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GWENNAËLLE MABON

CREST - ENSAE
3 avenue Pierre Larousse
92245 Malakoff, France

MAP5, Université Paris Descartes
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Abstract. In this paper we consider the convolution model Z = X+Y withX of unknown density
f , independent of Y , when both random variables are nonnegative. Our goal is to estimate linear
functionals of f such as 〈ψ, f〉 for a known function ψ assuming that the distribution of Y is known
and only Z is observed. We propose an estimator of 〈ψ, f〉 based on a projection estimator of f
on Laguerre spaces, present upper bounds on the quadratic risk and derive the rate of convergence
in function of the smoothness of f, g and ψ. Then we propose a nonparametric data driven
strategy, inspired Goldenshluger and Lepski (2011) method to select a relevant projection space.
This methodology permits to estimate the cumulative distribution function of X for instance. In
addition it is adapted to the pointwise estimation of f . We illustrate the good performance of the
new method through simulations. We also test a new approach for choosing the tuning parameter
in Goldenshluger-Lepski data driven estimators following ideas developed in Lacour and Massart
(2015).

Keywords. Deconvolution. Nonparametric density estimation. Adaptive estimation. Linear
functionals. Laguerre basis. Mean squared risk.

AMS Subject Classification 2010: Primary 62G07; secondary 62G99, 62J99.

1. Introduction

In many experiments statisticians do not observe directly the variable of interest X ; instead they
have at hand observations of Z, equal to the sum of X and another random variable Y . In various
situations, Y can modelize a measurement error, and as such, is assumed to be symmetric or
centered. But we can also, in reliability fields, observe the sum of the lifetimes of two components,
the second one being well known. In survival analysis, X can be the time of infection of a disease
and Y the incubation time, and this happens in the so called back calculation problems in AIDS
research. In these last two cases, distributions of X and Y are R+-supported. In this situation, Y
is not considered as a noise but as an additional nuisance process. Indeed a noise distribution is
assumed to be centered, which is not the case anymore. Thus we consider the following model

Zi = Xi + Yi, i = 1, . . . , n, (1)

where the Xi’s are independent identically distributed (i.i.d.) nonnegative random variables (r.v.)
with unknown density f . The Yi’s are also i.i.d. nonnegative variables with known density g.
We denote by h the density of the Zi’s. Moreover the Xi’s and the Yi’s are assumed to be in-
dependent, they are not observed. Our goal is to estimate linear functionals of f defined by
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2 G. MABON

ϑ(f) = 〈ψ, f〉 = E[ψ(X1)] with ψ a known function, from observations Z1, . . . , Zn.

Those assumptions imply that, in Model (1), h(x) = (f ? g)(x) where (ϕ ? ψ)(x) =
∫
ϕ(x −

u)ψ(u) du denotes the convolution product. This setting matches convolution models which is a
classical topic in nonparametric statistics. The problem of recovering the signal distribution f
when it is observed with an additive noise with known error distribution on the real line, has been
extensively studied, see for rates of convergence and their optimality for kernel estimators Carroll
and Hall (1988) and Fan (1991), for wavelets strategy Pensky and Vidakovic (1999), for projection
strategies with penalization Comte et al. (2006) and Butucea and Tsybakov (2008a,b) for the
study of sharp asymptotic optimality ; with an unknown error density, see Neumann (1997) for
kernel estimator and minimax optimality, Johannes (2009) for minimax optimality under various
regularity conditions on f , Comte and Lacour (2011) and Kappus and Mabon (2014) for projection
strategies with penalization.

The problem of one-sided error in the convolution model has been first introduced by Groene-
boom and Wellner (1992) under a constraint of monotonicity of the cumulative distribution function
(c.d.f.). They concentrate on deriving nonparametric maximum likelihood estimators (NPMLE)
of the c.d.f. Some particular cases have been tackled as uniform or exponential deconvolution by
Groeneboom and Jongbloed (2003) and Jongbloed (1998) who propose NPMLE of the c.d.f. of
the Xi’s, which have explicit expressions. For other cases van Es et al. (1998) circumvent the lack
of explicit expression for the NPMLE by proposing an isotonic inverse estimator. In this paper,
we do not use the approach of the NPLME.

Moreover Model (1) is also related to the field of mixture models, see Roueff and Rydén (2005)
and Rebafka and Roueff (2010) who study in particular mixtures of Exponential and Gamma
distributions, which are contained in our framework. These models play a major role in natural
sciences phenomena of discharge or disexcitation as in radioactive decays, the electric discharge of
a capacitor or the temperature difference between two objects.

On one hand the problem of estimating linear functionals in linear models has been widely
studied especially in the setting of the white noise model, see Cai and Low (2003, 2005) and
Laurent et al. (2008) for instance. On the other hand adaptive estimation of linear functionals
has not been much studied in the convolution model. Butucea and Comte (2009), in the context
of Model (1) when the variables Xi’s and Yi’s are R-supported, propose a general estimator of
ϑ(f) using a spectal cut-off in the Fourier domain when the random variables are distributed on
the real line. They apply it to the pointwise estimation of the density on the real line and prove
that their losses in their adaptive procedure is optimal in the minimax sense. They do not prove
it for their general estimator. They also apply their adaptive procedure to the pointwise Laplace
transform estimation and the stochastic volatility model. Recently Pensky (2015) has improved
their results by deriving minimax lower bounds for estimators of a general linear functional of the
deconvolution density. The author even extends the techniques when ψ is not integrable or square
integrable and considers the possibility that the vector of observations is sparse (i.e. has a lot of
zeros).

In this paper, our goal is to establish a specific method for the estimation of linear functional
when we know that the random variables are R+-supported. In that way we can cite the work
of Mabon (2014) who proposes a specific estimation for nonnegative variables in Model (1). The
methodology, based on a penalized projection strategy in a Laguerre basis, allows to estimate the
density and survival function of X. Moreover this work has showed that for certain classes of
density, the Laguerre estimation in the convolution model (1) gives faster rates of convergence of
the estimators than with the classical method based on Fourier inversion as obtained in Comte et al.
(2006) for instance. In particular, it is verified for mixed Gamma distributions. The contribution of
this paper is to extend the particular methodology developed for nonnegative variables to estimate
linear functionals of f . Thanks to this new methodology, we can derive the pointwise estimation
of the probability density function (p.d.f.) f , of the c.d.f of X and also its Laplace transform.
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In Section 2, we explain how projection coefficient estimators in the Laguerre basis can be
used to define estimators of linear functionals. Next we lead a theoretical study of estimators of
ϑ(f) and derive upper bound on the quadratic risk and rates of convergence in function of the
smoothness of f, g and ψ when these three functions belong to L2(R+). We show that under
some assumptions on g or ψ, the parametric rate of estimation can be achieved. In Section 3 we
propose a nonparametric data driven strategy, following Goldenshluger and Lepski (2011) method,
for selecting a relevant projection space. In Section 4, when f and g belong to L2(R+) we adapt
the procedure to pointwise estimation of f in the setting of Model (1) in this case ψ is specified and
do not belong to L2(R+) anymore. The method is then illustrated through simulations. Following
Lacour and Massart (2015), we apply a new procedure to choose the tuning parameter appearing
in the penalization term of the data-driven estimator. This procedure is promising and shows good
results.

To sum up the paper is organized as follows. In Section 2, we give the notations, specify the
statistical model and estimation procedures for projection estimators of f and ϑ(f), upper bound
on the pointwise mean squared error. In Section 3, we propose a new data-driven procedure
for choosing the tuning parameter linear functionals of f which allows in particular to estimate
the cumulative distribution function of X. In Section 4, we derive an adaptive procedure for
the pointwise estimation of f and provide an empirical study on simulations. All the proofs are
postponed to Section 5.

2. Statistical model and estimation procedure

2.1. Notations. For two real numbers a and b, we denote a∨ b = max(a, b) and a∧ b = min(a, b).
For two functions ϕ, ψ : R → R belonging to L2(R), we denote ‖ϕ‖ the L2 norm of ϕ defined by
‖ϕ‖2 =

∫
R |ϕ(x)|2dx, 〈ϕ,ψ〉 the scalar product between ϕ and ψ defined by 〈ϕ,ψ〉 =

∫
R ϕ(x)ψ(x)dx.

Let d be an integer, for two vectors ~u and ~v belonging to Rd, we denote ‖~u‖2 the Euclidean
norm defined by ‖~u‖22 = t~u~u where t~u is the transpose of ~u. The scalar product between ~u
and ~v is 〈~u,~v〉2 = t~u~v = t~v~u. We introduce the square of the spectral norm of a matrix A :
%2 (A) = λmax

(
tAA

)
where λmax

(
tAA

)
is the largest eigenvalue of tAA in absolute value. We

also introduce the following operator norm: ‖A‖1 = max1≤j≤d
∑d

i=1 |aij |.

2.2. Laguerre basis. We define the Laguerre basis as

∀k ∈ N, ∀x ≥ 0, ϕk(x) =
√

2Lk(2x)e−x with Lk(x) =

k∑
j=0

(−1)j
(
k

j

)
xj

j!
. (2)

The Laguerre polynomials Lk defined by Equation (2) are orthonormal with respect to the weight
function x 7→ e−x on R+. In other words,

∫
R+ Lk(x)Lk′(x)e−x dx = δk,k′ where δk,k′ is the Kro-

necker symbol. Thus (ϕk)k≥0 is an orthonormal basis of L2(R+). We can also notice that the
Laguerre basis verifies the following inequality for any integer k

sup
x∈R+

|ϕk(x)| = ‖ϕk‖∞ ≤
√

2. (3)

We also introduce the space Sm = Span{ϕ0, . . . , ϕm−1}. For a function p in L2(R+), we note

p(x) =
∑
k≥0

ak(p)ϕk(x) where ak(p) =

∫
R+

p(u)ϕk(u) du.

According to formula 22.13.14 in Abramowitz and Stegun (1964), what makes the Laguerre basis
relevant in our deconvolution setting is the relation

ϕk ? ϕj(x) =

∫ x

0
ϕk(u)ϕj(x− u) du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x)) (4)

where ? stands for the convolution product.

2.3. Projection estimator of the linear functional.
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2.3.1. Statistical procedure. The goal is to estimate ϑ(f) = 〈ψ, f〉 = E[ψ(X1)] when only the Zi’s
are observed for i = 1, . . . , n. If f and ψ ∈ L2(R+) then they can be decomposed on the Laguerre
basis, it yields that

ϑ(f) = 〈ψ, f〉 =

∞∑
k=0

ak(ψ)ak(f).

Since ψ is known and the ϕk’s are known, coefficients ak(ψ) can be explicitly computed. There-

fore we have to define estimators âk of ak(f) but an estimator of ϑ(f) would not be ϑ̂(f) =∑∞
k=0 ak(ψ)âk. Indeed the last sum is not necessarily convergent nor computable in practice, so

we need to truncate it. Let us consider ϑm(f) defined by

ϑm = ϑm(f) =
m−1∑
k=0

ak(ψ)ak(f).

Let us define ψm and fm respectively the projection of ψ and f on the space Sm. It yields that

〈ψm, fm〉 = ϑm = 〈ψ, fm〉 = 〈ψm, f〉.

Then we can estimate ϑm by

ϑ̂m = ϑ(f̂m) = 〈ψm, f̂m〉 =
m−1∑
k=0

ak(ψ)âk, (5)

with f̂m =
∑m−1

k=0 âkϕk. The coefficients âk are computed as follows

t(â0 . . . âm−1) := ~̂fm = G−1
m
~̂hm, with ~̂hm = t(â0(Z) . . . âm−1(Z)) (6)

where âk(Z) = (1/n)
∑n

i=1 ϕk(Zi) for k = 0, . . . ,m− 1 are estimators of ak(h) and

[Gm] :=
(

[Gm]i,j

)
0≤i,j≤m−1

=


2−1/2a0(g) if i = j,

2−1/2 (ai−j(g)− ai−j−1(g)) if j < i,

0 otherwise.

(7)

We know from Mabon (2014) that formula (4) implies that ϑ̂m is an unbiased estimator of ϑm, see

details therein, i.e. Eϑ̂m = ϑm.
Before deriving the statistical properties of our estimator let us give some examples to show that

the method is feasible. Since the vector ~̂hm is computed directly from the data, let us concentrate
on the matrix Gm and derive, if possible, an explicit expression of its coefficients.

Example 1. If g is an Exponential distribution of parameter λ > 0, then for all integer k we have

ak(g) =

∫
R+

g(u)ϕk(u) du =
√

2λ
k∑
j=0

(
k

j

)
(−1)j

j!

∫
R+

(2u)je−(1+λ)u du

=

√
2λ

λ+ 1

k∑
j=0

(
k

j

)
(−2)j

(1 + λ)j
=

√
2λ

λ+ 1

(λ− 1)k

(λ+ 1)k
.

We can compute the coefficients of the matrix as

a0(g) =

√
2λ

1 + λ
and ai−j(g)− ai−j−1(g) = −2

√
2λ

(λ− 1)i−j−1

(λ+ 1)i−j+1
if j < i.

In that case, we can also inverse the matrix as follows

[
G−1
m

]
i,j

=
λ+ 1

λ


1 if i = j,

2

λ+ 1
if j < i,

0 otherwise.

(8)
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Thus we can explicitly compute the coefficients âk with formula (6) and ϑ̂m is easy to obtain by (5).
Extension to the case of a Gamma distribution of parameters p an integer, p ≥ 1 and λ > 0, can
be obtained by using the more general formula

ak(g) =

∫
R+

λpup−1e−λu
√

2e−uLk(2u) du =
√

2λp
k∑
j=0

(
k

j

)
(−2)j

j!

∫
R+

up+j−1e−(1+λ)u du

=

√
2λp

(1 + λ)p

k∑
j=0

(
k

j

)
(−2)j

(1 + λ)j
(p+ j − 1)!

j!
=

√
2λp

(1 + λ)p
Sp−1,k

(
2

1 + λ

)
. (9)

with

Sp−1,k(x) =
1

(p− 1)!

dp−1

dxp−1

[
xp−1(1− x)k

]
.

2.3.2. Discussion: noticeable linear functionals. We propose to point out some interesting linear
functionals. Some can be directly obtained with the previous methodology since they can be writ-
ten as an inner product of f with a square integrable function. Others do not fit this particular
assumption but can nonetheless be estimated. As said in the introduction, Mabon (2014) studies
the problem of global estimation in Model (1) and proposes adaptive estimators of the probability
density and survival functions. Thanks to the particular procedure for linear functionals, we can
derive the pointwise estimation of the c.d.f., p.d.f and Laplace transform.

a) Cumulative distribution function.
Let us define ψ(x) = 1[0,c](x) for c > 0. The function ψ belongs to L2(R+). This definition of ψ
enables us to consider the estimation of the c.d.f. of f denoted by F . Indeed we can write the
c.d.f. as

F (c) =

∫ c

0
f(u) du =

∫ ∞
0

1[0,c](u)f(u) du = 〈ψ, f〉.

The methodology of Subsection 2.3.1 can therefore be applied.

b) Probability density function.
Let x0 be a nonnegative real number, we have

f(x0) =

∫ ∞
0

f(u)δ{x0}(u) du = 〈δ{x0}(.), f〉 = 〈ψ, f〉,

with ψ(x) = δ{x0}(x) and δ stands for the Dirac measure. Obviously in that case ψ is not square
integrable. This case is studied in details in Section 4.

c) Laplace transform.
Let t be a postive real number and consider the function ψt(x) = e−tx which is square integrable,
we can write the Laplace transform of X as follows

Ee−tX =

∫ ∞
0

e−tuf(u) du =

∫ ∞
0

e−tu
∑
k≥0

ak(f)ϕk(u) du

=
∑
k≥0

ak(f)

∫ ∞
0

e−tuϕk(u) du =
∑
k≥0

ak(f)ak(ψt).

We can apply the procedure of Subsection 2.3.1. Moreover we explain in Subsection 2.4.4 how to
estimate the Laplace transform with a parametric rate.

2.4. Upper bound on the mean squared error and rates of convergence.
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2.4.1. Risk bound. Let us notice that if f, g ∈ L2(R+) then h is bounded. Indeed

‖h‖∞ = sup
x≥0
|f ? g(x)| ≤ ‖f‖‖g‖.

Then we can state the following Proposition:

Proposition 2.1. For f, g and ψ ∈ L2(R+), for Gm defined by Equation (7) and ϑ̂m defined by
Equation (5), the following result holds

E
[
(ϑ− ϑ̂m)2

]
≤ (ϑ− ϑm)2 + ‖h‖∞

‖ t~ψmG−1
m ‖22

n
. (10)

The terms of the right-hand side of Equation (10) correspond to a squared bias variance decom-
position. We can notice by applying the Cauchy-Schwarz inequality that

(ϑ− ϑm)2 =

∑
k≥m

ak(ψ)ak(f)

2

≤ ‖ψ − ψm‖2‖f − fm‖2 =
∑
k≥m

a2
k(ψ)

∑
k≥m

a2
k(f). (11)

Therefore the first term gets smaller when m increases. On the contrary noticing that

‖ t~ψmG−1
m ‖22 ≤ ‖ψ‖2%2(G−1

m ),

we obtain a bound on the variance which is nondecreasing with m (see Lemma 3.4 in Mabon
(2014)). In that case we have to tackle the usual bias variance trade-off.

We can note that if there exist some function ψ and/or some density function g such that

‖ t~ψmG−1
m ‖22 is bounded by a constant not depending on m, then we can estimate the resulting

linear functionals with a parametric rate. First let us consider the general rates of convergence.

2.4.2. General rates of convergence. In order to derive general rates of convergence of estimators
ϑ̂m defined by Equation (5), we need to evaluate the smoothness of the signal along with the order
of %2

(
G−1
m

)
. In the first place, we assume that f belongs to a Laguerre-Sobolev space defined as

W s(R+, L) =

p : R+ → R, p ∈ L2(R+),
∑
k≥0

ksa2
k(p) ≤ L < +∞

 with s ≥ 0 (12)

where we recall that ak(p) = 〈p, ϕk〉. Bongioanni and Torrea (2009) have introduced Laguerre-
Sobolev spaces but the link with the coefficients of a function on a Laguerre basis was done by
Comte and Genon-Catalot (2015) when s is an integer. Indeed, let s be an integer, f ∈W s(R+, L)

is equivalent to the fact that f admits derivatives up to order s − 1 with f (s−1) absolutely con-

tinuous and for 0 ≤ k ≤ s− 1, x(k+1)/2
∑k+1

j=0

(
k+1
j

)
f (j)(x) ∈ L2(R+). For more details we refer to

section 7 of Comte and Genon-Catalot (2015).

Thanks to those spaces we can evaluate the bias order. Let f ∈W s(R+, L) and ψ ∈Wα(R+, L′)
with α, s > 1, starting from Equation (11) we have

(ϑ− ϑm)2 ≤
∑
k≥m

a2
k(ψ)k−αkα

∑
k≥m

a2
k(f)k−sks ≤ LL′m−(s+α).

Then we must evaluate the variance term of Equation (10) which means assess the order of
%2
(
G−1
m

)
. Comte et al. (2013) show that under the following conditions on the density g, we

can recover the order of the spectral norm of G−1
m . First we define an integer r ≥ 1 such that

dj

dxj
g(x) |x=0=

{
0 if j = 0, 1, . . . , r − 2

Br 6= 0 if j = r − 1.

And we make the two following assumptions:

(C1) g ∈ L1(R+) is r times differentiable and g(r) ∈ L1(R+).
(C2) The Laplace transform of g, defined by G(z) = E[e−zY ], has no zero with non negative real

parts except for the zeros of the form ∞+ ib.
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For instance if Y follows a Gamma distribution of parameter p and λ, then its density g verifies these
three conditions for r = p. Especially an Exponential distribution satisfies those assumptions for
r = 1. According to Comte et al. (2013), under Assumptions (C1)-(C2) there exist some positive
constants C% and C ′% such that

C ′%m
2r ≤ %2

(
G−1
m

)
≤ C%m2r.

Then the order of the variance can be derived as follows

‖ t~ψmG−1
m ‖22 ≤ ‖ t~ψm‖22%2(G−1

m ) ≤ ‖ψ‖2%2(G−1
m ) ≤ ‖ψ‖2C%m2r. (13)

Proposition 2.2. Assume that ψ ∈ Wα(R+, L′) and f ∈ W s(R+, L) with α, s > 1, that g satis-

fies Assumptions (C1)-(C2) and let mopt ∝ n1/(s+α+2r), then there exists a positive constant c1

depending on L,L′, s, r, α, ‖ψ‖, C% such that

sup
f∈W s(R+,L)

E
[
(ϑ− ϑ̂mopt)

2
]
≤ c1n

−(s+α)/(s+α+2r).

Thus the choice m = mopt enables us to compute the rate of convergence of the estimator. However
this choice depends on the regularity of the unknown function f and cannot be used in practice.
This is why we will look for another way of performing the compromise between the squared bias
and the variance.

2.4.3. Almost parametric rate: mixed Gamma densities. We want to point out that the Laguerre
method enables us to obtain fast rates of convergence on the class of mixed Gamma densities noted

MΓ(q, ~α, ~p,~λ) and defined by

MΓ(q, ~α, ~p,~λ) =

{
f =

q∑
i=1

αiγi ≥ 0, γi ∼ Γ(pi, λi), λi > 0, pi ∈ N,

q ∈ N ∪ {∞}, αi ∈ R,
q∑
i=1

|αi| <∞,
q∑
i=1

αi = 1

}
, (14)

Let us assume that f belongs toMΓ(q, ~α, ~p,~λ). We obtain from (9) (see details in Mabon (2014)):

(ϑ− ϑm)2 =

∑
k≥m

ak(ψ)

q∑
i=1

αiak(γi)

2

≤
∑
k≥m

a2
k(ψ)

∑
k≥m

q∑
i=1

|αi|a2
k(γi)

≤ ‖ψ‖2
q∑
i=1

|αi|C(pi, λi)

(
λi − 1

λi + 1

)2m

m2(pi−1) ≤ C‖ψ‖2m2(p∗−1)ρ2m.

with ρ = maxi |(λi − 1)/(λi + 1)| ∈ (0, 1) and p∗ = maxi pi. Thus the squared bias decays
exponentially. And if we assume that g verifies (C1)-(C2) according to Equation (13), the order
of the variance is less than C%‖ψ‖2m2r. Therefore we obtain the following result

Proposition 2.3. Assume that f ∈ MΓ(q, ~α, ~p,~λ), that g satisfies Assumptions (C1)-(C2)
and let mopt = c log n/| log ρ| with c ≥ 1, then there exists a positive constant c2 depending on

q, ~α, ~p,~λ, α, ‖ψ‖, C% such that

sup
f∈MΓ(q,~α,~p,~λ)

E
[
(ϑ− ϑ̂mopt)

2
]
≤ c2

(log n)2r

n
.

So for the classes of mixed Gamma densities, the Laguerre procedure enables us to obtain almost
parametric rates of convergence, which is remarkable in the deconvolution model. As previously,
the choice mopt cannot be performed in practice, since f is unknown.
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2.4.4. Parametric rate. In this section, we propose to find conditions ensuring that the parametric
rate can be achieved.

Proposition 2.4. If ψ(x) = αe−x with α ∈ R, then

E
[
(ϑ− ϑ̂1)2

]
=

α2

a2
0(g)

Var[ϕ0(Z1)]

n
. (15)

This result is interesting in the sense that it does not require any additional assumptions on the
density g. It allows us to recover the Laplace transform of X at the point t = 1 with a parametric
rate. Note that, as Model (1) implies that E[e−Zi ] = E[e−Xi ]E[e−Yi ] and the distribution of Y
is assumed to be known, we can estimate the Laplace transform with a parametric rate with
(1/n)

∑n
i=1 e

−Xi/E[e−Y1 ], without knowing anything about Laguerre basis. This formula shows
that the Laplace transform can be estimated at a parametric rate at any point t > 0. It can also
be achieved with the Laguerre basis but the procedure is a little bit more complicated than with
a plug-in estimator.

In fact, the Laguerre basis can be parametrized. In the present work for sake of clarity we
consider that this scale parameter is equal to 1. More generally we can write the basis as follows

∀k ∈ N, ∀x ≥ 0, ϕτk(x) =
√

2τLk(2τx)e−τx with τ > 0.

For τ > 0, if we take the Laguerre basis (ϕτk)k≥0 and proceed exactly as in the proof of Proposition
2.4, we find that the functions proportional to exp(−τx) satisfy Equation (15) for the correspond-
ing scale parameter τ of the basis. The extension is straightforward. So for ψ(x) = α exp(−τx), the
parametric rate is still achieved. We can use this methodology to estimate the Laplace transform
of X at any point.

The following two results are more elaborate.

Proposition 2.5. If
∑

j≥2 |aj−1(g)− aj−2(g)| /a0(g) < 1 then %
(
G−1
m

)
is upper bounded by a

constant independent of m and the parametric rate is achieved.

We can notice that Exponential distributions with parameter λ = 1 satisfies this Proposition.
From Example 1, we have the coefficients of g ∼ E(λ), which yields for λ = 1∑

j≥2

|aj−1(g)− aj−2(g)|
a0(g)

= 0,

and for λ 6= 1 ∑
j≥2

|aj−1(g)− aj−2(g)|
a0(g)

=
∑
j≥2

2
|λ− 1|j−2

|λ+ 1|j−1
=

2

λ+ 1

∑
j≥2

|λ− 1|j−2

|λ+ 1|j−2

=
2

λ+ 1

1

1− (λ− 1)/(λ+ 1)
= 1.

Proposition 2.6. If g ∼ E(λ) with λ > 0 and
∑m−1

k=0 (
∑m−1

j=k |aj(ψ)|)2 < ∞, then there exists a
positive constant C depending on λ such that

E
[
(ϑ− ϑ̂m)2

]
≤ (ϑ− ϑm)2 +

C

n
.

Propositions 2.5 and 2.6 give conditions ensuring that the variance can be upper bounded by C/n
whatever the value of m. Then to derive a parametric rate in this case we need to choose mn large
enough such that (ϑ− ϑmn)2 = O(n−1).

Let us give some examples of functions ψ to illustrate Proposition 2.6.
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Example 2. Let us consider here that ψ is the density Γ(p, µ). According to Equation (9) we
have

aj(ψ) =

√
2µp

(1 + µ)p
Sp−1,j

(
2

1 + µ

)
The term Sp−1,j(x) has the following order for in x ∈ [0, 1]

|Sp−1,j(x)| ≤ 2p|1− x|j−p+1, for j ≥ p− 1

(see details in Appendix B), it yields

m−1∑
k=0

m−1∑
j=k

|aj(ψ)|

2

≤ 22p+1µ2p

(µ+ 1)2p

m−1∑
k=p−1

m−1∑
j=k

∣∣∣∣µ− 1

µ+ 1

∣∣∣∣j−p+1
2

≤ 22p+1µ2p

(µ+ 1)2p

m−1∑
k=p−1

∣∣∣∣µ− 1

µ+ 1

∣∣∣∣2k
(
m−1−k∑
`=0

∣∣∣∣µ− 1

µ+ 1

∣∣∣∣`
)2

≤ 22p+1µ2p

(µ+ 1)2p

(µ+ 1)4

2µ(µ+ 1− |µ− 1|)2

Thus condition
∑m−1

k=0 (
∑m−1

j=k |aj(ψ)|)2 < ∞ of Proposition 2.6 is fulfilled. Therefore we conclude

that if g is E(λ) and ψ a finite mixture of Gamma distributions, then the parametric rate is
achieved.

Example 3. Let α an integer such that α > 1 and assume ψ ∈Wα(R+, L′), it yieldsm−1∑
j=k

|aj(ψ)|

2

=

m−1∑
j=k

jα/2|aj(ψ)|j−α/2
2

≤
m−1∑
j=k

a2
j (ψ)jα

m−1∑
j=k

j−α ≤ L′αk
−α+1

α− 1
,

then

m−1∑
k=0

m−1∑
j=k

|aj(ψ)|

2

≤ L′α

α− 1

m−1∑
k=0

k−(α−1) <∞ if α > 1.

In conclusion any function ψ such that
∑

k≥0 k
αa2

k(ψ) ≤ L′ < +∞ with α > 1 satisfies the
assumption of Proposition 2.6.

For instance ψ(x) = (1 + x)−β1x≥0 with β > (α + 1)/2 belongs to Wα(R+, L′) (see details in
Appendix C).

3. Model selection and adaptive estimation

To build data-driven estimators of linear functionals of the density f , we propose a new selection
strategy in the spirit of Goldenshluger and Lepski (2011). First we add the following assumption
on the model collection:

(A) M =
{
m ∈ {1, . . . , n}, m ≤ n/ log n and max1≤k≤m ‖ t~ψkG−1

k ‖
2
2 ≤ n

}
.

The model selection is done by minimizing the following quantity

m̂ = argmin
m∈M

{A(m) + V (m)} (16)

where V (m) has the order of the variance in the right-hand side of Equation (10) and is defined
by

V (m) = κ(‖h‖∞ ∨ 1) max
1≤k≤m

‖ t~ψkG−1
k ‖

2
2 log n

n
,
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with κ a numerical constant which will be chosen later (see comment below). The term of variance
is slightly modified to ensure that V is nondecreasing with m. The term A(m) has the order of
the bias and is based on the comparison of the estimators built in the previous section as follows

A(m) = sup
m′∈M

{
(ϑ̂m′ − ϑ̂m′∧m)2 − V (m′)

}
+
.

We can now state the following oracle inequality:

Theorem 3.1. For f, g and ψ ∈ L2(R+), assume that Assumption (A) is true. Let ϑ̂m̂ be defined
by Equations (5) and (16). Then there exists a constant κ0 such that for κ ≥ κ0 such that

E
[
(ϑ− ϑ̂m̂)2

]
≤ Cad inf

m∈M

 sup
k>m

k∈N∪{+∞}

{
(ϑk − ϑm)2

}
+ V (m)

+
C

n
. (17)

where Cad is a positive numerical constant and C depends only on ‖h‖∞.

The oracle inequality (17) establishes a non asymptotic oracle bound. It shows that the squared
bias variance tradeoff is automatically made up to a loss of logarithmic order and a multiplicative
constant. Let us notice that Cad = 7 and κ0 = 384 would suit. Let us comment the specific
squared bias term which differs from the squared bias established in Proposition 2.1. The term
supk>m

{
(ϑk − ϑm)2

}
is defined such that it is non-decreasing in m and we take for convention

ϑ∞ = ϑ. Usually in Lepski’s method, it is assumed that the p.d.f. belongs to some regularity space
indexed by β and the squared bias is expressed as a function of β and m which is non-decreasing
in m. Nevertheless it a strong assumption since we do not know the coefficient β depending on f .
Our approach enables us to circumvent this assumption.

Theorem 3.1 is derived under mild assumptions. Indeed we do not need to assume that ψ or
f belong to some semi-parametric space to derive the theorem. Concerning the model selection
procedure, it is simpler in its formulation than those of Laurent et al. (2008) and Butucea and
Comte (2009) thanks to the Goldenshluger and Lepski (2011) method. Butucea and Comte (2009)
obtain as a consequence of their general adaptive procedure the pointwise estimation of the density
on the real line, the stochastic volatility model and the pointwise Laplace transform estimation
when X is a positive random variable, even when the Laplace transform of the noise is infinite. In
the next section, we also show that a procedure for the pointwise estimation on the nonnegative
real line is possible. A direct application of Theorem 3.1 is the estimation of the c.d.f. of X as
pointed out in Subsection 2.4, which is a novelty compared to Butucea and Comte (2009). Pensky
(2015) also develops an adaptive procedure based on Lepski’s method. This paper clearly improves
previous papers and covers a lot of cases (c.d.f, pointwise, moments) for which lower bounds are
provided.

Some comments for practical use are in order. Indeed in the variance term V (m), there are two
quantities which deserve some explanations: κ and ‖h‖∞. First note that when κ gets larger, so
do V (m) and thus the bound (17). It follows from the proof that κ = 384 would suit. But in
practice, values obtained from the theory are generally too large and the constant is calibrated
by simulations. Once chosen, it remains fixed for all simulation experiments. There is still an
unknown term in the penalty, ‖h‖∞, that needs to be estimated. We have to check that we can
derive an oracle inequality when this term is estimated, which is done in the following Corollary.

Beforehand let

ĥD(x) =

D−1∑
k=0

âk(Z)ϕk(x), (18)

with âk(Z) = (1/n)
∑n

i=1 ϕk(Zi). We can see that ĥD is an unbiased estimator of hD(x) =∑D−1
k=0 ak(h)ϕk(x).
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Corollary 3.2. For f, g and ψ ∈ L2(R+), assume that Assumption (A) is true. Let ϑ̂m̃ be defined
by (5) and

m̃ = argmin
m∈M

{
Ã(m) + Ṽ (m)

}
(19)

with Ã(m) = supm′∈M

{
(ϑ̂m′ − ϑ̂m′∧m)2 − Ṽ (m′)

}
+

and Ṽ (m) = κ(2‖ĥD‖∞∨1) max1≤k≤m ‖ t~ψkG−1
k ‖

2
2

log n

n

where ĥD is given by (18) and D satisfies log n ≤ D ≤ ‖h‖∞
128
√

2

n

(log n)3
. Then there exists a constant

κ0 such that for κ ≥ κ0 such that

E
[
(ϑ− ϑ̂m̃)2

]
≤ Cad inf

m∈M

 sup
k>m

k∈N∪{+∞}

{
(ϑk − ϑm)2

}
+ V (m)

+
C

n
.

where Cad is a positive numerical constant and C depends only on ‖h‖∞.

Note that the constraint on D is fulfilled for n large enough as soon as D '
√
n for instance. In

this sense Corollary 3.2 has rather an asymptotic flavor.

4. Particular case of pointwise estimation

4.1. Theoretical results. For pointwise estimation of f , we take ψ(x) = δ{x0}(x) for any nonneg-
ative x0, where δ stands for the Dirac measure. It yields that ϑ = f(x0). In this case Equation (5)
becomes

f̂m(x0) =
m−1∑
k=0

âkϕk(x0), (20)

since ak(ψ) = 〈δ{x0}, ϕk〉 = ϕk(x0). We can notice that ψ is not square integrable.

Proposition 4.1. For f, g ∈ L2(R+), for Gm defined by Equation (7) and f̂m(x0) defined by
Equation (20) for any nonnegative x0, the following result holds

E
[
(f(x0)− f̂m(x0))2

]
≤ (f(x0)− fm(x0))2 + ‖h‖∞

‖ t~ϕm(x0)G−1
m ‖22

n
,

where t~ϕm(x0) = (ϕ0(x0) . . . ϕm−1(x0)).

We can notice that the squared bias and the variance have not the same order as in the case where
ψ is square integrable. Let us assume as in Section 2.4.2 that f belongs to W s(R+, L), applying
Equation (3) and the Cauchy-Schwarz inequality we get the following order for the squared bias

(f(x0)− fm(x0))2 =

∑
k≥m

ak(f)ϕk(x0)

2

≤ 2

∑
k≥m
|ak(f)|

2

= 2

∑
k≥m
|ak(f)|ks/2k−s/2

2

≤ 2
∑
k≥m
|ak(f)|2ks

∑
k≥m

k−s ≤ 2sL

s− 1
m−s+1

for s > 1. Moreover applying Equation (3), we get

‖ t~ϕm(x0)G−1
m ‖22 ≤ ‖ t~ϕm(x0)‖22%2(G−1

m ) ≤
m−1∑
k=0

|ϕk(x0)|2%2(G−1
m ) ≤ 2m%2(G−1

m ). (21)

Proposition 4.2. Assume that f ∈W s(R+, L) with s > 1, that Assumptions (C1)-(C2) are true

and let mopt ∝ n1/(s+2r), then there exists a positive constant c2 depending on L, s, r, C% such that

sup
f∈W s(R+,L)

E
[
(f(x0)− fmopt(x0))2

]
≤ c2n

−(s−1)/(s+2r).



12 G. MABON

Note that this rate is different from the global one: according to Mabon (2014) for the global

estimation of the density f with the L2-risk, the rate of convergence is of order n−s/(s+2r+1). As
in Section 2.4.2, we can point out that faster rates of convergence of order log n/n can be obtained
for functions of Gamma type defined by Equation (14).

The data-driven strategy is done according to the one developed in Section 3 for the particular
case of pointwise estimation, with the specific variance term according to this model. It yields that

Ã(m,x0) = sup
m′∈M

{
(f̂m′(x0)− f̂m′∧m(x0))2 − Ṽ (m′, x0)

}
+

with

Ṽ (m,x0) = κ(2‖ĥD‖∞ ∨ 1) max
1≤k≤m

‖ t~ϕk(x0)G−1
k ‖

2
2 log n

n
(22)

where κ is a numerical constant, ĥD is the estimator of the projection of h on SD given by (18)

and D satisfies log n ≤ D ≤ ‖h‖∞
128
√

2

n

(log n)2
and

m̃ = argmin
m∈M

{
Ã(m,x0) + Ṽ (m,x0)

}
. (23)

Theorem 4.3. For f, g ∈ L2(R+), assume that Assumption (A) is true. Let f̂m̃(x0) be defined by
Equations (20)-(23). Then there exists a constant κ0 such that for κ ≥ κ0 such that

E
[
(f(x0)− f̂m̃(x0))2

]
≤ Cad inf

m∈M

 sup
k>m

k∈N∪{+∞}

(fk(x0)− fm(x0))2 + V (m,x0)

+
C

n
.

where Cad is a positive numerical constant, C depends only on ‖h‖∞ and V (m,x0) = κ(‖h‖∞ ∨
1) max1≤k≤m ‖ t~ϕk(x0)G−1

k ‖
2
2 log n/n.

Applying Equation (3) note that

sup
k>m
|fk(x0)− fm(x0)|2 = sup

k>m

∣∣∣∣∣∣
k−1∑
j=m

aj(f)ϕk(x0)

∣∣∣∣∣∣
2

≤ 2

∑
j≥m
|aj(f)|

2

and using Equation (21) yields

V (m,x0) ≤ 2κ‖h‖∞m%2(G−1
m )

log n

n
,

since m 7→ %2(G−1
m ) is nondecreasing with m (see Lemma 3.4 in Mabon (2014)). These two bounds

are independent of x0 which proves that the risk, may tend uniformly to 0 for an adequate choice
m = m(n), when n tends to infinity.

4.2. Illustrations. The whole implementation is conducted using R software. The mean squared
error (MSE) E(f(x0)− f̂m̃(x0))2 is computed as the empirical mean over 500 simulation samples.

4.2.1. Simulation setting. The performance of the procedure is studied for the three following
distributions for X. Moreover all the densities are normalized with unit variance. Each density is
computed over an interval I.

. Gamma distribution : Γ(4, 1
2), I = [0, 8].

. Mixed Gamma distribution : X = W/
√

5.48, with W ∼ 0.4Γ(5, 1)+0.6Γ(13, 1), I = [0, 13].
. Log-normal distribution : LN (1, 1), I = [0, 15].

We then choose a Gamma distribution for the error distribution which verifies (C1)-(C2) for
r = 2.

. Gamma noise: Γ(2, 1√
20

) and Γ(2, 1√
8
).
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Thus the first Gamma distribution has a variance 1/10 and the second 1/4. We refer to Example 1
for the computation of the matrix Gm.

We also compute estimators where there is no additional noise, i.e. σ2 = 0. The procedure is
applied with Gm = Im.

4.2.2. Implementation of the estimation procedure. We consider the following model collection
Mn = {m ∈ N, 0 ≤ m ≤ bn/ log nc}. The pointwise estimation at a point x0 is computed ac-
cording to the following adaptive procedure:

. For m ∈Mn, compute m̃ = argmin
m∈Mn

{
Ã(m,x0) + Ṽ (m,x0)

}
, with

◦ Ã(m,x0) = supm′∈Mn

{
(f̂m′(x0)− f̂m′∧m(x0))2 − Ṽ (m′, x0)

}
+

◦ Ṽ (m,x0) = κ(2‖ĥD‖∞ ∨ 1) max0≤k≤m−1 ‖ t~ϕk(x0)G−1
k ‖

2
2 log n/n with ĥD defined by

(18).

. Compute f̂m̃(x0) =
∑m̃−1

k=0 âkϕk(x0).

In addition we compute the integrated squared risk over an interval I of 300 equidistant points,
by computing

length(I)

300

300∑
k=1

(f(xk)− f̂m̃k
(xk))

2

and (xk)k a subdivision of I, which gives an approximation of the integrated risk for our method.
Thus we can measure the performances of the pointwise estimation by comparing our method with
the method of Mabon (2014) who proposes adaptive estimators of the density f associated with
the L2-risk.

One of the major issues in data-driven strategies is the choice of the constant κ. To detect
this value in the model selection paradigm, we can use the slope heuristics for instance based on
the works of Birgé and Massart (2007). Baudry et al. (2012) developed a method based on slope
heuristics or on dimension jump. We cannot use those methods in the present work since we use
Goldenshluger-Lepski methodology for the automatic selection of an estimator among a collection.

The results of Goldenshluger and Lepski (2011) ensure that if the variance term is large enough,
the data-driven estimator is almost as efficient as the best one in the collection. In the proof
we derive a theoretical value of κ defined by Equation (22). Nonetheless it is well known that

theoretical constants in Ṽ (m,x0) are often too large in practice. Thus for practical implementation,
the good behavior of the estimator is based on the calibration of the constant κ. Few studies have
been conducted on the constant calibration in Goldenshluger-Lepski methodology to see if there
exists a critical value such that, if V (m) > V0 the risk is quasi optimal.

To find this value in the setting of Goldenshluger-Lepski method, we follow the recent work of
Lacour and Massart (2015) who show that, for density estimation based on kernel estimators with
Goldenshluger-Lepski type bandwith selection, if the variance term is chosen too small then the
procedure fails. They are the first to give a minimal penalty for Goldenshluger-Lepski methodol-
ogy. In our case, we do not necessarily expect the same behavior of the variance term since we are
in the particular case of the deconvolution model but we expect to find a critical value of κ which
characterizes a failure of the procedure.

To detect such a value, we propose to observe the evolution of the choice m̃ for different values
of κ. It is clear that to challenge the global estimation, our pointwise procedure must be able to
adapt to the point and to choose different m̃ for different points.

To avoid over fitting, we choose two distributions that we will not estimate in the following:
β(4, 5) × 5 and χ2(10)/

√
20. The first one has variance 50/81 and has a compact support [0, 5].

The other one is normalized with unit variance and its support is R+. Only here in our procedure,

we replace Ṽ (m) by its uniform bound 2κm‖ĥD‖∞%2(G−1
m ) log n/n. Indeed with this approach it
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is easier to detect stable ranges where the choice of m̃ does not change. Otherwise we observe
stronger oscillations of the choice m̃ and it is difficult to isolate the good values of κ from the bad
ones.

In Figure 1, we apply this methodology for a wide range of κ and in Figure 2 we concentrate
on smaller range of κ which corresponds to the neighborhood of the κ of the black thin line with
circles. In Figure 1, we also draw the data driven choice for κ = 0 and κ = 20 which respectively
corresponds to the bold black and the bold red lines. For κ = 0, the selected dimension is system-
atically the largest as possible while for κ = 20 it is mainly the smallest. We choose to concentrate
on the black thin line with circles because it is the curve which moves the most and is the farthest
from the two curves κ = 0 and κ = 20 which represent extreme situations. In Figure 2, we see that
for both distributions the curves have the same behavior. Finally according to this methodology
we choose a small value of κ = 3 · 10−4.
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(a) Distribution β(4, 5)× 5
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(b) Distribution χ2(10)/
√
20

Figure 1. m̃ in function of κ ∈ [10−4, 10] (15 equidistant calibration constants,
some are superposed) plus κ = 0 (top) and κ = 20 (bottom), n = 5000 and
σ2 = 1/10 and 15 equidistant x0 in the interval [0, 5] for the β and [0, 10] for the
χ2.
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(a) Distribution β(4, 5)× 5
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Figure 2. m̃ in function of κ ∈ [10−4, 10−3] (15 equidistant calibration constants,
some are superposed), n = 5000 and σ2 = 1/10 and 15 equidistant x0 in the interval
[0, 5] for the β and [0, 10] for the χ2.
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In a second step we also propose to test another calibration suggested by Lacour and Massart
(2015) in their concluding remark section. The idea is to consider

A(m,x0) = sup
m′∈M

{
(ϑ̂m′ − ϑ̂m′∧m)2 − κ(2‖ĥD‖∞ ∨ 1) max

1≤k≤m
‖ t~ϕk(x0)G−1

k ‖
2 log n/n

}
+

m = argmin
m∈M

{
A(m,x0) + κ′(2‖ĥD‖∞ ∨ 1) max

1≤k≤m
‖ t~ϕk(x0)G−1

k ‖
2
2 log n/n

}
.

Then, it is easy to prove that Theorem 3.1 holds for ϑ̂m as soon as κ′ ≥ κ. The authors suggest to
find an adequate value of κ for κ = κ′ and then to put κ′ = 2κ. This method is illustrated in the
next section.

4.2.3. Simulation results. In Table 1 we report the results of the simulation (averaged values of
the integrated squared errors multiplied by 100) for the global estimator computed according to
Mabon (2014). The results of the pointwise estimation are presented in Table 2. It reports averaged
values of the approximation of the integrated risk for our method of pointwise estimation. First
remarks: increasing the sample size improves the quality of the estimation and increasing the
variance degrades the estimation but in an acceptable way for both methods.

If we compare the methods, we can see for the mixed Gamma distribution that the pointwise
estimation is better than the global estimation. The risk is approximately divided by 2. For the
Gamma and the log-normal, the estimation is clearly better with the global method where there
is no additional noise. Otherwise the two methods are equivalent. We can note for the pointwise
estimation that when the sample size increases, the results are very close to those without noise
(σ2 = 0).

In Table 2 we compute the risk associated to the oracles. We see that the oracles are very good,
approximately divided by 30 compared to data driven estimators. It shows that the pointwise
estimation could be excellent if the data driven strategy could perform adequately. Nonetheless
in Section 3, we have seen that the bias variance compromise was made up to a logarithmic loss.
It may also explain the gap between oracles and data driven procedure results. We also compare
the quality of the estimation when κ′ = κ or κ′ = 2κ. The results are always and slightly better
when κ′ = κ. Our examples do not permit us to highlight the idea of dissociation of the constant
presented in Lacour and Massart (2015) for the Goldenshluger-Lepski strategy. Nonetheless this
detection method of the constant κ leads to very good results.

We also illustrate the results with some figures. Figures 3-5 display the results of the data driven
estimation respectively for the Gamma and the mixed Gamma. For each Figure we present the
Goldenshluger-Lepksi estimator with the calibration proposed by Lacour and Massart (2015) for
κ′ = κ. First we see that the risk decreases when the sample size increases. For the Gamma, we
see that data driven estimators are very close to oracle estimators which is not really the case for
the mixed Gamma especially for n = 2000. We can observe some oscillations near the origin. Thus
the pointwise estimation does not seem to radically improve the estimation near the origin.

σ2 = 0 σ2 = 1
10 σ2 = 1

4

200 2000 200 2000 200 2000

Gamma 0.313 0.045 0.625 0.037 0.752 0.289
Mixed Gamma 0.334 0.031 1.304 0.342 2.738 0.348
Log normal 0.347 0.043 0.684 0.129 0.829 0.246

Table 1. Results of simulation for the global estimation based on Mabon (2014).

MISE E(‖f−f̂m̂‖2)×100 averaged over 500 samples. σ2 denotes the level of variance
of the noise. σ2 = 0 corresponds to the model without noise (Y = 0). The noise is
Γ(2, 1√

20
) for σ2 = 1

10 and Γ(2, 1√
8
) for σ2 = 1

4 .
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σ2 = 0 σ2 = 1
10 σ2 = 1

4

200 2000 200 2000 200 2000

oracle
Gamma 0.064 0.004 0.016 0.008 0.056 0.016
Mixed Gamma 0.007 0.005 0.026 0.013 0.003 0.013
Log normal 0.090 0.0006 0.045 0.002 0.105 0.045
κ′ = 2κ
Gamma 0.464 0.080 0.504 0.064 1.176 0.144
Mixed Gamma 0.442 0.299 0.455 0.286 0.624 0.299
Log normal 0.390 0.165 0.480 0.165 0.960 0.180
κ′ = κ
Gamma 0.352 0.064 0.416 0.064 0.976 0.088
Mixed Gamma 0.429 0.338 0.442 0.286 0.572 0.286
Log normal 0.345 0.150 0.495 0.165 0.885 0.180

Table 2. Results of simulation for the pointwise estimation. Approximation of
the integrated risk multiplied by 100 averaged over 500 samples. σ2 denotes the
level of variance of the noise. σ2 = 0 corresponds to the model without noise
(Y = 0). The noise is Γ(2, 1√

20
) for σ2 = 1

10 and Γ(2, 1√
8
) for σ2 = 1

4 . oracle =

length(I)/300
∑300

k=1 minm∈M E|f(x0)− fm(x0)|2

0 2 4 6 8

−
0.

2
0.

0
0.

2
0.

4

0 2 4 6 8

−
0.

2
0.

0
0.

2
0.

4

Figure 3. Estimation of the Gamma density: left for n = 200 and right n = 2000;
σ2 = 1/10. In bold black line the true density, in orange data-driven estimators
computed on various samples and in green dashed line the oracle (the best in the
collection) estimator.

5. Proofs

5.1. Proofs of Section 2.

5.1.1. Proof of Proposition 2.1. We have the following bias variance decomposition:

E(ϑ− ϑ̂m)2 = (ϑ− ϑm)2 + E(ϑm − ϑ̂m)2.

The first term corresponds to the squared bias term of Equation (10). Let us study the second
term, by definition we have

(ϑm − ϑ̂m)2 = 〈ψ, fm − f̂m〉2 = 〈~ψm, ~fm − ~̂fm〉22 = 〈~ψm,G−1
m (~hm − ~̂hm)〉22.



ADAPTIVE DECONVOLUTION OF LINEAR FUNCTIONALS ON THE NONNEGATIVE REAL LINE 17
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−
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0
0.

1
0.

2

Figure 4. Estimation of the Mixed Gamma density: left for n = 200 and right
n = 2000, σ2 = 1/10. In bold black line the true density, in orange data-driven
estimators computed on various samples and in green dashed line the oracle (the
best in the collection) estimator.

0 5 10 15

−
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1
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Figure 5. Estimation of the log Normal density: left for n = 200 and right
n = 2000, σ2 = 1/10. In bold black line the true density, in orange data-driven
estimators computed on various samples and in green dashed line the oracle (the
best in the collection) estimator.

Then we get

E(ϑm − ϑ̂m)2 = Var[ϑ̂m] = Var

[
m−1∑
k=0

m−1∑
l=0

ak(ψ)
[
G−1
m

]
k,l
âl(Z)

]

= Var

[
1

n

n∑
i=1

m−1∑
k=0

m−1∑
l=0

ak(ψ)
[
G−1
m

]
k,l
ϕl(Zi)

]

=
1

n
Var

[
m−1∑
k=0

m−1∑
l=0

ak(ψ)
[
G−1
m

]
k,l
ϕl(Z1)

]
≤ 1

n
E

(m−1∑
k=0

m−1∑
l=0

ak(ψ)
[
G−1
m

]
k,l
ϕl(Z1)

)2


≤ 1

n

∫
R+

(
m−1∑
k=0

m−1∑
l=0

ak(ψ)
[
G−1
m

]
k,l
ϕl(u)

)2

h(u) du ≤ ‖h‖∞
n
‖ t~ψmG−1

m ‖22. �
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5.1.2. Proof of Proposition 2.4. According to Equation (10), we just have to find the eigenvectors

of the matrix G−1
m . Indeed if t~ψm is an eigenvector of G−1

m associated with eigenvalue λm, it

yields that ‖ t~ψmG−1
m ‖22 = λ2

m‖ t~ψm‖22 and since we assumed that ψ ∈ L2(R+), the variance is upper
bounded λ2

m‖ψ‖2. First note that

• For any vector ~u, ‖ tG−1
m ~u‖22 = ‖ t~uG−1

m ‖22.
• If we have tGm~u = α~u with α 6= 0, then (1/α)~u = tG−1

m ~u.

Therefore let us look for the eigenvalues of tGm.
Since tGm is a triangular matrix, its eigenvalues are its diagonal elements. Thus the only

eigenvalue of tGm is a0(g)/
√

2 associated with the eigenvectors belonging to S0 = Span{ϕ0}.
Then the matrix tG−1

m has for eigenvalue
√

2/a0(g) associated with the same space of eigenvectors.

Let ψ ∈ S0, i.e. ψ(x) = αe−x1R+(x) with α ∈ R, it yields that t~ψm = (α/
√

2 0 . . . 0) and
t~ψmG−1

m = (α/a0(g) 0 . . . 0) which implies ‖ tG−1
m
~ψm‖22 = ‖ t~ψmG−1

m ‖22 = α2/a2
0(g) = ϑ1. Thus the

variance term does not depend on the dimension m of the model as announced.
Now for the bias term, let us notice that ϑ = 〈ψ, f〉 =

∑
k≥0 ak(ψ)ak(f) = αa0(f)/

√
2 which

implies that E[ϑ̂1] = ϑ1 = ϑ. So the estimator ϑ̂1 of ϑ, in that case, is unbiased.

Finally, we have that

E(ϑ− ϑ̂1)2 = E(ϑ1 − ϑ̂1)2 = Var[ϑ̂1] =
1

n
Var

[
a0(ψ)[G−1

m ]1,1ϕ0(Z1)
]

=
α2

a2
0(g)

Var[ϕ0(Z1)]

n
.

�

5.1.3. Proof of Proposition 2.5. The matrix Gm admits only one eigenvalue a0(g)/
√

2 with multi-
plicity m, it yields that (

Gm −
a0(g)√

2
Im

)m
= 0

which implies that (
Im −

√
2

a0(g)
Gm

)m
= 0.

Writing that

Im = Im −

(
Im −

√
2

a0(g)
Gm

)m
=

(
Im −

(
Im −

√
2

a0(g)
Gm

))
m−1∑
k=0

(
Im −

√
2

a0(g)
Gm

)k
,

therefore

G−1
m =

√
2

a0(g)

m−1∑
k=0

(
Im −

√
2

a0(g)
Gm

)k
.

It yields that

%
(
G−1
m

)
≤
√

2

a0(g)

m−1∑
k=0

(
%

(
Im −

√
2

a0(g)
Gm

))k
.

Yet using the fact that for any matrix A ∈ Rm×m (see Chapter 5 in Horn and Johnson (1990)),

%(A) ≤
√
‖A‖1‖A‖∞

where ‖.‖1 and ‖.‖∞ are respectively the maximum column sum matrix and the maximum row sum
matrix. Besides noticing that since G−1

m is a triangular Toeplitz matrix we have that ‖G−1
m ‖1 =

‖ tG−1
m ‖∞. So we get

%

(
Im −

√
2

a0(g)
Gm

)
≤ ‖Im −

√
2

a0(g)
Gm‖1



ADAPTIVE DECONVOLUTION OF LINEAR FUNCTIONALS ON THE NONNEGATIVE REAL LINE 19

Moreover let us notice that

‖Im −
√

2

a0(g)
Gm‖1 =

m∑
j≥2

∣∣∣∣aj−1(g)− aj−2(g)

a0(g)

∣∣∣∣ ≤∑
j≥2

∣∣∣∣aj−1(g)− aj−2(g)

a0(g)

∣∣∣∣ .
Thus if

q =
∑
j≥2

∣∣∣∣aj−1(g)− aj−2(g)

a0(g)

∣∣∣∣ < 1,

it yields that

%
(
G−1
m

)
≤
√

2

a0(g)

m−1∑
k=0

qk ≤
√

2

a0(g)

∞∑
k=0

qk =

√
2

a0(g)

1

1− q

then %
(
G−1
m

)
is upper bounded by a constant independent of m. �

5.1.4. Proof of Proposition 2.6. Let the coefficients of G−1
m be defined by Equation (8), it yields

‖ t~ψmG−1
m ‖22 =

(
λ+ 1

λ

)2 m−1∑
k=0

ak(ψ) +
2

λ+ 1

m−1∑
j=k+1

aj(ψ)

2

≤
(
λ+ 1

λ

)2 (
1 ∨ 2

λ+ 1

)2 m−1∑
k=0

m−1∑
j=k

|aj(ψ)|

2

.

Then if
∑m−1

k=0 (
∑m−1

j=k |aj(ψ)|)2 < ∞, we get that ‖ t~ψmG−1
m ‖22 ≤ C where C does not depend on

m. �

5.2. Proofs of Section 3.

5.2.1. Proof of Theorem 3.1. By definition of m̂, the following inequalities hold

(ϑ− ϑ̂m̂)2 ≤ 3(ϑ− ϑ̂m)2 + 3(ϑ̂m − ϑ̂m∧m̂)2 + 3(ϑ̂m∧m̂ − ϑ̂m̂)2

≤ 3(ϑ− ϑ̂m)2 + 3(A(m̂) + V (m) +A(m) + V (m̂))

≤ 3(ϑ− ϑ̂m)2 + 6(A(m) + V (m))

Taking expectation, we get

E(ϑ− ϑ̂m̂)2 ≤ 3E(ϑ− ϑ̂m)2 + 6E[A(m)] + 6V (m) (24)

with

A(m) = sup
m′∈M

{
(ϑ̂m′ − ϑ̂m′∧m)2 − V (m′)

}
+

(25)

Proposition 5.1. Under Assumptions of Theorem 3.1, it holds true that

E[A(m)] ≤ sup
k>m
k∈M

{
(ϑk − ϑm)2

}
+
C

n
.

Starting from Equation (24), applying Proposition 2.1 and Proposition 5.1 we get

E(ϑ− ϑ̂m̂)2 ≤ 3(ϑ− ϑm)2 + ‖h‖∞
‖ t~ψmG−1

m ‖22
n

+ 6 sup
k>m
k∈M

{
(ϑk − ϑm)2

}
+
C

n
+ 6V (m)

≤ 3(ϑ− ϑm)2 + 6 sup
k>m
k∈M

{
(ϑk − ϑm)2

}
+

(
1

κ
+ 6

)
V (m) +

C

n

≤ 6 sup
k>m

k∈N∪{+∞}

{
(ϑk − ϑm)2

}
+ 7V (m) +

C

n
,
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since κ ≥ 1 and given that ϑ = ϑ∞ = limm→∞ ϑm if f, g ∈ L2(R+) Finally by taking the infimum
over all m ∈M we get the desired result

E(ϑ− ϑ̂m̂)2 ≤ Cad inf
m∈M

 sup
k>m

k∈N∪{+∞}

{
(ϑk − ϑm)2

}
+ V (m)

+
C

n
.

�

Proof of Proposition 5.1. First let us notice the following upper bound

A(m) = sup
m′∈M

{
(ϑ̂m′ − ϑ̂m′∧m)2 − V (m′)

}
+
≤ 3(D1 +D2 +D3)

where

D1 = sup
m′∈M

{
(ϑm′ − ϑm∧m′)2

}
D2 = sup

m′∈M

{
(ϑ̂m′ − ϑm′)2 − V (m′)

6

}
+

D3 = sup
m′∈M

{
(ϑ̂m∧m′ − ϑm∧m′)2 − V (m′)

6

}
+

.

• First consider D1, we have

D1 = sup
m′∈M

{
(ϑm′ − ϑm∧m′)

2
}

= sup
k>m
k∈M

{
(ϑk − ϑm)2

}
. (26)

• Now consider D2

E[D2] ≤
∑
m′∈M

E
[{

(ϑ̂m′ − ϑm′)2 − V (m′)

6

}
+

]
≤
∑
m′∈M

∫
R+

P
[{

(ϑ̂m′ − ϑm′)2 − V (m′)

6

}
+

≥ u
]

du

≤
∑
m′∈M

∫
R+

P

[
|ϑ̂m′ − ϑm′ | ≥

√
V (m′)

6
+ u

]
du. (27)

To handle this probability, we will apply Bernstein’s inequality. First we need to identify the
empirical process, by definition we have

ϑ̂m′ =

m′−1∑
k=0

ak(ψ)âk =

m′−1∑
k=0

ak(ψ)

m′−1∑
i=0

[
G−1
m′
]
k,i

1

n

n∑
j=1

ϕi(Zj)


=

1

n

n∑
j=1

m′−1∑
k=0

m′−1∑
i=0

ak(ψ)
[
G−1
m′
]
k,i
ϕi(Zj) =

1

n

n∑
j=1

ωm′(Zj),

which yields ϑ̂m′ − ϑm′ = 1
n

∑n
j=1 (ωm′(Zj)− E[ωm′(Zj)]). We need to ensure that there exist b

and v such that |ωm′(Zj)| ≤ b a.s. and Var[ωm′(Zj)] ≤ v. First notice

|ωm′(Zj)| =

∣∣∣∣∣∣
∑

0≤i,k≤m′−1

ak(ψ)
[
G−1
m′
]
k,i
ϕi(Zj)

∣∣∣∣∣∣ ≤
m′−1∑
i=0

∣∣∣∣∣ϕi(Zj)
m′−1∑
k=0

ak(ψ)
[
G−1
m′
]
k,i

∣∣∣∣∣
≤
√

2

m′−1∑
i=0

∣∣∣∣∣
m′−1∑
k=0

ak(ψ)
[
G−1
m′
]
k,i

∣∣∣∣∣ ≤ √2‖ t~ψm′G−1
m′ ‖1 := b.
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Then we have

Var[ωm′(Zj)] ≤ E[ω2
m′(Zj)] ≤ E

(m′−1∑
k=0

m′−1∑
i=0

ak(ψ)
[
G−1
m′
]
k,i
ϕi(Zj)

)2


≤
∫
R+

(
m′−1∑
k=0

m′−1∑
i=0

ak(ψ)
[
G−1
m′
]
k,i
ϕi(u)

)2

h(u) du ≤ ‖h‖∞‖ t~ψm′G−1
m′ ‖

2
2 := v.

At last applying Bernstein inequality, we get

P

[
|ϑ̂m′ − ϑm′ | ≥

√
V (m′)

6
+ u

]

≤ 2

{
exp

(
− n

4v

(
V (m′)

6
+ u

))
∨ exp

(
− n

4b

√
V (m′)

6
+ u

)}

≤ 2

{
exp

(
− n

4v

(
V (m′)

6
+ u

))
∨ exp

(
−nα

4b

√
V (m′)

6
+ u− n(1− α)

4b

√
V (m′)

6
+ u

)}

≤ 2

{
exp

(
− n

4v

(
V (m′)

6
+ u

))
∨ exp

(
−nα

4b

√
V (m′)

6

)
exp

(
−n(1− α)

4b

√
u

)}
,

with α ∈ [0, 1]. Yet we get

n

4v

V (m′)

6
≥ κ log n

24
≥ p log n

as soon as κ ≥ 24p.

By definition we have

nα

4b

√
V (m′)

6
=

nα

4
√

2‖ t~ψm′G−1
m′ ‖1

√
κ(‖h‖∞ ∨ 1) max1≤k≤m′ ‖ t~ψkG−1

k ‖22 log n

6n

= α

√
κ(‖h‖∞ ∨ 1)

96

√√√√max1≤k≤m′ ‖ t~ψkG−1
k ‖22n log n

‖ t~ψm′G−1
m′ ‖21

And as m′ ∈M, m′ ≤ n/ log n and according to the following inequalites for any ~u ∈ Rk

‖~u‖2 ≤ ‖~u‖1 ≤
√
k‖~u‖2,

it yields using (A)

nα

4b

√
V (m′)

6
≥ α

√
κ(‖h‖∞ ∨ 1)

96

√
n log n

m′
≥ α

√
(‖h‖∞ ∨ 1)

96
log n ≥ α

√
‖h‖∞

96
log n.

Thus

nα

4b

√
V (m′)

6
≥ p log n

as soon as κ ≥ 96p2/α2.
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Now putting these results into Equation (27), we get

E[D2] ≤ 2
∑
m′∈M

∫
R+

exp
(
−nu

4v
− p log n

)
∨ exp

(
−n(1− α)

4b

√
u− p log n

)
du

≤ 2
∑
m′∈M

n−p
∫
R+

exp
(
−nu

4v

)
∨ exp

(
−n(1− α)

4b

√
u

)
du

≤ 8n−p
∑
m′∈M

max

(
‖h‖∞

‖ t~ψm′G−1
m′ ‖

2
2

n
, 8
‖ t~ψm′G−1

m′ ‖
2
1

n2(1− α)2

)

≤ C(α, ‖h‖∞)n−p
∑
m′∈M

max

(
‖ t~ψm′G−1

m′ ‖
2
2

n
,
‖ t~ψm′G−1

m′ ‖
2
1

n2

)
.

Since m′ ∈M, we get

E[D2] ≤ C(α, ‖h‖∞)n−p
∑
m′∈M

‖ t~ψm′G−1
m′ ‖

2
2

n
≤ C(α, ‖h‖∞)n−pCard(M).

Thus for p = 2, we have

E[D2] ≤ C

n
. (28)

• Finally noticing that

D3 = max

(
sup
m′>m

{
(ϑ̂m − ϑm)2 − V (m′)

6

}
+

, sup
m′≤m

{
(ϑ̂m′ − ϑm′)2 − V (m′)

6

}
+

)

≤ max

(
sup
m′>m

{
(ϑ̂m − ϑm)2 − V (m′)

6

}
+

, D2

)
≤ max

(
sup
m′>m

{
(ϑ̂m − ϑm)2 − V (m)

6

}
+

, D2

)
≤
{

(ϑ̂m − ϑm)2 − V (m)

6

}
+

+D2 ≤ 2D2,

where we used the fact that m 7→ V (m) is nondecreasing. Now applying the same reasoning as for
D2 it yields that

E[D3] ≤ C

n
. (29)

Now gathering Equations (26), (28) and (29) into Equation (25), we get

E[A(m)] ≤ sup
k>m
k∈M

{
(ϑk − ϑm)2

}
+
C

n
.

�

5.2.2. Proof of Corollary 3.2. By definition of m̃, the following inequalities hold

(ϑ− ϑ̂m̃)2 ≤ 3(ϑ− ϑ̂m)2 + 3(ϑ̂m − ϑ̂m∧m̃)2 + 3(ϑ̂m∧m̃ − ϑ̂m̃)2

≤ 3(ϑ− ϑ̂m)2 + 3(Ã(m̃) + Ṽ (m) + Ã(m) + Ṽ (m̃))

≤ 3(ϑ− ϑ̂m)2 + 6(Ã(m) + Ṽ (m))

≤ 3(ϑ− ϑ̂m)2 + 6(A(m) + V (m)) + 6(Ṽ (m)− V (m)) + 6 sup
m′>m

m,m′∈M

{
V (m′)− Ṽ (m′)

}
+

≤ 3(ϑ− ϑ̂m)2 + 6(A(m) + V (m)) + 12 sup
m′≥m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣ .



ADAPTIVE DECONVOLUTION OF LINEAR FUNCTIONALS ON THE NONNEGATIVE REAL LINE 23

Taking expectation, we get

E(ϑ− ϑ̂m̃)2 ≤ 3E(ϑ− ϑ̂m)2 + 6 (E[A(m)] + V (m)) + 12E

 sup
m′≥m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣
 .

To bound the first two terms on the r.h.s. of the previous inequality we apply Proposition 2.1 and
Proposition 5.1 we get

E(ϑ− ϑ̂m̃)2 ≤ 3 sup
k>m

k∈N∪{+∞}

{
(ϑk − ϑm)2

}
+ 48V (m) +

C

n
+ 12E

 sup
m′≥m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣
 .(30)

To control the fluctuation of the random penalty Ṽ (m′) around the true one, we need to introduce
the following set

Λ =

{∣∣∣‖ĥD‖∞ − ‖h‖∞∣∣∣ < ‖h‖∞
2

}
.

On one hand, on the set Λ we have that ‖ĥD‖∞ ≤ (3/2)‖h‖∞, it yields that

E

 sup
m′>m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣1Λ


= E

[∣∣∣(‖h‖∞ ∨ 1)− (2‖ĥD‖∞ ∨ 1)
∣∣∣1Λ

]
κ max

1≤k≤m
‖ t~ψkG−1

k ‖
2
2

log n

n

≤ 4κ(‖h‖∞ ∨ 1) max
1≤k≤m

‖ t~ψkG−1
k ‖

2
2

log n

n
= 4V (m).

On the set Λc, on the other hand using that m′ ∈M and Assumption (A)

E

 sup
m′>m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣1Λc


= E

[∣∣∣(‖h‖∞ ∨ 1)− (2‖ĥD‖∞ ∨ 1)
∣∣∣1Λc

]
κ max

1≤k≤m
‖ t~ψkG−1

k ‖
2
2

log n

n

≤ κ log n E
[∣∣∣(‖h‖∞ ∨ 1)− (2‖ĥD‖∞ ∨ 1)

∣∣∣1Λc

]
≤ κ log n E [(‖h‖∞ ∨ 1)1Λc ] + 2κ log n E

[
(‖ĥD‖∞ ∨ 1)1Λc

]
.

Noticing that ‖ĥD‖∞ ≤
∥∥∥∑D−1

k=0 ϕk

∥∥∥
∞
≤ 2D ≤ 2n, we get

E

 sup
m′>m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣1Λc

 ≤ κ log n(‖h‖∞ ∨ 1)E [1Λc ] + 2κn log n E [1Λc ] .

We now apply the following Lemma proved just after

Lemma 5.2. For p > 0, log n ≤ D ≤ ‖h‖∞
128
√

2

n

(log n)p
and n large enough

P
[∣∣∣‖ĥD‖∞ − ‖h‖∞∣∣∣ ≥ ‖h‖∞

2

]
≤ 2D

np
.
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It yields for p = 2

log n E [1Λc ] ≤ 2 log n
D

n2
≤ 2 log n

‖h‖∞
128
√

2

n

(log n)2

1

n2
≤
√

2

128

‖h‖∞
n

and similarly for p = 3

n log n E [1Λc ] ≤
√

2

128

‖h‖∞
n

.

Finally, we have

E

 sup
m′≥m

m,m′∈M

∣∣∣V (m′)− Ṽ (m′)
∣∣∣
 ≤ 4V (m) +

C

n
. (31)

In conclusion, gathering Equations (30) and (31) gives the desired result. �

Proof of Lemma 5.2. Let us notice that

P
[
|‖ĥD‖∞ − ‖h‖∞| ≥ ‖h‖∞/2

]
≤ P

[
‖ĥD − h‖∞ ≥ ‖h‖∞/2

]
≤ P

[
‖ĥD − hD‖∞ ≥ ‖h‖∞/4

]
+ P [‖hD − h‖∞ ≥ ‖h‖∞/4] := P1 + P2. (32)

• First consider P1, the following inequalities hold true.

P1 = P

[
sup
x∈R+

∣∣∣∣∣
D−1∑
k=0

(âk(Z)− ak(h))ϕk(x)

∣∣∣∣∣ ≥ ‖h‖∞/4
]
≤ P

[
D−1∑
k=0

|âk(Z)− ak(h)| ≥ ‖h‖∞/(4
√

2)

]

≤
D−1∑
k=0

P
[
|âk(Z)− ak(h)| ≥ ‖h‖∞/(4

√
2D)

]

≤
D−1∑
k=0

P

[∣∣∣∣∣ 1n
n∑
i=1

(ϕk(Zi)− E[ϕk(Zi)])

∣∣∣∣∣ ≥ ‖h‖∞/(4√2D)

]
In order to apply Bernstein’s inequality, let us notice that |ϕk(Z1)| ≤

√
2 and Var[ϕk(Z1)] ≤ 2

which yields that

P1 ≤ 2D

(
exp

(
−n

8

‖h‖∞
4
√

2D

)
∨ exp

(
− n

4
√

2

√
‖h‖∞
4
√

2D

))
.

Taking D ≤ ‖h‖∞
128
√

2

n

(log n)p
, we get that

P1 ≤
2D

np
.

• Now let us prove that for n large enough P2 = 0. According to Mabon (2014) we can write the
following series of equalities,

hD(x) =
D−1∑
k=0

ak(h)ϕk(x) =
D−1∑
k=0

ϕk(x)

(
2−1/2ak(f)a0(g) +

k−1∑
l=0

2−1/2 (ak−l(g)− ak−l−1(g)) al(f)

)

=

D−1∑
k=0

D−1∑
j=0

ak(f)aj(g)

∫ x

0
ϕk(u)ϕj(x− u) du =

∫ x

0
fD(x− u)gD(u) du.
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Thus we have

|hD(x)− h(x)| =
∣∣∣∣∫ x

0
fD(x− u)gD(u) du−

∫ x

0
f(x− u)g(u) du

∣∣∣∣
=

∣∣∣∣∫ x

0
(fD − f)(x− u)gD(u) du−

∫ x

0
f(x− u)(g − gD)(u) du

∣∣∣∣
≤
∣∣∣∣∫ x

0
(fD − f)(x− u)gD(u) du

∣∣∣∣+

∣∣∣∣∫ x

0
f(x− u)rD(u) du

∣∣∣∣
≤ ‖fD − f‖‖g‖+ ‖f‖‖g − gD‖.

Since f, g ∈ L2(R+), we get

‖g − gD‖2 =
∑
k≥D

a2
k(g) −→

D→∞
0 and ‖f − fD‖2 =

∑
k≥D

a2
k(f) −→

D→∞
0

Then there exists a certain n0 such that ‖fD − f‖‖g‖+ ‖f‖‖g − gD‖ ≤ ε. Besides D ≥ log n and
n ≥ n0 ensure that ‖fD − f‖‖g‖+ ‖f‖‖g − gD‖ ≤ ε. Then starting from Equation (32), we get

P2 ≤ P
[
ε ≥ ‖h‖∞

4

]
= 0

In the end

P
[∣∣∣‖ĥD‖∞ − ‖h‖∞∣∣∣ ≥ ‖h‖∞

2

]
≤ 2D

np
.

�

Appendix A.

Lemma A.1. (Bernstein’s inequality) Let X1, . . . , Xn be i.i.d.random variables such that Var(X1) ≤
v2 and |X1| ≤ b a.s. Let Sn =

∑n
i=1(Xi − E[Xi]), then for ε > 0

P [|Sn − E[Sn]| ≥ nε] ≤ 2 max

(
exp

(
−nε

2

4v2

)
, exp

(
−nε

4b

))
.

Appendix B.

Let x ∈ [0, 1], we have

Sp,j(x) =
1

p!

dp

dxp
[
xp(1− x)j

]
=

1

p!

p∑
k=0

((
p

k

)
dp−k

dxp−k
[xp]

dk

dxk
[(1− x)j ]

)

=
1

p!

p∑
k=0

(
p

k

)
p!

k!
xk(−1)k

j!

(j − k)!
(1− x)j−k

= (1− x)j−p
p∑

k=0

(
p

k

)
xk

k!
(−1)k

j!

(j − k)!
(1− x)p−k

= (1− x)j−p
p∑

k=0

(
p

k

)(
j

k

)
xk

k!
(−1)k(1− x)p−k

≤ |1− x|j−p max
0≤k≤p

(
j

k

)
(|x|+ |1− x|)p

≤ 2p|1− x|j−p.
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Appendix C.

According to Comte and Genon-Catalot (2015), proving that a function ψ belongs to a Laguerre-
Sobolev defined by (12), with α an integer, is equivalent to prove that

‖xα/2[ψ(x)ex](α)e−x‖2 =
∑
k≥α

k(k − 1) . . . (k − α+ 1)a2
k(ψ) ≤ L.

And we have for ψ defined as in Example 3 that

‖xα/2[ψ(x)ex](α)e−x‖2 =

∥∥∥∥∥∥xα/2
α∑
j=0

(
α

j

)
(−1)jβ(β + 1) . . . (β + j − 1)(1 + x)−β−j

∥∥∥∥∥∥
2

=

∫ ∞
0

xα

∣∣∣∣∣∣
α∑
j=0

(
α

j

)
β(β + 1) . . . (β + j − 1)(1 + x)−β−j

∣∣∣∣∣∣
2

dx

=
α∑
i=0

α∑
j=0

(
α

i

)(
α

j

)
β(β + 1) . . . (β + j − 1)β(β + 1) . . . (β + i− 1)∫ ∞

0
xα(1 + x)−2β−i−j dx.

Yet x 7→ xα(1 + x)−2β−i−j is integrable for all i, j if β > (α+ 1)/2.
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