Bistability induced by generalist natural enemies can reverse pest invasions

Abstract : Reaction-diffusion analytical modeling of predator-prey systems has shown that specialist natural enemies can slow, stop and even reverse pest invasions, assuming that the prey population displays a strong Allee effect in its growth. Few additional analytical results have been obtained for other spatially distributed predator-prey systems, as traveling waves of non-monotonous systems are notoriously difficult to obtain. Traveling waves have indeed recently been shown to exist in predator-prey systems, but the direction of the wave, an essential item of information in the context of the control of biological invasions, is generally unknown. Preliminary numerical explorations have hinted that control by generalist predators might be possible for prey populations displaying logistic growth. We aimed to formalize the conditions in which spatial biological control can be achieved by generalists, through an analytical approach based on reaction-diffusion equations. The population of the focal prey — the invader — is assumed to grow according to a logistic function. The predator has a type II functional response and is present everywhere in the domain, at its carrying capacity, on alternative hosts. Control, defined as the invader becoming extinct in the domain, may result from spatially independent demographic dynamics or from a spatial extinction wave. Using comparison principles, we obtain sufficient conditions for control and for invasion, based on scalar bistable partial differential equations (PDEs). The searching efficiency and functional response plateau of the predator are identified as the main parameters defining the parameter space for prey extinction and invasion. Numerical explorations are carried out in the region of those control parameters space between the super-and subso-lutions, in which no conclusion about controllability can be drawn on the basis of analytical solutions. The ability of generalist predators to control prey populations with logistic growth lies in the bis-table dynamics of the coupled system, rather than in the bistability of prey-only dynamics as observed for specialist predators attacking prey populations displaying Allee effects. The consideration of space in predator-prey systems involving generalist predators with a parabolic functional response is crucial. Analysis of the ordinary differential equations (ODEs) system identifies parameter regions with monostable (extinction) and bistable (extinction or invasion) dynamics. By contrast, analysis of the associated PDE system distinguishes different and additional regions of invasion and extinction. Depending on the relative positions of these different zones, four patterns of spatial dynamics can be identified : traveling waves of extinction and invasion, pulse waves of extinction and heterogeneous stationary positive solutions of the Turing type. As a consequence, prey control is predicted to be possible when space is considered in additional situations other than those identified without considering space. The reverse situation is also possible. None of these considerations apply to spatial predator-prey systems with specialist natural enemies.
Liste complète des métadonnées
Contributeur : Sten Madec <>
Soumis le : mercredi 6 juillet 2016 - 09:49:58
Dernière modification le : mercredi 21 mars 2018 - 10:54:03


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01194895, version 2
  • ARXIV : 1509.02102



Sten Madec, Jérôme Casas, Guy Barles, Christelle Suppo. Bistability induced by generalist natural enemies can reverse pest invasions. 2016. 〈hal-01194895v2〉



Consultations de la notice


Téléchargements de fichiers