
HAL Id: hal-01196489
https://hal.science/hal-01196489

Preprint submitted on 9 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NP versus PSPACE
Frank Vega

To cite this version:

Frank Vega. NP versus PSPACE. 2015. �hal-01196489�

https://hal.science/hal-01196489
https://hal.archives-ouvertes.fr

NP versus PSPACE

Frank Vega

Abstract

The P versus NP problem is one of the most important and unsolved problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? This
incognita was first mentioned in a letter written by Kurt Gödel to John von Neumann in 1956.
However, the precise statement of the P versus NP problem was introduced in 1971 by Stephen
Cook in a seminal paper. Another major complexity class is PSPACE. Whether P = PSPACE
is another fundamental question that it is as important as it is unresolved. All efforts to find
polynomial-time algorithms for the PSPACE-complete problems have failed. We shall prove the
existence of a problem in NP and PSPACE-complete. Since, PSPACE is closed under reductions
and NP is contained in PSPACE, then we have that NP = PSPACE.

Keywords: P, NP, PSPACE, PSPACE-complete, GEOGRAPHY
2000 MSC: 68-XX, 68Qxx, 68Q15

1. Introduction

The P versus NP problem is a major unsolved problem in computer science. This problem
was introduced in 1971 by Stephen Cook [1]. It is considered by many to be the most important
open problem in the field [2]. It is one of the seven Millennium Prize Problems selected by the
Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution.

The argument made by Alan Turing in the twentieth century states that for any algorithm
we can create an equivalent Turing machine [3]. There are some definitions related with this
model such as the deterministic or nondeterministic Turing machine. A deterministic Turing
machine has only one next action for each step defined in its program or transition function [4].
A nondeterministic Turing machine can contain more than one action defined for each step of
the program, where this program is not a function, but a relation [4].

Another huge advance in the last century was the definition of a complexity class. A language
L over an alphabet is any set of strings made up of symbols from that alphabet [5]. A complexity
class is a set of problems, which are represented as a language, grouped by measures such as the
running time, memory, etc [5].

In computational complexity theory, the class P consists in all those decision problems (de-
fined as languages) that can be decided on a deterministic Turing machine in an amount of time
that is polynomial in the size of the input; the class NP consists in all those decision problems
whose positive solutions can be verified in polynomial-time given the right information, or equiv-
alently, that can be decided on a nondeterministic Turing machine in polynomial-time [6]. On

Email address: vega.frank@gmail.com (Frank Vega)
Preprint submitted to Theoretical Computer Science September 9, 2015

the other hand, PS PACE is the class of all languages recognizable by polynomial space bounded
deterministic Turing machines that halt on all inputs [7].

The biggest open question in theoretical computer science is the following one:
Is P equal to NP?
There is another important complexity class called PSPACE-complete [7]. A language L is

PSPACE-complete if L is in PS PACE, and every PS PACE problem can be reduced in polynomial-
time to L [7]. We shall define a new problem called ODDPATH-HORNUNSAT. We shall show
this problem is NP and PSPACE-complete. Since, PS PACE is closed under reductions and
NP ⊆ PS PACE, then we have that NP = PS PACE [4].

2. Theoretical framework

2.1. The SAT problem

We say that a language L1 is polynomial-time reducible to a language L2, written L1 ≤p L2,
if there exists a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for all
x ∈ {0, 1}∗,

x ∈ L1 if and only if f (x) ∈ L2.

There is an important complexity class called NP-complete [6]. A language L ⊆ {0, 1}∗ is
NP-complete if

• L ∈ NP, and

• L′ ≤p L for every L′ ∈ NP.

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ NP-complete, then L is
NP-hard [5]. Moreover, if L ∈ NP, then L ∈ NP-complete [5].

One of the first discovered NP-complete problems was S AT [7]. An instance of S AT is a
Boolean formula φ which is composed of

• Boolean variables: x1, x2, ;

• Boolean connectives: Any Boolean function with one or two inputs and one output, such
as ∧(AND), ∨(OR), ⇁(NOT),→(implication),↔(if and only if); and

• parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables of φ, and a
satisfying truth assignment is a truth assignment that causes it to evaluate to true. A formula with
a satisfying truth assignment is a satisfiable formula. The S AT asks whether a given Boolean
formula is satisfiable.

One convenient language is 3CNF satisfiability, or 3S AT [5]. We define 3CNF satisfiability
using the following terms. A literal in a Boolean formula is an occurrence of a variable or its
negation. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an
AND of clauses, each of which is the OR of one or more literals. A Boolean formula is in
3-conjunctive normal form, or 3CNF, if each clause has exactly three distinct literals.

For example, the Boolean formula

2

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF. The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. In 3S AT , we are asked whether a given Boolean formula φ in 3CNF
is satisfiable.

2.2. The HORNSAT problem

We say that a language L1 is logarithmic-space reducible to a language L2, written L1 ≤log L2,
if there exists a logarithmic-space computable function f : {0, 1}∗ → {0, 1}∗ such that for all
x ∈ {0, 1}∗,

x ∈ L1 if and only if f (x) ∈ L2.

The logarithmic space reduction is frequently used for P and below [4].
There is an important complexity class called P-complete [4]. A language L ⊆ {0, 1}∗ is

P-complete if

• L ∈ P, and

• L′ ≤log L for every L′ ∈ P.

One of the P-complete problems is HORNS AT [4]. We say that a clause is a Horn clause if it
has at most one positive literal [4]. That is, all its literals, except possibly for one, are negations
of variables. An instance of HORNS AT is a Boolean formula φ in CNF which is composed only
of Horn clauses [4].

For example, the Boolean formula

(⇁ x2 ∨ x3) ∧ (⇁ x1∨⇁ x2∨⇁ x3∨⇁ x4) ∧ (x1)

is a conjunction of Horn clauses. The HORNS AT asks whether an instance of this problem
is satisfiable [4].

2.3. Directed graph notions

A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary
relation on V [5]. The set V is called the vertex set of G, and its elements are called vertices
(singular: Vertex) [5]. The set E is called the edge set of G, and its elements are called edges [5].

If (u, v) is an edge in a directed graph G = (V, E), we say that (u, v) is outgoing from or leaves
vertex u and is income to or enters vertex v. If (u, v) is an edge in a graph G = (V, E), we say that
vertex v is adjacent to vertex u [5]. In a directed graph, the adjacency relation is not necessarily
symmetric [5]. If v is adjacent to u in a directed graph, we sometimes write u→ v.

A path of length k from a vertex u to a vertex u′ in a graph G = (V, E) is a sequence of vertices
< v0, v1, v2, ..., vk > such that u = v0, u′ = vk, and (vi−1, vi) ∈ E for i = 1, 2, ..., k [5]. The length
of the path is the number of edges in the path [5]. The path contains the vertices v0, v1, ..., vk

and the edges (v0, v1), (v1, v2), ..., (vk−1, vk) [5]. If there is a path p from u to u′, we say that u′ is
reachable from u via p [5]. A path is simple if all vertices in the path are distinct [5].

3

2.4. The GEOGRAPHY problem

A language L ⊆ {0, 1}∗ is PSPACE-complete if

• L ∈ PS PACE, and

• L′ ≤p L for every L′ ∈ PS PACE.

Perhaps one the most fundamental problem for PS PACE is the game of GEOGRAPHY [4].
GEOGRAPHY is an elementary-school game played by two players, called here “P1” and “P2”
[4]. We can formulate this games as follows: We have a directed graph G = (V, E) whose nodes
are all the cities of the world, and such that there is an edge from city i to city j if and only if
the last letter in the name of i coincides with the first letter in the name of j [4]. Player P1 starts
picking a node 1, then player P2 picks another node to which there is an edge from 1, say node
2. Player P1 then must reply picking a node to which there is an edge from 2 without taking
the used nodes 1 and 2. In this way, with the player alternating, it is defined a simple path from
G. The first player that cannot continue the path because all edges out of the current tip lead to
nodes already used, loses [4].

We can generalize this to any given directed graph G; this generalization may imply not
only a planet with arbitrarily many cities, but, even less realistically, one with an arbitrarily
large alphabet [4]. Hence, the GEOGRAPHY would be the following computational problem:
Given a directed graph G and a starting node 1, is it a win for P1? It is a proved result that the
GEOGRAPHY belongs to PSPACE-complete [4].

3. Results

Definition 3.1. A sat-graph, written SAT-G = (V, E, κ), is a directed graph G = (V, E) with a
mapping function κ, such that κ maps each vertex u ∈ V to a Boolean formula.

Definition 3.2. Given a sat-graph SAT-G = (V, E, κ) and a starting node u, the problem called
as ODDPATH-HORNUNSAT consists in deciding whether exists a simple path of vertices <
v0, v1, v2, ..., vk > such that u = v0, κ(v0) ∧ κ(v1) ∧ κ(v2) ∧ ... ∧ κ(vk) ∈ HORNUNS AT, and the
length of the path is odd.

Note: See the definition of simple and length of a graph path in section 2. HORNUNS AT
would be the complement language of HORNS AT , that is, the instances of HORNS AT which
are unsatisfiable (see section 2).

Theorem 3.3. ODDPATH-HORNUNSAT ∈ NP.

Proof. Given a sat-graph SAT-G = (V, E, κ) and a starting node u, we can check in polynomial-
time whether a path p =< v0, v1, v2, ..., vk > is a certificate of this instance just verifying that
u = v0, checking that all vertices in the path are distinct, checking that the length of the path is
odd, and verifying in polynomial-time whether κ(v0)∧κ(v1)∧κ(v2)∧ ...∧κ(vk) ∈ HORNUNS AT
since HORNUNS AT ∈ P due to P is closed under complement [4]. Consequently, there is a
polynomial-time verifier for ODDPATH-HORNUNSAT, and thus, ODDPATH-HORNUNSAT ∈
NP [4].

Theorem 3.4. ODDPATH-HORNUNSAT ∈ PSPACE-complete.

4

Proof. ODDPATH-HORNUNSAT ∈ PS PACE, because NP ⊆ PS PACE [4]. Given a di-
rected graph G and a starting node u, we will create a sat-graph SAT-G, such that (G, u) ∈
GEOGRAPHY if and only if (SAT-G, u) ∈ ODDPATH-HORNUNSAT. For this purpose, we
will do the following actions:

(1) First, we take the directed graph G = (V, E) and for each vertex v ∈ V , we create a new state
v′ and add an edge v→ v′. We will call the vertex v′ as the clone vertex of v. In this way, we
create a new graph G′ = (V ′, E′).

(2) Next, for each vertex v ∈ V ′ in the graph G′ = (V ′, E′), we create a new Boolean variable xv

which will be linked to vertex v. We say that xv is represented by the vertex v.
(3) After that, we create a mapping function κ, such that for each vertex v ∈ V ′ in the graph

G′ = (V ′, E′), we have κ(v) = xv if v has not outgoing edges or κ(v) = xv∧ (⇁ xv1∨⇁ xv2 ⇁
xv3 ∨ ...∨ ⇁ xvm) when v has m > 0 outgoing edges, where xv is represented by the vertex v
and xv1 , xv2 , xv3 , ..., xvm are represented by the vertices v1, v2, ..., vm which are all the vertices
that are adjacent to vertex v (see section 2 for definition of the adjacency relation). We will
call this clause of all negated variables inside of κ(v) as the adjacency clause of v.

(4) Finally, we obtain a sat-graph SAT-G = (V ′, E′, κ).

All these steps can be done in polynomial-time just iterating through the vertices and edges
of G. In the step (1), we need to iterate through the set of vertices V to add new |V | vertices and
edges. The algorithm of insertion of a polynomial amount of new vertices and edges into a graph
will take only a polynomial-time [5]. In the step (2), we need to iterate through the set of vertices
V ′ to create the Boolean variables of each vertex. This will only need a polynomial-time since
|V ′| = 2 × |V |. Finally, in the step (3), we need to iterate through the set of vertices V ′ and edges
of E′ to create the mapping function κ. This would take a polynomial-time in relation to |V |.

Now, suppose we take a simple path of vertices p =< v0, v1, v2, ..., vk > in SAT-G, such that
u = v0 and φ = κ(v0)∧κ(v1)∧κ(v2)∧...∧κ(vk). We can see the inner formula xv0∧xv1∧xv2∧...∧xvk

inside of φ is satisfiable, and therefore, whether φ is in HORNUNS AT or not depends principally
of the adjacency clauses of vertices in p. Indeed, φ ∈ HORNUNS AT if and only if there is
an adjacency clause of some vertex vi inside of φ which has all its negated Boolean variables
represented by a vertex in p. Moreover, this will only happen in the adjacency clause of vk−1,
because in the other vertices of the path the respective adjacency clauses can be true, because
the Boolean variables represented by the respective clone vertices can be false. Certainly, if φ ∈
HORNUNS AT , then vk (the last vertex in the path p) should necessarily be a clone vertex. The
reason is this one: If the path p does not contain a clone vertex, then it would be impossible that
the adjacency clause of some vertex vi (where p contains vi) will be false for all truth assignment
of φ, because we could always make true the adjacency clauses of vertices in p just evaluating
the Boolean variables represented by the respective clone vertices in false. At the same time, it
will be impossible that the path p could have a clone vertex different of the last one, because the
clone vertices does not have outgoing edges.

But, what does this mean?
It would mean, we cannot reach any adjacent vertex from vertex vk−1 that is not already

visited in the path, except for its clone vertex. But, this is exactly what happens when a player
loses in the game of GEOGRAPHY . In addition, the path p′ =< v0, v1, v2, ..., vk−1 > represents a
winner path from the starting node u in the game of GEOGRAPHY , where the winner is player
P1 if the length of p′ is even, else the winner is player P2. Therefore, as the path p contains
another vertex (vk: The clone vertex of vk−1), then the winner will be P1 if the length of p is odd.
Hence, we can conclude with the following result:

5

(G, u) ∈ GEOGRAPHY if and only if (SAT-G, u) ∈ ODDPATH-HORNUNSAT.

Since GEOGRAPHY belongs to PSPACE-complete, and the time of the reduction above is
polynomial, then we obtain ODDPATH-HORNUNSAT ∈ PSPACE-complete.

Theorem 3.5. NP = PS PACE.

Proof. We prove ODDPATH-HORNUNSAT is NP and PSPACE-complete in Theorems 3.3 and
3.4. Since, PS PACE is closed under reductions and NP ⊆ PS PACE, then we have that NP =

PS PACE [4].

References

[1] S. A. Cook, The complexity of Theorem Proving Procedures, in: Proceedings of the 3rd Annual ACM Symposium
on the Theory of Computing (STOC’71), ACM Press, 1971, pp. 151–158.

[2] L. Fortnow, The Status of the P versus NP Problem, Communications of the ACM 52 (9) (2009) 78–86, available at
http://www.cs.uchicago.edu/∼fortnow/papers/pnp-cacm.pdf. doi:10.1145/1562164.1562186.

[3] A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, Proceedings of the
London Mathematical Society 42 (1936) 230–265.

[4] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, 2001.
[6] O. Goldreich, P, Np, and Np-Completeness, Cambridge: Cambridge University Press, 2010.
[7] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition,

San Francisco: W. H. Freeman and Company, 1979.

6

