Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion

Thuy Minh Giang, Steven Le Feunteun, Sebastien Gaucel, Pierre Brestaz, Marc Anton, Anne Meynier, Ioan-Cristian Trelea

To cite this version:

Thuy Minh Giang, Steven Le Feunteun, Sebastien Gaucel, Pierre Brestaz, Marc Anton, et al.. Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion. Food Hydrocolloids, Elsevier, 2015, 43, pp.66-72. <10.1016/j.foodhyd.2014.04.037>. <hal-01195524>
Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion

T.M. Giang1,2, S. Le Feunteun1,2,*, S. Gaucel1,2, P. Brestaz3, M. Anton3, A. Meynier3, and I.C. Trelea1,2

1 INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, F-78850 Thiverval Grignon, France
2 AgroParisTech, UMR782 Génie et Microbiologie des Procédés Alimentaires, F-78850 Thiverval Grignon, France
3 INRA, UR1268 Biopolymères Interactions Assemblages, F-44300 Nantes, France

*Corresponding author: steven.le-feunteun@grignon.inra.fr, +33(0)13814596
Graphical Abstract (for review)

Click here to download high resolution image

\[
\frac{dm_{TAG}(t)}{dt} = -6k_h \frac{m_{TAG}(t)}{\rho d_{32}(t)}
\]
Highlights:

- A whey protein stabilized emulsion was submitted to *in vitro* digestion.
- The kinetics of pancreatic lipolysis plateaued after ~ 30 min of intestinal digestion.
- A marked coalescence of the oil droplets occurred concurrently.
- A mathematical model was developed and successfully used to relate both sets of data.
- Droplet coalescence, and not enzyme inhibition, was the key mechanism explaining the rate of lipid digestion.
Abstract

Whey protein stabilized submicron oil-in-water emulsions have been reported to remain relatively stable in size during the gastric phase and to coalesce during the intestinal phase of in vitro digestion experiments. The aim of this study was to understand the impact of oil droplet coalescence on the intestinal lipolysis kinetics during an in vitro digestion of such emulsion, and to develop a mathematical model able to predict the experimental observations.

A submicron whey protein stabilized emulsion made of a mixture of medium-chain (MCT) and long-chain triacylglycerols (LCT) was prepared and submitted to gastro-intestinal in vitro digestion. Triacylglycerol concentrations and droplet size distributions were measured before and after the gastric phase and during the intestinal phase using HPLC and laser granulometry, respectively. MCT were fully digested within 15 min of intestinal digestion, whereas LCT were still detected after 5 hours. Moreover, the intestinal lipolysis of LCT showed a two-stage behavior with an initial fast rate that markedly slowed down after about 30 min, a time at which a sudden rise in the droplet sizes, attributed to coalescence, was also observed. A mathematical model based on the experimentally measured droplet sizes and assuming a rate of lipolysis proportional to the interfacial area was developed and successfully used to reproduce the observed kinetics. Our results support the idea that droplet coalescence during the intestinal phase was the main reason for the marked slowdown of the kinetics of lipid digestion, hence suggesting that inhibition of the lipolysis reaction could be a secondary factor only.

Keywords: Pancreatic lipase, Lipid digestion, Droplet size, Polyunsaturated Fatty Acids, Simulation.
1. Introduction

Key parameters that govern food digestion *in vivo* are very hard to identify for practical reasons. *In vitro* methods, for which the conditions are strictly controlled, have therefore been, and are still, largely used. Concerning the digestion of emulsified lipids, both their compositional and structural properties can affect digestion [1]. It is known that short chain fatty acids are released faster and to greater extents than long-chain fatty acids [2-6], and that polyunsaturated fatty acids such as docosahexanoic acid (DHA) and eicosapentaenoic acid (EPA) are highly resistant to lipolysis [7-8]. The composition and the surface area of the interface surrounding lipids are also very important parameters because digestive lipases must adsorb on the droplet surface to reach their substrates. On the one hand, the kinetics of lipolysis increases with the interfacial area, and hence with decreasing droplet sizes [3, 5-6, 9-10]. On the other hand, the rate of the reaction depends on the lipase affinity for the interfacial layer and may therefore be modulated by the nature of the emulsifiers used to stabilize the emulsions [11-12].

Moreover, if lipid digestion is initiated in the stomach by the gastric lipase, most of the reaction (70-90%) is performed in the upper part of the intestine by the combined action of the pancreatic lipase, its colipase, and bile salts [1]. Beyond the properties of the native emulsions, the structural modifications they may undergo within the stomach will affect the intestinal phase, and hence the overall kinetics of the digestion [13]. Emulsions can remain stable, flocculate or coalesce during the gastric phase depending on several parameters such as the initial droplet size, the type of emulsifiers, and the composition of the surrounding medium [14-17]. The rate of lipid hydrolysis during the intestinal phase can thus be impacted by changes in the droplet surface area induced by the gastric structuring of the emulsions: the lower the interfacial area when emptied into the duodenum, the slower the digestion. The
stability of the oil droplets against flocculation and coalescence in the stomach is therefore essential to understand why two resembling emulsions may lead to different digestion kinetics. Several studies have also highlighted that some emulsions can remain relatively stable during the gastric phase but undergo important modifications during the intestinal phase of digestion. Whey protein stabilized submicron emulsions are good examples thereof. They have been reported to remain stable in size or flocculate in simulated gastric conditions [14, 18-19]. In either case, the initial rate of lipolysis during the subsequent intestinal phase was fast and comparable to other gastric stable emulsions [14], suggesting that flocculation during the gastric step did not alter much the intestinal lipolysis kinetics. In parallel, other studies have shown that whey protein stabilized emulsions are highly prone to coalescence during the intestinal phase of *in vitro* digestion [11, 13, 19-20]. The effect of such an intestinal coalescence of the oil droplets on the kinetics of pancreatic lipolysis have, however, not been investigated so far.

Therefore, our study aimed at studying and modeling the influence of droplet coalescence on the kinetics of pancreatic lipolysis during an *in vitro* gastrointestinal digestion of a whey protein stabilized emulsion. The emulsion was prepared from a blend of medium-chain triacylglycerols and a microalgae oil rich in docosahexaenoic acid (DHA), a long-chain ω3 polyunsaturated fatty acid which daily recommended intake is 250 mg [21]. The evolution of both the oil droplet sizes and the lipolysis kinetics were monitored throughout gastro-intestinal *in vitro* digestion experiments. A mathematical model, in line with previously published ones [5, 22-23], was developed to quantitatively evaluate the relationships between the intestinal lipolysis kinetics and the evolution of the droplet surface area.
2. Material and methods

2.1 Materials

The oil containing medium-chain triacylglycerols (Miglyol 812S) (MCT): C8:0 (54%) and C10:0 (43%) was purchased from Sasol GmbH, Germany. The oil containing long-chain triacylglycerols (DHAso) (LCT): docosahexaenoic acid (DHA, C22:6 n-3, 40%), C12:0 (4%), C14:0 (12%), C16:0 (12%) and C18:1 n-9 (24%) was obtained from Martek, via DSM Nutritional Products Ltd, Switzerland. Whey protein powder (Prolacta 95) was purchased from Lactalis Ingredients, France. Pepsin (P7012), mucin (M2378), pancreatin (P7545), pancreatic lipase (L3126) and bile extract (B8631) were from porcine origin and obtained from Sigma-Aldrich, France. Water was Milli-Q water. Solvents for liquid chromatography were chloroform for HPLC (Carlo Erba), methyl alcohol for HPLC (99.9%, Carlo Erba), ammonia solution (30%, Carlo Erba).

2.2. Emulsion preparation

An emulsion composed of 80% of aqueous phase and 20% of oil (w/w) was made. The aqueous phase was prepared by dissolving 4% (w/w) of whey protein powder, used as emulsifier, in a 0.1M sodium phosphate buffer at pH 7.0. The oil phase consisted of 62.5% LCT and 37.5% MCT (w/w) mixed together. A rotor-stator homogenizer (SilentCrusher M equipped with the 12F generator from Heidolph Instruments, Germany) was used in a pre-emulsification step (5 min, 20000 rpm). The coarse emulsion was successively homogenized for 5 min at 500 bars and for 10 min at 1000 bars under nitrogen flow with a high-pressure homogenizer (C3-EmulsiFlex, Sodexim SA, France) temperature-controlled at 4°C to produce the emulsion with droplet diameters below micron. A 50% (w/w) maltodextrin in water solution was then added as a 1:1 (v/v) ratio to the emulsion and the mixture was thereafter freeze-dried. The dried emulsion was then conditioned in oxygen hermetic bag under vacuum.
and kept at -20°C until use. The dried emulsion was rehydrated in Milli-Q water to obtain a
final oil concentration of 3.2% (w/w) on the day of the in vitro experiments.

2.3 Emulsion digestion

3 mL of the rehydrated emulsion, corresponding to an oil mass of about 96 mg, was placed
into 22.4 mL headspace vials hermetically sealed with Teflon/silicon septa and aluminum
caps. These vials were kept in a temperature controlled chamber at 37°C under magnetic
stirring (400 rpm.min⁻¹) throughout the duration of the experiments. The gastric phase
duration was 60 min and was launched by adding 2.12 mL of simulated gastric fluid (SGF)
and 40 µL of 1M HCl to reach a final pH of 2.5 in the reaction vials. The SGF solution
contained 3.9 g.L⁻¹ of pepsin, 2.4 g.L⁻¹ of mucin, 120 mM of NaCl, 2 mM of KCl and 6 mM
of CaCl₂. The intestinal phase duration was then launched for 300 min maximum by adding
4.86 mL of simulated intestinal fluid (SIF) into the vials and 100 µL of 1M NaCO₃ to reach a
final pH of 6.5. The simulated intestinal fluid (SIF) contained 30.8 g.L⁻¹ of bile extract
powder, 0.82 g.L⁻¹ of pancreatin, 0.41 g.L⁻¹ of pancreatic lipase, and the same electrolyte
concentrations as the SGF.

The native emulsion (NE), and samples taken at the end of the gastric phase (G60), at t = 0
min of the intestinal phase (I0) using a modified SIF that contained all constituents except
pancreatin and lipase, and at 15, 30, 60, 120 and 300 min of intestinal digestion (I15 to I300)
were analyzed. One vial was used for one sampling time and one type of measurement
(quantification of LCT and MCT by HPLC or droplet size by laser granulometry) so that the
contents of 16 vials were analyzed in total (2 methods times 8 sampling times) for one
digestion. Three independent digestion experiments, further denoted replicates, were
performed. Samples devoted to droplet size measurements were analyzed immediately,
whereas samples devoted to HPLC measurements were kept at -80°C until further analysis.
2.4 Quantification of LCT and MCT by HPLC

HPLC paired with an evaporative light scattering detector (ELSD) was used to quantify the decrease of both LCT and MCT masses during the time course of the in vitro digestions. Total lipids were extracted from 1.5 mL of the native emulsions or of the stomach media and from 3 mL of the intestinal media according to the Bligh and Dyer [24] procedure with minor modifications in the ratio CHCl$_3$/CH$_3$OH/H$_2$O 1/2/1. Before the HPLC analyses, the lipid extract was dissolved in CHCl$_3$ down to 0.3 mg.mL$^{-1}$ for native emulsion and stomach media and to 0.7 mg.mL$^{-1}$ for intestinal media. HPLC operating conditions were similar to those described in [25] using a Uptip-prep Strategy column (2.2 µm SI, 150×4.6 mm, Interchim, Montluçon, France) and 30 µL of injected lipid extract. As illustrated in Fig. 1, injected masses of pure MCT and LCT ranging from 0.5 to 9 µg led to a power law calibration curve with no distinction of the TAG chain-length.

The triacylglycerol region of an HPLC chromatogram stemming from an undigested sample is presented in Fig. 2. The retention times of LCT (1.21 min) and MCT (1.32 min) were different but their signals partly overlapped. As illustrated in Fig. 2, signal deconvolution was therefore undertaken using a specifically developed algorithm running with the Matlab$^\text{TM}$ software (The MathWorks Inc., Natick, MA) and the recovered LCT and MCT signals were converted into masses using the calibration curve (Fig. 1). Reliable results were obtained using this procedure as shown from the comparison of the mean LCT and MCT masses of 57.3 ± 2.7 and 35.0 ± 2.0 mg (estimated over 15 undigested samples) with the 59.7 and 35.7 mg targeted masses in each digestion vial, respectively. LCT and MCT masses were finally converted into lipolysis percentages using Eq. 1:

$$lipolysis(t) = \frac{m_{TAG_0} - m_{TAG}(t)}{m_{TAG_0}} \times 100$$ (1)
where $m_{TA G_0}$ and $m_{TA G}(t)$ are the masses (mg) of LCT or MCT initially present in the vials and measured by HPLC at time t, respectively.

2.5 Droplets size measurement

The volume-based distribution of oil droplet sizes was measured using a Mastersizer S (Malvern Instruments Ltd., Worcestershire, UK) equipped with a 2 mW He-Ne laser of $\lambda = 633$ nm and the 300RF lens with detection limits of 0.05 and 900 μm. The refractive index n_0 of the aqueous phase was 1.33 and the properties of the dispersed phase were 1.457 for the refractive index and 0.001 for the absorption. Samples were pre-diluted 100-fold with the desired solution (with or without sodium dodecyl sulfate, SDS, as deflocculating agent), and then diluted with distilled water to reach an oil volume concentration near 0.01% for the circulation in the measurement cell. All analyses were performed at room temperature as described previously [8, 25]. The surface-weighted mean diameter, d_{32}, corresponding to the droplet diameter having the same ratio of volume to surface area as the droplet distribution, was calculated according to:

$$d_{32} = \frac{\sum_i n_i d_i^3}{\sum_i n_i d_i^2}$$

where n_i is the number of droplets of diameter d_i.

3. Mathematical modeling

3.1 Model assumptions and equations

Lipolysis is mediated by the pancreatic colipase-lipase system which absorbs onto the droplet interface and splits the sn-1 and sn-3 ester bonds of triacylglycerols (TAG). The first step of the reaction generates one free fatty acid (FFA) and a diacylglycerol (DAG) which is further transforms into a second FFA and the sn-2-monoacylglycerol. Our model simulates the
kinetics of lipolysis as inferred from the disappearance of the TAG molecules so that, in principle, it only characterizes the first step of the reaction. Nevertheless, the lack of detected DAG in the course of the experiments strongly suggests that the second reaction step was not rate-limiting in our experimental conditions, and hence that similar lipolysis kinetics would have been recovered by monitoring the appearance of the final products of the reaction. The main modeling assumptions were as follows:

A1: The rate of TAG hydrolysis was assumed proportional to the interfacial area of the droplets [13-14, 22]. This means that the surface reaction rate was taken as constant in the considered experimental conditions. Thus:

\[
\frac{dm_{TAG}(t)}{dt} = -k_h \cdot A(t) \quad (2)
\]

where \(k_h\) is the hydrolysis rate constant (mg.m\(^{-2}\).min\(^{-1}\)) and \(A(t)\) is the interfacial area (m\(^2\)) at time t (min).

A2: The droplets were considered as spheres, and the interfacial area of the droplets was assumed to be adequately described by the size distributions measured by laser granulometry and their corresponding \(d_{32}\). Hence, one can write that:

\[
A(t) = 6 \frac{V_{TAG}(t)}{d_{32}(t)} \quad (3)
\]

where \(d_{32}(t)\) is the surface-weighted mean diameter (nm) at time t, and \(V_{TAG}(t)\) is the volume of TAG in the sample (mm\(^3\)) at time t. Eq. 3 can be further transformed into:

\[
A(t) = 6 \frac{m_{TAG}(t)}{\rho \cdot d_{32}(t)} \quad (4)
\]

where \(\rho\) is the mass density of TAG (mg/mm\(^3\)) and \(m_{TAG}(t)\) is the mass of TAG (mg) at time t.

Combining Eq. 1 and 4, the evolution of the TAG mass is given by:

\[
\frac{dm_{TAG}(t)}{dt} = -6k_h \frac{m_{TAG}(t)}{\rho \cdot d_{32}(t)} \quad (5)
\]
To solve the differential equation Eq. 5, one also needs to know how the droplet sizes evolve as a function of time. In the present study, we resorted to two different assumptions on $d_{32}(t)$, leading to two different versions of the model:

A3a: In one version, it was assumed that all droplets had the same diameter and that the total number of droplets remained constant, hypotheses that lead to the following equation:

$$
d_{32}(t) = d_0 \sqrt[3]{\frac{m_{TAG}(t)}{m_{TAG_0}}} \quad (6)
$$

where m_{TAG_0} is the mass of TAG initially introduced in the reaction vial and d_0 is the droplet diameter of the native emulsion.

A3b: In the other version, $d_{32}(t)$ was estimated by linear interpolations of the experimental values recovered using laser granulometry.

For both model versions, the masses calculated by solving Eq. 5 were finally converted into percentages of lipolysis using Eq. 1 to enable the comparison of the model simulations with experimental data.

3.2 Model fitting and parameter estimation

The lipolysis of MCT was so fast that it was already finished at $t = 15$ min, i.e. the first sampling time. Only the lipolysis of LCT was therefore considered to confront the model to the experimental data. The differential equation Eq. 5 was numerically solved using a LCT mass density, ρ, of 0.92 g.cm$^{-3}$, and each of the previously described assumptions (A3a or b) for the droplet size evolution as a function of time, $d_{32}(t)$. The unknown hydrolysis rate, k_h, was then estimated by fitting model predictions to the LCT lipolysis results determined by HPLC. The recovered value, expressed in mg of TAG per minute and square meter of interfacial area (mg.m$^{-2}$.min$^{-1}$), was then converted into µmol.m$^{-2}$.min$^{-1}$ for comparison.
purposes with the literature using a LCT molar mass of 900 g mol$^{-1}$. Numeric calculations were performed using Matlab™ software (The MathWorks Inc., Natick, MA).

4. Results and Discussion

4.1 Kinetics of lipolysis of LCT and MCT

The evolution of HPLC chromatograms during the intestinal phase stemming from one in vitro digestion experiment is shown in Fig. 3A, and the mean percentages of lipolysis calculated over the three replicates are presented in Fig. 3B. Initially, 2 peaks were clearly visible in the chromatograms. The signal of the native emulsion and at t = 0 min of the intestinal phase (modified SIF with no lipase) were similar since no gastric lipase was used in this study. At t = 15 min of intestinal digestion, the signal arising from MCT entirely disappeared, indicating that MCT were fully hydrolyzed in only few minutes. In contrast, about 20% of the initial LCT mass was still detected after 300 min (i.e. 5h) of intestinal digestion, showing that lipolysis was much slower for LCT than for MCT (Fig. 3B). In fact, lipolysis of LCT was relatively fast during the first 30 minutes of digestion but was greatly slowed down afterwards, resulting in a two-stage curve typical of most in vitro lipolysis studies on submicron emulsions made of long-chain triacylglycerols [4-5, 14].

Higher rates of lipolysis of MCT compared to LCT have been reported in many studies using pure MCT and LCT emulsions or MCT/LCT mixed emulsions as in the present study [2-5]. This is generally attributed to the higher water solubility of medium-chain FFAs than long-chain FFAs. Indeed, the low water solubility of long-chain FFAs would lead to their accumulation at the interface that would, in turn, inhibit the lipase activity by steric hindrance until they are removed by bile salts or by forming soap with calcium ions [26]. In contrast, the higher water solubility of medium-chain FFAs would facilitate their release from the interface, and hence promote further hydrolysis of triacylglycerols at the droplet surface. According to
the composition of our emulsion, other factors may also have contributed to the higher rate of MCT hydrolysis. Indeed, it has been reported that triacylglycerols containing docosahexaenoic acid are more resistant to pancreatic lipase [7], possibly because of an inhibitory effect induced by the presence of a double bond near the carboxyl group. For MCT/LCT mixed emulsions, it has also been shown that MCT hydrolysis can be promoted to the detriment of that of LCT [2] because of a preferential location, or turnover, of MCT at the droplet interface [2-3]. It is therefore likely that different mechanisms have contributed to the marked difference we observed in the lipolysis kinetics of MCT and LCT.

4.2 Evolution of the droplet size

The evolution of the particle size distribution (measured without defloculating agent) stemming from one in vitro digestion experiment is shown in Fig. 4A. The native emulsion (NE) presented a monomodal distribution with a mean \(d_{32}\) of 0.26 µm. The mean size increased considerably during the gastric phase since the measured \(d_{32}\) was 3.00 ± 0.46 µm after 60 min of contact with the SGF (G60). However, the size distribution and the measured \(d_{32}\) returned close to their original values after dilution of the same sample in a 1% SDS solution (not shown) or after addition of a SIF with no pancreatin or lipase (I0). This demonstrates that the increase of the mean diameter during the gastric phase was caused by droplet flocculation, and that the subsequent addition of bile led to a deflocculation of these droplet aggregates. During the intestinal phase, the droplet size distribution remained similar during the first 15 min (I15). It was suddenly shifted toward considerably larger diameters at about \(t = 30\) min (mean volume diameter of about 9 µm) and remained relatively stable until the end of the experiment (I30 to I300), with a good repeatability of the surface weighted diameters over the three replicates (Fig. 4B).
According to the demonstrated tendency of bile to deflocculate the droplet aggregates formed during the gastric phase, the increase of the particle size during the intestinal phase most assuredly resulted from a coalescence of the oil droplets. This conclusion is moreover consistent with previous studies showing that whey protein stabilized submicron emulsions undergo coalescence during in vitro intestinal digestion [11, 13, 19-20]. We may even highlight that the evolution of the size distributions we measured is highly similar to previous results obtained during the digestion of a whey protein stabilized soya oil emulsion with an initial \(d_{32}\) of 0.37 µm, and for which an intense coalescence was observed by confocal microscopy after 10 to 30 min of intestinal digestion [19]. Hence, even if flocculation cannot be totally excluded from our own set of data, we will only refer to the term of coalescence in the rest of this article.

We may also highlight the remarkable simultaneity of the increase of the droplet size (Fig. 4B) and of the decrease of the lipolysis rate (LCT in Fig. 3B). Although the authors did not point out this particular aspect, it seems that droplet coalescence during the intestinal phase was also concomitant with a decrease of the lipolysis rate in the recent study of Li and coworkers [19]. It is indeed well known that the rate of lipolysis decreases with decreasing surface area, and hence with increasing droplet size [3, 14, 16, 22, 27]. We can therefore wonder how much of the decrease of the LCT lipolysis kinetics at about \(t = 30\) min (Fig. 3B) was induced by droplet coalescence. This was further explored using a modeling approach.

4.3 Modeling results

We remind that MCT was fully hydrolyzed in less than 15 min so that only LCT lipolysis was considered for the modeling. The results obtained with three different mathematical models are presented in Fig 5A. First, the dotted line represents our model version that assumes a constant number of droplets of identical diameter (assumption A3a), and which decreases in
size upon hydrolysis of the TAG they contain (Fig. 5B). The fit was very bad because the assumed mechanisms could not reproduce the strong decrease of the reaction kinetics at about 30 min.

Second, the dashed line represents the model proposed by Li and McClements [5]. This model is similar to the previous one but further assumes that a fraction of the TAG can remain undigested. It provided a very good fit of our experimental data ($R^2 = 0.9888$) and led to a lipolysis extent of $77.3 \pm 2.6 \%$ and a surface rate constant (k_h) of $9.4 \pm 1.5 \mu\text{mol.m}^{-2}\cdot\text{min}^{-1}$, which is rather close to the $13.8 \mu\text{mol.m}^{-2}\cdot\text{min}^{-1}$ reported for a corn oil emulsion in [5]. As noticed by the authors, these rate constants should nevertheless be considered as upper values whenever droplet flocculation or coalescence takes place because, in such cases, the model would not adequately simulate the evolution of the available interfacial area. This is also why the mean diameter simulated with this model decreased from 350 to 213 nm (Fig. 5B), a trend that is not consistent with our experimental results (Fig. 4).

Finally, the solid line represents our model version that accounts for the experimentally measured d_{32} (Fig. 5A and B). This model also reproduced the experimental data very well ($R^2 = 0.9882$). The underlying interpretation is however entirely different since the marked slowdown of the reaction kinetics around 30 min is here fully explained by the decrease of the interfacial area caused by droplet coalescence (i.e. no upper fraction of the digested lipids is assumed here). The only unknown parameter in this model is the surface reaction rate (k_h) that was estimated to be $2.4 \pm 0.1 \mu\text{mol.m}^{-2}\cdot\text{min}^{-1}$.

To support the above considerations, the interfacial surface area was calculated for both our model accounting for coalescence and the model of Li and McClements (Fig. 6). According to the model of Li and McClements, the droplet size reduces upon TAG hydrolysis, leading to a corresponding decrease of the surface area. The lipolysis nevertheless plateaued (Fig. 5A) despite a large remaining droplet surface area. This suggests that the interface was no more
available for the enzymatic action, or in other words, that the reaction was inhibited by a mechanism such as an accumulation of the reaction products at the droplet surface. According to our model however, the slowdown of lipolysis was clearly, and solely, related to the sharp decrease of the interfacial area induced by droplet coalescence. At 300 min, the available interfacial area was low but nonzero, in agreement with the fact that lipolysis still proceeded slowly. Note also that the reaction rate constants estimated with both models reflect these differences of simulated surface area since they are expressed per unit of interfacial area. This is indeed why the value recovered using our model (assumption A3b) is about 4 times smaller than the value estimated with the model of Li and McClements (2.4 and 9.4 μmol.m$^{-2}$.min$^{-1}$, respectively).

Taking into account the evolution of the experimentally measured droplet sizes, the mathematical model allowed a good prediction of the intestinal lipolysis kinetics. The decrease of the interfacial area was thus the major reason for the slowdown of the reaction rate after about 30 min. We may even highlight that our model slightly overestimates the last experimental point of the kinetics at $t = 300$ min (Fig. 5A). Thus, our results are still compatible with an inhibition of the enzymatic reaction at the interface, but as a second order factor.

On the one hand, our results confirm that the kinetics of lipolysis are essentially proportional to the interfacial area [22]. On the other hand, they may also offer a complementary explanation for the strong decreases of the lipolysis kinetics that are frequently observed after few minutes of intestinal in vitro digestions. Indeed, such slowdowns are often attributed to an inhibition induced by the reaction products that accumulate at the interface, with no or little attention given to a possible coalescence or flocculation of the emulsion droplets. This is most probably because such phenomena have not been expected to occur in the conditions encountered in the intestinal phase because of high concentrations of bile salts and no
macroscopic visual evidences. Nevertheless, several recent studies have shown that droplet floculation and coalescence might in fact be encountered during the intestinal phase of *in vitro* experiments [11, 13, 17, 19-20], similarly to what has now been established for the gastric phase [14, 16-17].

The exact cause for the occurrence of coalescence still remains to be studied because the nature of the interfacial layer is continuously evolving, especially in the case of protein-stabilized emulsion. The TAG composition of the droplets is evolving in the course of the reaction [28] and a competitive adsorption process takes place at the interface between emulsifier molecules, enzymes, bile salts and the products of the lipolysis reactions. It has been reported that hydrolysis of the proteins adsorbed at the interface can weaken the droplet repulsion forces and favor droplet flocculation or coalescence [19, 25], possibly explaining why protein stabilized emulsions seem more sensitive to these phenomena [27]. Droplet coalescence during digestion has also been reported to be promoted by the accumulation of monoacylglycerols and fatty acids at the interface [16, 28], that is, by the same mechanism as that usually put forward to support an inhibition of the enzymatic reaction. More studies are therefore needed to determine the frequency of droplet coalescence during *in vitro* intestinal digestions and to better understand its consequences on the lipolysis kinetics.

5. **Conclusion**

Our study confirms previously reported results showing that the kinetics of lipolysis is much faster for MCT than for LCT when they are mixed together in the same emulsion. In agreement with recent studies, it also confirms that whey protein stabilized submicron emulsions are prone to coalescence during the intestinal phase of *in vitro* digestions. Moreover, by accounting for the experimentally measured droplet distributions in a modeling approach, we were able to adequately reproduce the two-stage lipolysis curve recovered for
LCT with an initial fast reaction rate that markedly slowed down after about 30 min. These modeling results demonstrate that droplet coalescence had a considerable impact on the lipolysis kinetics of the remaining LCT by causing a sharp reduction of the interfacial area available for the adsorption of pancreatic lipase-colipase. Contrarily to what is generally postulated for intestinal lipid digestion, our findings suggest that inhibition of the enzymatic reaction might not always be the key mechanism explaining why in vitro lipolysis kinetics of emulsified lipids often plateaus before the reaction is completed.

Acknowledgements

The authors thank Valérie Beaumal (UR1268 BIA) for the preparation of the freeze-dried emulsion and Claude Genot and Sebastien Marze for helpful remarks and discussions. This work was supported by the Institut National de la Recherche Agronomique and the Institut Carnot QUALIMENT (France). The authors are involved in the Food and Agriculture COST (European Cooperation in Science and Technology) Action FA1005 ‘Improving health properties of food by sharing our knowledge on the digestive process (INFOGEST)’, http://www.cost-infogest.eu
References

Fig 1. Calibration curve relating the HPLC signal to the injected mass of TAG. The light scattering detector responded the same way to both LCT (triangles) and MCT (diamonds).

Fig 2. HPLC chromatogram stemming from an undigested sample (circles) superimposed with the results of the deconvolution process: LCT signal (dashed line), MCT signal (dotted line) and their sum (solid line).

Fig 3. (A) Typical evolution of HPLC chromatograms during the intestinal phase of \textit{in vitro} digestion: native emulsion (dashed line) and, from top to bottom, at $t = 0, 15, 30, 60, 120$ and 300 min after the SIF addition, respectively. (B) Extent of lipolysis for MCT (diamonds) and LCT (triangles) during the intestinal phase. Means and standard deviations (smaller than the symbol size) were calculated over 3 replicates.

Fig 4. (A) Typical evolution of the droplet size distributions measured without deflocculating agent during \textit{in vitro} digestion. From back to front: Native emulsion (NE), samples taken at the end of the gastric phase (G60), and at $t = 0, 15, 30, 60, 120$ and 300 min (I0 to I300) after the SIF addition, respectively. (B) Evolution of the d_{32} during the intestinal phase. Means and standard deviations (vertical bars) were calculated over 3 replicates.

Fig 5. (A) Extent of LCT lipolysis measured by HPLC (symbols) and the fits obtained with i) our model that does not account for the observed coalescence (dotted line, assumption A3a), ii) the model of Li and McClements [5] (dashed line), and iii) our model that accounts for coalescence using the measured d_{32} (solid line, assumption A3b). (B) Comparison of the measured (symbols) and simulated d_{32} for the different models (same line coding).
Fig 6. Evolution of the interfacial area during the intestinal phase according to our model that accounts for coalescence using the measured d_{32} (solid line, assumption A3b) and to the model of Li and McClements [5] (dashed line).
\[y = 3.955x^{1.519} \]

\[R^2 = 0.9986 \]
Figure 2

HPLC signal (V)

Time (min)
Figure 4

(A) Graph showing the percentage volume over time with different time intervals.

(B) Graph showing the d₃₂ (µm) over time with error bars indicating variability.