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Abstract—the combination of ARM processor and partially 

reconfigurable FPGA device is an emerging technology in the 

current embedded domain. In this paper we propose a custom 

microkernel on a hybrid ARM-FPGA platform, which is capable 

of managing reconfigurable hardware accelerators. We will 

introduce the hardware platform on which the microkernel has 

been developed and focus on the custom architecture supporting 

the management of partial reconfiguration and software tasks. 

An actual use case is studied and presented at the end of this 

paper to demonstrate the feasibility of our approach.  

Index Terms—FPGA, reconfigurable architectures, embedded 

system, microkernel.  

I. INTRODUCTION 

 

In recent years, the commodity field programmable gate 

array (FPGA) has become a widely-applied technology for 

embedded applications. The FPGA fabric permits time-

multiplexed sharing of the hardware resources so that more 

modules can be implemented in one chip. However, the 

traditional FPGA computing lacks flexibility since the whole 

fabric is required to be reconfigured even when modification is 

required for part of FPGA, thus causing enormous time 

overhead and power consumption. To deal with this drawback, 

the Dynamic Partial Reconfiguration (DPR) was proposed as a 

solution, which allows particular areas of an FPGA to be 

altered while the rest executes without interrupt. With DPR 

feature, an FPGA is capable of implementing more complex 

architectures by breaking it down into smaller mutually 

exclusive modules. In this case, hardware accelerators, which 

can be dynamically dispatched and managed, are becoming as 

flexible as software functions, being then considered as a 

parallel computing resource to processors rather than fixed 

accelerators. However, the application of DPR is currently 

limited due to the design complexity [1]. 

On the other hand, there have been increasing concerns 

about the reliability and security of embedded systems, 

especially for mobile devices. One response to this concern has 

consisted in elaborating an efficient management of such 

systems. In this context, dealing with microkernels constitutes 

a promising idea because it allows executing applications of 

different natures (commodity APIs, real-time tasks, etc.) in 

their own isolated container to ensure isolation and thus 

security. Consequently, it has been a popular research trend in 

the embedded systems domain [2]. In embedded circuits such 

as FPGAs, dealing with a microkernel may also be of interest 

since it is then possible to easily add a new DPR management 

service to the existing services already provided by the kernel. 

In this case, besides the kernel management, it is also necessary 

to implement a hardware architecture dedicated to the 

coordination of reconfigurable resources and to the cooperation 

with high-level applications. 

In this paper, we propose an approach of DPR management 

by implementing a custom microkernel Mini-NOVA on a 

hybrid ARM-FPGA Xilinx Zynq-7000 platform [3]. Mini-

NOVA is based on ARM architecture and integrated with the 

management service of reconfigurable hardware resources, 

which allows for dynamic SW/HW task management, secure 

execution environment and efficient communication..  

The remainder of the paper is organized as follows: Section 

II presents backgrounds and works done in DPR domain. In 

Section III, an overview of the embedded platform is given, 

including the components of our architecture. Section IV 

demonstrates the design and implementation of the Mini-

NOVA microkernel in details. In Section V, we present a case 

study to evaluate the functionality and performance of our 

architecture. Finally, the conclusion of our work will be given 

in Section VI. 

II. BACKGROUNDS 

 

As embedded systems become increasingly complex and as 

designers face more and more challenges, FPGA’s adaptivity 

has become a crucial asset. The principle of DPR is to permit 

specific areas of the FPGA to be reprogrammed with an 

alternative behavior while the rest of the fabric remains the 

same, so that the inherent flexibility of FPGA is improved. 

Currently, there are several partially reconfigurable 

commercial FPGA series, which include the Atmel AT40K and 

the Xilinx Virtex FPGA family [4], and the newly-released 

Xilinx Zynq-7000. In Xilinx FPGA products, the size of 

reconfiguration data varies with the amount and types of 

reconfigurable hardware resources. For complex computation-

massive modules, their data size could be quite large, meaning 

that the reconfiguration overhead could be quite considerable 

for these modules. Especially in a computing-intensive system, 
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where several mutually exclusive components are sharing 

reconfigurable resources, the time lost on reconfiguration will 

severely degrade the overall performance [4]. Therefore, a 

dedicated efficient management is essential in DPR systems. 

Numerous studies have been led to propose efficient 

hardware architecture management with OS support. One 

typical embedded OS which based on Linux kernel was 

OS4RS [5], which aims for a dynamic relocation of tasks 

between a host processor and reconfigurable hardware. Other 

researches include run-time reconfigurable architectures [6][7] 

and hardware-implemented OS services [8][9], which have 

focused on providing effective online scheduling and hardware 

task communication. However, the matter that restricts 

performances of classical FPGA devices is the fact that most of 

them are employing embedded processors such as MicroBlaze 

or PowerPC [8][9], whose computing ability is relatively 

limited [10]. 

Unlike previous devices, the Zynq-7000 platform integrates 

a powerful dual-core ARM Cortex-A9 processor with various 

on-board resources and peripherals [3]. With this fully capable 

processing system, the CPU processes software data, while the 

programmable fabric is considered as a unique auxiliary 

computing resource. In this case, the reconfiguration 

management is expected to be one of many tasks in the system 

and a specific kernel is required to rationally dispatch both 

hardware and software resources.  

Meanwhile, though microkernel technologies have been 

widely studied in the embedded system domain, its application 

in reconfigurable computing are relatively less studied. One 

research in this domain is introduced in [11], where a 

hardware-based microkernel is used to provide OS services. 

Compare to OS support, the advantage of the microkernel 

technique is that it offers system security, flexibility, task 

isolation and real-time capability [12]. These features are quite 

suitable for an embedded system, because in most applications’ 

scenarios such as vehicles and mobile phones, both safety and 

commodity APIs are executing. While most existing 

microkernels on ARM do not consider the reconfigurable 

hardware, one possible solution is to port an appropriate 

microkernel from existing kernels. In [13], a L4 kernel is 

ported to manage both hardware and software tasks, but 

without high-performance hardware modules. Thus, the 

management of dynamic partial reconfiguration is still absent. 

In a microkernel, the key feature to focus on, is the size of its 

trust computing base (TCB), which determines the security 

level, the dispatching speed and the porting complexity. 

III. ARCHITECTURE OVERVIEW 

The on-site reprogrammable FPGA fabric integrated with 

powerful ARM processors brings up enormous possibilities for 

embedded technique, while the approaches of fully exploiting 

and designing efficient methods are far from sufficient. In this 

paper, we propose a platform framework based on the hybrid 

ARM-FPGA platform of the Zynq-7000. The target of our 

approach is to establish a microkernel-based embedded system 

with flexible hardware tasks. A simplified block diagram of the 

proposed architecture is shown in Fig. 1.  

Fig. 1.  Block diagram of architecture 

The proposed architecture is divided into two domains: the 

Processing System (PS) and the Programmable Logic (PL). 

Processing System is the central processing unit and includes 

the software computing resources, such as the DDR on chip 

memory (OCM), the ARM Cortex-A9 processor and various 

peripherals. On the CPU, a simplified microkernel hosts guest 

applications/software and specific user services in the user 

space. Microkernel is responsible to schedule these 

components properly. The Programmable Logic mainly 

consists of the FPGA fabric, which houses different hardware 

accelerators and executes concurrently with the PS side.  To 

control and reconfigure the FPGA modules dynamically, a 

specific user service routine Hardware Task Manager is 

proposed as a guest in the user space. In this way the FPGA 

resource can be dispatched as standards user application and 

thereby hardware and software tasks can be managed 

concurrently in our framework.  

With DPR technique, it is possible to switch one or several 

HW tasks without interfering the rest of the accelerators. Such 

a feature can be applicable not only in increasing the system 

performance, but also in some scenarios where heterogeneous 

hardware structures are mandatory. For example, to offer the 

support for coexistence communication standards such as 

cellular communication standards and wireless LAN(WLAN), 

a reconfigurable platform could be quite suitable. We will 

present a practical use case in Section V. 

A. Hardware task organization 

In reconfigurable embedded systems, hardware tasks are FPGA 

modules with different functionalities and fabric structures, 

which are either custom-designed computing blocks or 

commercial IP cores. In our system, hardware tasks are pre-

defined and synthesized by Xilinx XPS design flow, generating 

different bitstream-format files which hold the modules’ fabric 

information. These bitstream files can be stored in memory 

device and implemented in certain areas of the FPGA.   

As shown in Fig.2, within the FPGA fabric there exist 

multiple pre-defined areas to house hardware tasks separately,  
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Fig. 2.   Hardware task organization 

which are called partial reconfiguration regions (PRR). The 

PRR corresponding to each HW task is pre-determined. These 

hardware task containers execute under the supervision of the 

PRR controller, a special function block to control the behavior 

of hardware tasks. All bitstream files are indexed in a look-up 

table (LUT) by the unique IDs of each HW task, which 

contains the descriptors of each hardware task. The descriptor 

entry indicates the bitstream file’s ID, name, address, size, 

reconfiguration overhead and pre-defined PRR. Different HW 

tasks are dispatched by downloading its bitstream file into its 

assigned PRR. Normally more frequently-called HW tasks may 

have multiple PRRs so that they can be used by different guests 

concurrently. 

We should also note that since the bitstream size is 

determined by the PRR’s size, the reconfiguration overhead is 

also linearly correlated to the PRR’s area and then can be 

precisely predicted.    

B. PL/PS communication port 

To connect PL with PS, we applied 2 types of interface 

based on the standard AXI interface. Some technical statistics 

related to this interface are listed in TABLE I. The general-

purpose AXI port (AXI_GP) is designed for low-speed general 

purpose communication, while the high performance AXI port 

(AXI_HP) is defined for high performance with burst transfer. 

AXI_GP offers a unified mapping to the processor and can be 

accessed as a normal memory access. AXI_HP may transfer 

data blocks as large as 4KB for one burst, which is sufficient 

for general data-processing application. 

On our platform, HW task manager takes control of two 

master AXI_GP interfaces as main method to configure and 

read back the states of HW tasks. It is also possible to have 4 

AXI_HP interfaces that are used at HWs service and in charge 

of  accessing both on chip memory (OCM) and DDR. Since 

AXI_HP is working in the slave mode, data are fetched and 

written back without acknowledging the processor, allowing 

the processor to run simultaneously with HW tasks. 

TABLE I.  PL/PS COMMUNICATION INTERFACE 

Type Num Mode (PS) Access Speed 

AXI_GP 4 
2 Master, 
2 Slave 

Unified 
Addr space 

600MB/s 

AXI_HP 4 4 Slave DMA 1200MB/s 

Fig. 3.   PRR Controller Structure 

C. Reconfiguration interface 

  Two methods for partial reconfiguration are supported on 

the Zynq platform. As shown in the datapath of Fig. 1, PS 

(Processing System) is enabled to initialize bitstream transfers 

from memory to PL (Programmable Logic) through the Device 

Configuration Interface (DevCfg), which will launch a DMA 

transfer via the Processor Configuration Access Port (PCAP). 

Another available reconfiguration datapath is the Internal 

Configuration Access Port (ICAP), which is capable of self-

configuration from the PL side with an AXI4-Lite as transfer 

port. Such a mechanism severely limits the throughput of data 

reconfiguration to 19MB/s. Another drawback of ICAP is the 

additional FPGA resource consumption for its implementation, 

since it requires a hardware structure and will occupy at least 

one AXI interface. To achieve better performance and reduce 

resource consumption, PCAP is used in our platform. 

D. PRR Controller 

In the PL domain, a partial reconfiguration region (PRR) 

controller block is proposed to monitor the behavior of 

hardware tasks. It cooperates with the special user service 

Hardware Task Manager to coordinate the execution of 

software and hardware tasks. As demonstrated in Fig.3, the 

PRR controller allocates to each PRR a group of registers, 

which are mapped into the unified memory space via AXI_GP 

ports, so that CPU may access to them directly. By reading and 

setting values of these registers, CPU is able to monitor and 

change the HW task’s behavior.   

1) Reconfiguration : One major responsibility of the PRR 

controller is to monitor and guarantee the security of HW task 

reconfiguration. It should control the state of PRR and avoid 

unsafe reconfigurations which may cause undesired states such 

as invalid data output or incomplete data frame. Thus when a 

PRR reconfiguration is required, several concerns are involved: 

  If the HW task to be reconfigured is part of a certain 

multi-block pipeline structure, the pipeline should be 

emptied before any HW task switch, so that invalid 

output data are avoided. 

 To maintain the integrity of the data structure being 

processed, considering that for certain computation 
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processes it is mandatory to work with packages of 

data with determined length, PRR reconfigurations 

should be launched in interval of data frames to protect 

data and ensure a smooth HW task switch. 

 A reset should be inserted to the reconfigured PRR to 

put it into a desired state. The new HW task is allowed 

to be activated only after the first complete reset. 

The states of PRRs are presented in their register groups. If 

PRR is not ready to be reconfigured because of the above 

situations, then PRR controller would set the PRR_Reco_Rdy 

bit in the state register to zero so that the CPU won’t try to 

reconfigure it. Once the PRR is ready to be reconfigured, the 

PRR controller sets this bit to high again. 

2) AXI interface : The PRR controller also manages HW 

tasks accesses to the AXI_HP interface. Normally, HW tasks 

are given access to the AXI_HP interface on their own. 

However, in cases where AXI interfaces are insufficient for the 

HW tasks, the PRR controller manages the time-multiplexed 

sharing of this AXI interface. In this case, the PRR controller 

works as a crossbar of datapaths among HW tasks. 

3) Interrupts : the PRR controller is able to generate 

general-purpose interrupts through Shared Peripheral Interrupts 

(SPI) connected to the generic interrupt controller (GIC). These 

IRQs are used to acknowledge important events to the CPU, or 

to synchronize the software tasks with the hardware task’s 

states. They are handled by the microkernel and passed to the 

Hardware Task Manager for proper handling.  

IV. MINI-NOVA MICROKERNEL 

As discussed in Section II, applying microkernel in ARM-

FPGA architecture can greatly improve the management of 

SW/HW tasks since it offers higher security and better 

flexibility. Mircokernel runs on top of bare-metal CPU with the 

basic OS capabilities, serving as an abstract layer between 

physical machine and user applications. The principle of least 

privilege should be strictly followed o guarantee that a minimal 

trust computing base (TCB) is achieved for our microkernel. 

Based on these considerations, we propose a simplified 

microkernel Mini-NOVA; which has dedicated user service 

and scheduling strategy to support DPR management. 

A. Mini-NOVA Overview 

Mini-NOVA is revised from the NOVA micro-hypervisor 

[14], with simplified functionality and reduced complexity, 

which makes it more suitable for embedded systems and also 

more adaptable. Since NOVA is originally designed on x86 

platform, several modifications are made to port it to ARM 

Cortex-A9 architecture, with additional supports for the Zynq-

7000 platform. The overview Mini-NOVA structure is shown 

in Fig.4.  The software space is divided into kernel space and 

user space, with different privilege levels. The kernel code runs 

in the higher level, while user applications and some user 

services run in the lower level (user space), which are referred 

to as the user guests. As the host, the microkernel code is 

restricted to the basic functionalities such as memory manage- 

ment and scheduler, to minimize the TCB size. Most board-

specific support APIs and services are implemented in user 

 

 

Fig. 4.  Mini-NOVA architecture 

space, including HW task manager, application bootloader, and 

supports for on-board peripheral resources. 

To provide isolated execution environment, Mini-NOVA 

creates a kernel object Execution Context (EC) as the 

abstraction of user threads or applications. Each EC is 

exclusively attached to one user guest and saves its execution 

state such as the CPU/FPU register state, stack location, and 

scheduling sequence. By saving and resuming its EC, a given 

task can be scheduled. Since EC is governed by Mini-NOVA 

in kernel space, it is protected from any attacks from user space 

and thus guarantees the isolation and security of each guest. 

Normally user guest are not authorized to perform sensitive 

operations (i.e. page allocation, thread creation, cache 

operation, etc.), which should be handled by Mini-NOVA by 

generating system calls. 

The main features of Mini-NOVA are: 

 Small TCB size (3.5 KLOC in total); 

 Multiple system calls and IRQs provided to user guests 

to handle privileged operations;  

 Separate virtual address spaces for kernel and guest, 

and separated execution environment for each user 

application; 

 Specific Priority-based round-robin scheduling to 

support DPR; 

 Specific user service Hardware Task Manager.  

B. Scheduling Strategy  

Mini-NOVA implements a priority-based round-robin 

scheduling mechanism, which permits the user guests with the 

same priority level to equally share the CPU resource, while 

the higher priority application can always preempt the lower 

ones. The scheduler of Mini-NOVA schedules the user guests 

by manipulating their Execution Contexts (EC). Each EC is 

assigned with a fixed priority level value at its creation. 

Basically, all general guest applications are given the same 

priority level (1 by default) and occupy the CPU in turn. Kernel 

scheduler allocates to each EC a fixed time quantum, and 

forces it to switch to the successor when its time slot is used 

up.  

  However, based on the consideration that hardware tasks 

always require tighter time constrains, a quick response to 
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hardware task management should be guaranteed. Thereby, we 

introduce higher priority levels to the specific services which 

requires hard real-time constrain, such as the HW Task 

Manager. In this case, once scheduled, it can always preempt 

lower priority users can execute immediately. 

As presented in Fig.5, the scheduling strategy is 

implemented by managing the run_queue list, which is 

composed of all executable ECs. ECs at the same priority level 

are organized as double-linked queues. Multiple priority levels 

may coexist in the run_queue, while the CPU is always 

occupied by the highest level ECs. Kernel functions Enqueue() 

and Dequeue() are used to add/delete certain EC to/from the 

run_queue. Whenever the run_queue is changed the kernel 

always invokes the reschedule() function to re-pick the highest 

priority level EC. For example, initially the HW Task Manager  

is created with the priority level 2 and not included in 

run_queue, while general applications equally shares the CPU. 

(Fig.5 (b)) However when HW task management is required, 

the kernel adds the HW Task Manager service into the 

run_queue, and invokes reschedule() to dispatch it as higher 

priority EC. After the requirement is properly handled, the 

Dequeue() is called to remove the HW Task Manager from the 

run_queue and the interrupted round-robin scheduling is 

permitted to continue. This strategy ensures a quick response to 

any hardware task requirement. 

C. Hardware Task Manager 

Hardware Task Manager is proposed as a user service 

provided to guest applications. It cooperates closely with the 

microkernel and is responsible for the DPR management in our 

system. As described in Section III, hardware tasks, or DPR 

modules are stored as bitstreams in the DDR memory, which is 

only accessible by the Hardware Task Manager. Any request to 

reconfigure or dispatch hardware tasks are governed and 

performed by the HW Manager, so that the hardware task 

resources are isolated from other user guests, ensuring the the 

security of the FPGA fabric. To facilitate general user guests to 

requires for hardware task management, we provide a specific 

system call to call the HW Task Manager, whose prototype is: 

Syscall_HW_Manager (HW_task_id, arg01, arg02, arg03) 

Guests may invoke this system call to require for the HW 

Fig. 5.  Scheduling Strategy. (a) Preemptive scheduling; (b) Round-robin 
scheduling 

Fig. 6.  HW Task Manager Process 

task it desires to  implement, by indicating the ID number of 

the target hardware task, and the initial parameters it would 

like to set to the register group of the task (as described in 

Section III). The calling process is demonstrated in Fig. 6.   

As we described, the HW Task Manager is initially not 

activated and stays in suspension. On receiving the system call, 

Mini-NOVA enqueues the HW Task Manager to preempt the 

caller guest, while passing the target hardware task ID and 

arguments to the Manager, too. HW Task Manager then 

handles the caller’s requirement by reconfiguring the desired 

HW task. Then the HW Task Manager generates another 

system call and dequeues itself from the run_queue, giving 

back control to the interrupted caller guest. Different return 

value (Success, Busy, Suspend or Error) is also returned to the 

guest to indicate the status of its requirement. The detailed 

process sequence is listed as following: 

a) First, according to the HW task ID, the HW Manager 

walks through the hardware task LUT to get the information 

of the target HW task, i.e., its container PRR, and the address 

of its bitstream file. 

b) Then the HW Manager checks the state of the PRR 

container, verifying if its available to be reconfigured. If it is 

currently occupied by another guest, then the HW Manager 

quits execution and returns to the caller guest as Busy, 

meaning that its requirement can’t be handled right now. 

c) In other cases, the container PRR is available but not 

ready to be reconfigured yet, since it may be in the middle of 

data processing or a running pipeline, which status is indicated 

by the PRR_Reco_Rdy bit in the PRR register group. In this 

case the HW Manager suspends itself and gives up the CPU 

control to the caller guest with Suspend.  

d) If the container PRR is ready to be reconfigured, then 

the HW Manager writes the arguments to the register group 

and launches a PCAP transfer to download the target bitstream 

file from the DDR into the container PRR. Then it returns to 

the caller guest with the flag Success. 
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e) Following step b), when the HW Manager is 

suspended waiting for the target PRR to be ready for 

reconfiguration, the PRR controller keeps monitoring the 

target PRR and generates an IRQ (IRQ_Reco_Rdy) to 

acknowledge the HW Manager as soon as PRR is ready (i.e. at 

the completion of data frame or pipeline). When receiving this 

IRQ, microkernel resumes the HW Manager to complete the 

PRR’s reconfiguration, repeating step d). 

We should note that the DPR overhead remains an major 

drawback for embedded systems. As a solution, after launching 

a PCAP transfer, we abort the polling-for-done mechanism, 

meaning that the CPU control is directly given back to the 

guest without waiting for the reconfiguration completion. The 

PCAP completion can be acknowledged via PCAP interrupt or 

the guest checking PCAP state.    

V. USE-CASE STUDY 

To verify and evaluate the architecture we proposed, a use 

case based on real application scenario is studied in this 

section. In the use case, a mobile wireless terminal alters the 

configuration of its communication modules to adapt better to 

the channel conditions, which is implemented by dynamically 

reconfigure the hardware accelerators. For example, according 

to the condition of the noise in the channel, different QAM 

modulations are required by the transmitter so that the 

throughput can rapidly adapt to the environment. 

A. Implementation  

The implementation is depicted in Fig.7. In the CPU user 

space, the Channel_Sensor keeps estimate the best level of 

performance in terms of throughput and error rate. It invokes 

the HW Task Manager via system call whenever it decides to 

alter the hardware task modules to adapt to the channel 

condition. In the FPGA fabric, two hardware blocks HW_QAM 

and HW_IFFT are running in pipeline, which respectively 

handles the modulation scheme and the IFFT in the OFDM 

context. For both modulation and IFFT blocks, several optional 

hardware tasks are provided: three constellation-sizes QAM 

modules (4, 16 and 64) and IFFT of different points (from 256 

to 8192 points).  

Note that, since QAM and IFFT blocks run in pipeline, the 

reconfiguration of either one will stall the pipeline and thus 

significant overhead. Thereby, we introduced a multi-path 

structure, implementing a pair of identical PRRs to QAM and 

IFFT receptively, so that during the reconfiguration the 

pipeline continues because only the idle PRR is being reloaded. 

Thus the DPR overhead can be overlapped by the pipeline 

execution. 

B. Result and evaluation 

We obtained the evaluation result under the following 

settings: 100 MHz FPGA Clocking, 18,800 Bits data frame 

size.  The execution of different tasks has been recorded in the 

Gantt chat in Fig. 8.  Initially, a QAM4 modulation scheme 

(PRR0) and a 256 points I-FFT (PRR2) are running, when the 

Channel_Sensor calls the HW Task Manager to switch I-FFT 

mode to 512 points for better performance (t1-t2). Then while 

PRR1 continues running, a PCAP transfer is launched to load  

Fig. 7.  Use-case implementation 

Fig. 8.  Use-case execution Gantt chat 

the HW_IFFT512 module to PRR2, which is currently idle (t3-

t5).  At the completion of PCAP transfer (t5), the new IFFT task 

has been implemented in PRR2, but the pipeline goes to a 

suspension to ensure the currently-processed data frame is 

completely processed (t5-t6). Then the HW_IFFT512 is 

activated and the new pipeline starts to execute (t6). 

We also measured the performance of HW task manager 

through large number of iterations of different cases, and the 

result is listed in TABLE II. EC Switch measures the response 

time from the guest’s requirement to the HW Task Manager’s 

reply. Due to the low complexity and scheduling strategy of 

Mini-NOVA, the hw task requirement can be answered within 

0,0023 ms. We also should note that although the DPR 

overheads of hardware modules are significant, the pipeline  

TABLE II.  PERFORMANCE OF HW TASK MANAGEMENT (MS)  

Task Execution Reconfig. Resource 

Channel_Sensor 3 / / 

HW Task Manager 0.0096 / / 

EC Switch 0.0023 / / 

Pipeline suspension 0.03-0.168 / / 

HW_QAM (4/6/64) 0.03-0.09 /frame 0.231 2% 

HW_IFFT(256-8192) 0.006-0.168/frame 2.71 13% 
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suspension is limited (0.168 ms in worst case) because pipeline 

is not stalled during the reconfiguration. The advantage of DPR 

technology can be proved by the consumed FPGA resources. 

For example, implemented by Xilinx Planahead synthesis tool, 

the computing-intensive IFFT module takes up massive FPGA 

resources (i.e. 5600 LUTs and 1600 SLICEs for 8196 points 

IFFT). With static FPGA circuit, implementing IFFT modules 

from 256 points to 8196 points consumes up to 50% FPGA 

area, while in our system, by reusing the DPR fabric, only 26% 

resources (2 PRRs) are used. Thus the chip cost is significantly 

reduced.    

VI. CONCLUSION 

In this paper, we have proposed a microkernel based on the 

ARM-FPGA architecture, devoted to an efficient management 

of dynamic partial reconfiguration. Specific architectures and 

scheduling strategy have been introduced to the microkernel 

for better performance and higher security. In the use case 

study, we have evaluated our system with practical applications 

and analyzed the results, which proved that our microkernel 

system is able to manage SW/HW tasks and minimize the 

performance degradation caused by the DPR overhead. 
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