Highly integrated power electronic converters using active devices embedded in printed-circuit board

Chenjiang Yu1, Cyril Buttay2, Éric Labouré1, Vincent Bley3, Céline Combettes3

1GEEPS (LGEP), Paris, France
2Laboratoire Ampère, Lyon, France
3LAPLACE, Toulouse, France

17/4/15
Outline

Introduction

Review of PCB-based packaging

Proposed Embedding Technique

Summary and Conclusion
Outline

Introduction

Review of PCB-based packaging

Proposed Embedding Technique

Summary and Conclusion
Advantages of die embedding

The Printed-Circuit-Board technology (PCB) enables:

- higher interconnect density
 - multi-layer
 - small pitch (down to 25 μm linewidth)
- Low inductance [1]
 - small size
 - laminated busbar structure
- batch-processed manufacturing
 - all interconnects are processed at once

E. Hoene, “Ultra Low Inductance Package for SiC” ECPE workshop on power boards, 2012
Advantages of die embedding

The Printed-Circuit-Board technology (PCB) enables:

- higher interconnect density
 - multi-layer
 - small pitch (down to 25 µm linewidth)
- Low inductance [1]
 - small size
 - laminated busbar structure
- batch-processed manufacturing
 - all interconnects are processed at once

E. Hoene, “Ultra Low Inductance Package for SiC” ECPE workshop on power boards, 2012
Advantages of die embedding

The Printed-Circuit-Board technology (PCB) enables:

- higher interconnect density
 - multi-layer
 - small pitch (down to 25 µm linewidth)
- Low inductance [1]
 - small size
 - laminated busbar structure
- batch-processed manufacturing
 - all interconnects are processed at once

E. Hoene, “Ultra Low Inductance Package for SiC” ECPE workshop on power boards, 2012
Outline

Introduction

Review of PCB-based packaging

Proposed Embedding Technique

Summary and Conclusion
Delft TU “folded” converter [2, 3]

- Use of a flex substrate to form windings,
- wrapping around the larger components
- thermal management might prove difficult
Literature Review – Flex PCB interconnects

- Flex PCB instead of wirebonds
- Die top contact with solder/sintering
 - requires suitable finish
- backside attached to a DBC
- commercially available from Semikron
- advantages:
 - low profile, low inductance
 - higher interconnect density

Literature Review – Flex PCB interconnects

- Flex PCB instead of wirebonds
- Die top contact with solder/sintering
 - requires suitable finish
- backside attached to a DBC
- commercially available from Semikron

advantages:
- low profile, low inductance
- higher interconnect density

T. Stockmeier et al. “SKiN: Double side sintering technology for new packages”, ISPD 2011
Literature Review – Flex PCB interconnects

- Flex PCB instead of wirebonds
- Die top contact with solder/sintering
 - requires suitable finish
- backside attached to a DBC
- commercially available from Semikron
- advantages:
 - low profile, low inductance
 - higher interconnect density

Silver-sintered interconnects and Epoxy/Kapton insulation [7]

Silver-sintered interconnects and Epoxy/Kapton insulation [7]

SiPLIT Copper electroplating, laminated isolation laser-structured in-situ [8]

Embedding of capacitive layer [9]

- Established tech. in consumer electronics
- Mostly targeted at low-voltage
- Capacitance values: 10 pF – 5nF/cm²
Embedding of capacitive layer [9]
- Established tech. in consumer electronics
- Mostly targeted at low-voltage
- Capacitance values: 10 pF – 5nF/cm²

Integration of passives [10]
- Capacitive layers
- Magnetic layers
- Embedded Passives Integrated Circuit (emPIC)

Literature Review – Die embedding in PCB – 1

Patents on chip embedding [11]

Very active area in recent years
Many applications to high interconnect density
Several industrial developments (A&T, Schweizer, etc.)

Low-inductance packaging for SiC [1]

- Half bridge module
- 0.8 nH loop inductance
- Embedding die using stud bumps

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012
Low-inductance packaging for SiC [1]

- Half bridge module
- 0.8 nH loop inductance
- Embedding die using stud bumps

- Power module development through german project Hi-LEVEL [12]
- 10 kW and 50 kW demonstrators
- Thick copper or DBC for thermal management

E. Hoene, "Ultra Low Inductance Package for SiC" ECPE workshop on power boards, 2012

CAD tools with embedding capability [13]

- Automatic placement of parts
- Design rules (cavity size, height check, etc.)
- Generation of the manufacturing data
 - Position of dies, cavities, laser drilling, etc.

Outline

Introduction

Review of PCB-based packaging

Proposed Embedding Technique

Summary and Conclusion
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process

- Start with a DBC substrate
- Die attach (silver sintering)
- PCB stacking
- PCB lamination
- Topside copper etching
- Laser ablation
- Copper electroplating
Overview of the process – significant points

- Backside die attach with silver sintering:
 - The die does not move during assembly
 - Accurate positioning
- Ablation using a CO₂ laser
 - Very good selectivity (metal layers insensitive to laser light)
 - Use of the copper layer as an alignment mask
- Prototype-scale equipment used
 - Can manufacture prototypes from 4x4 cm² up to 21x28 cm²
 - Affordable, useful for process development.
Overview of the process – significant points

- Backside die attach with silver sintering:
 - The die does not move during assembly
 - Accurate positioning
- Ablation using a CO₂ laser
 - Very good selectivity (metal layers insensitive to laser light)
 - Use of the copper layer as an alignment mask
- Prototype-scale equipment used
 - Can manufacture prototypes from 4x4 cm² up to 21x28 cm²
 - Affordable, useful for process development.
Overview of the process – significant points

- Backside die attach with silver sintering:
 - The die does not move during assembly
 - Accurate positioning
- Ablation using a CO$_2$ laser
 - Very good selectivity (metal layers insensitive to laser light)
 - Use of the copper layer as an alignment mask
- Prototype-scale equipment used
 - Can manufacture prototypes from 4x4 cm2 up to 21x28 cm2
 - Affordable, useful for process development.
Effect of die finish

Two die finishes evaluated
- standard Al topside
- Ti/Cu PVD with a shadow mask
Cross section

- vertical walls in epoxy layers
- good self-alignment
- electroplated copper too thin

5 min electroplating on Al-finished die
Electrical Characterization

Tests performed in air, without additional passivation

die finish and electroplating time have a strong effect on characteristic
Tests performed in air, without additional passivation

die finish and electroplating time have a strong effect on characteristic
Outline

Introduction

Review of PCB-based packaging

Proposed Embedding Technique

Summary and Conclusion
Summary and Conclusion

- Active developments on PCB-embedding
 - Scalable technology
 - Allows for more compact systems
 - Attractive for fast, wide-bandgap devices
- Presentation of a prototype-scale process
 - Full details in the paper!
 - First results on large-die diode embedding
- Developments to come: embedding of an IGBT/diode half bridge:
 - Simple generation of all files from CAD (prepreg cutouts, dies opening, ...)
 - Validation of alignment accuracy with the gate of the IGBT
 - Patterning of topside, mounting of SMT components
Summary and Conclusion

- Active developments on PCB-embedding
 - Scalable technology
 - Allows for more compact systems
 - Attractive for fast, wide-bandgap devices
- Presentation of a prototype-scale process
 - Full details in the paper!
 - First results on large-die diode embedding
- Developments to come: embedding of an IGBT/diode half bridge:
 - Simple generation of all files from CAD (prepreg cutouts, dies opening, ...)
 - Validation of alignment accuracy with the gate of the IGBT
 - Patterning of topside, mounting of SMT components
Summary and Conclusion

- Active developments on PCB-embedding
 - Scalable technology
 - Allows for more compact systems
 - Attractive for fast, wide-bandgap devices
- Presentation of a prototype-scale process
 - Full details in the paper!
 - First results on large-die diode embedding
- Developments to come: embedding of an IGBT/diode half bridge:
 - Simple generation of all files from CAD (prepreg cutouts, dies opening...)
 - Validation of alignment accuracy with the gate of the IGBT
 - Patterning of topside, mounting of SMT components
Summary and Conclusion

▶ Active developments on PCB-embedding
 ▶ Scalable technology
 ▶ Allows for more compact systems
 ▶ Attractive for fast, wide-bandgap devices
▶ Presentation of a prototype-scale process
 ▶ Full details in the paper!
 ▶ First results on large-die diode embedding
▶ Developments to come: embedding of an IGBT/diode half bridge:
 ▶ Simple generation of all files from CAD (prepreg cutouts, dies opening...)
 ▶ Validation of alignment accuracy with the gate of the IGBT
 ▶ Patterning of topside, mounting of SMT components
Summary and Conclusion

- Active developments on PCB-embedding
 - Scalable technology
 - Allows for more compact systems
 - Attractive for fast, wide-bandgap devices
- Presentation of a prototype-scale process
 - Full details in the paper!
 - First results on large-die diode embedding
- Developments to come: embedding of an IGBT/diode half bridge:
 - Simple generation of all files from CAD (prepreg cutouts, dies opening...)
 - Validation of alignment accuracy with the gate of the IGBT
 - Patterning of topside, mounting of SMT components
Summary and Conclusion

- Active developments on PCB-embedding
 - Scalable technology
 - Allows for more compact systems
 - Attractive for fast, wide-bandgap devices
- Presentation of a prototype-scale process
 - Full details in the paper!
 - First results on large-die diode embedding
- Developments to come: embedding of an IGBT/diode half bridge:
 - Simple generation of all files from CAD (prepreg cutouts, dies opening...)
 - Validation of alignment accuracy with the gate of the IGBT
 - Patterning of topside, mounting of SMT components
Bibliography I

Thank you for your attention

cyril.buttay@insa-lyon.fr

This work was funded by the French National Research Agency (ANR) under the grant name ETHAER.
The authors thank Mr Gilles BRILLAT for his technical help.