lQ. The fault attack consists in reducing
the number of iteration of ScalarMult. To do so, we can use a laser or electromagnetic
emissions to locally modify the register storing l. The target of this attack is then a smart
card or a FPGA. Let τ be the reduced number of iteration performed by ScalarMult. In
practice τ can be recovered using the number of clock cycles made by the algorithm. Indeed,
we know the binary decomposition of l, we are then able to find when the algorithm stops
and how many iterations were done. Let j be the integer composed by the τ most significant
bits of l, which is public. The fault attack for pairing over Theta function is easier than the
classical fault attack in pairing based cryptography. We need only one fault and the result
of this faulty execution to find the secret involved in the ScalarMult algorithm

The result of the pairing is the coordinates of the point P̃ + lQ. We can suppose that we
obtain one of the two coordinates, for example the coordinate z. With the z coordinate of
the result, we are able to recover the secret argument of the pairing computations.

Suppose that we can recover the coordinate z of the point P̃ + jQ, for j < l. As the
points P and Q are of order l by construction, the result of the pairing itself cannot give us
information. That is why we need to provoke a fault reducing the number of iterations of
the ScalarMult algorithm.

Let z1 = zP+jQ, where j is a known integer. The equation of z1 is the following

z1 =

[
(x2j + z2j )(x

2
P + z2P )− A

2

B2
(x2j − z2j )(x2P − z2P )

]
1

z
, (1)

where

◦ P = (xP , zP ) = (x, z) (with the notations introduced above)
◦ (j − 1)Q = (xj, zj)
◦ P + jQ = (x1, z1)
◦ A and B are constants.

We first describe the attack of the algorithm ScalarMult, before considering the fault
attack against the whole Tate pairing algorithm.

If the secret is the point P Suppose that the point P is secret. The fault attack provide
us z1, the values A, B, xj and zj are public. All together, they verify the equation

λzP = β(x2P + z2P ) + γ(x2P − z2P ),

where the data in bold (λ,β,γ) are known. The coordinates xP and zP are the values
we are looking for.

The point P is given in projective coordinates, this equality is correct for any represen-
tative of the point P , i.e. for any α 6= 0 we have that

λ(αzP ) = β((αxP )2 + (αzP )2) + γ((αxP )2 − (αzP )2).
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As the coordinates of P are such that xP zP 6= 0, we can consider that α = 1
zP

and write
the equation

λ = β((x′P )2 + 1) + γ((x′P )2 − 1),

which leads to

(x′P )2 =
λ− β + γ

β − γ
.

Up to the sign, we find one coordinate of a representative of the point P and from that
point we can find the secret.

If the secret is the point Q The formulas are symmetric in the coordinates of P and jQ.
Following the same scheme, we obtain z1 for j not equal to the order of Q and that gives
the coordinates of a representative of jQ, knowing j. To find the coordinates of Q, we just
have to compute the inverse of j mod (l) and after that we can recover the coordinates of
the point Q.

The condition to perform the fault attack when Q is secret is to stop the computation
before j = l, as Q is a point of order l. This is a simplification of the fault attack against
the pairing considering Miller’s algorithm, because we only need one faulty execution of
ScalarMult.

Considering the computation of the Tate pairing Recall that the algorithm to compute
the Tate pairing is

eT =
ScalarMult(P̃ +Q, Q̃, P̃ , l)i

ScalarMult(Q̃, Q̃, 0̃, l)i

0̃i

P̃i
.

The attacks described above for ScalarMult can be directly adapted to the Tate pairing

(and also to the Weil pairing). For efficiency reasons, the computation of ScalarMult(P̃ +Q, Q̃, P̃ , l)i
and ScalarMult(Q̃, Q̃, 0̃, l)i would certainly be implemented in parallel. As a consequence, the
fault attack forces the algorithm to stop after the same number of iterations and the result

ScalarMult(P̃ +Q, Q̃, P̃ , j)i and ScalarMult(Q̃, Q̃, 0̃, j)i, for the same integer j. For both
cases, either P secret or either Q, the homogeneity of projective coordinates is a trapdoor
that gives information about the secret. Let P be the secret point and Q be public, then the
coordinate P̃i is also secret, but the homogeneity of the projective coordinates allows us to
consider that for example the z coordinate is set to 1, exactly like in the attack described
above. We just have to be careful to set the same coordinate to 1 in both calls to ScalarMult,
the z one for example. The Equation (1) would give a slightly different system but linear
and easily solvable. The method is the same if the point Q is secret.
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Countermeasure to the fault attack Considering that the fault attack uses the homo-
geneity of the coordinates, the countermeasure to the DPA attack is clearly not sufficient. We
have to present another countermeasure and this countermeasure must protect the pairing
algorithm from the fault and the DPA attacks. So, we have to modify the coordinates of
the point P and Q for every pairing computation. A solution would be to use the bilinearity
of the pairing [8]. Indeed, if we compute the Tate pairing between the points P and Q, the
bilinearity induces that

eT (P,Q) = eT
(
δP, (δ−1 mod (l))Q

)
,

for a non zero integer δ. The cost of this countermeasure consists in two exponentiations
over the variety A(K).

4 Conclusion

We analyze the weaknesses of the pairings over Theta function with respect to side chan-
nel attacks. We consider the differential power analysis and the fault attack. The scheme
of the differential power analysis embraces the differential electromagnetic attack and the
correlation power analysis. The ScalarMult algorithm is sensitive to the DPA attack, but the
homogeneity of the projective coordinates provides a native countermeasure. Unfortunately,
the homogeneity is a trapdoor for the fault attack. The fault attack against pairing over
Theta functions is easier than in the case of pairings using the Miller’s algorithm. We only
need one fault to recover the secret. As the homogeneity of the coordinates is no longer a
countermeasure, we present an alternative countermeasure. This countermeasure relies on
the bilinearity of pairings and is efficient for all side channel attacks.
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