
HAL Id: hal-01194627
https://hal.science/hal-01194627

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Logic with Past is Exponentially More
Succinct

Nicolas Markey

To cite this version:
Nicolas Markey. Temporal Logic with Past is Exponentially More Succinct. Bulletin- European
Association for Theoretical Computer Science, 2003, 79, pp.122-128. �hal-01194627�

https://hal.science/hal-01194627
https://hal.archives-ouvertes.fr

Temporal Logic with Past is Exponentially

More Succinct

Nicolas Markey

Lab. Informatique Fondamentale d’Orléans

Univ. Orléans & CNRS FRE 2490

Rue Léonard de Vinci - BP 6759

45067 Orléans Cedex 2 - France

markey@lifo.univ-orleans.fr

Abstract

We positively answer the old question whether temporal logic with

past is more succinct than pure-future temporal logic. Surprisingly, the

proof is quite simple and elementary, although the question has been open

for twenty years.

Introduction

Temporal logics with past. Temporal logic have been defined by Arthur
Prior in 1957 [Pri57] as a tool for reasoning about temporal informations in a
logical framework. This logic uses temporal modalities for referencing to past or
future events. It has been introduced in the field of formal verification by Amir
Pnueli in 1977 [Pnu77]. Leslie Lamport suggested to classify temporal logics
into two general kinds: linear-time temporal logic and branching-time temporal
logic [Lam80]. In linear-time temporal logic (LTL), we can express for instance
that any request is eventually granted:

G (request ⇒ F grant). (1)

With past-time modalities, we can express that a grant should be preceeded by
a request:

G (grant ⇒ F
−1

request). (2)

With or without past? In 1980, Gabbay proved that past-time modalities
did not add expressive power to pure future linear-time temporal logic [GPSS80].
He also provided an algorithm for translating formulas with past-time modali-
ties into equivalent pure future ones [Gab89]. Another procedure was given in

1

[MMSKR94] for temporal logic without next. For instance, equation (2) above
can be written

¬((¬request)U (grant ∧ ¬request)). (3)

This formula is more intricate than the natural formula of equation (2). More-
over, the size of the formula computed by the algorithm is assumed to be non
elementary in the size of the initial one. But Gabbay’s theorem has been used
as an argument for dropping past-time modalities from linear-time temporal
logic. What we show here is that, as regards succinctness, past-time modalities
do add expressive power (this result has been published in [LMS02]).

Outline. I will first briefly recall some definitions about linear-time temporal
logics with past, and the possibility to “remove” past-time modalities. I will
then focus on the translation of LTL formulas into Büchi automata, and more
precisely on the size of the resulting automaton. I will then use this result for
proving the succinctness gap between LTL+Past and pure future LTL.

1 From PLTL to LTL

LTL and PLTL. Let Prop = {p, q, . . . } be a finite set of atomic propositions.
Linear-time temporal logic with past-time modalities (which we denote PLTL in
the sequel1) is defined with the following syntax:

PLTL ∋ φ, ψ ::= ¬φ | φ ∨ ψ | φUψ | Xφ | φSψ | X
−1 φ | p | q | . . .

The pure future fragment of PLTL, denoted by LTL, is defined as follows:

LTL ∋ φ, ψ ::= ¬φ | φ ∨ ψ | φUψ | Xφ | p | q | . . .

Formulas are interpreted at some position along linear paths, i.e. along infinite
sequences (ω-orders) of elements of 2Prop. The semantics for atomic propositions
and boolean operators are the classical ones. For modalities, given a path π and
a position i, we have:

π, i |= φUψ if, and only if, ∃k ≥ i. (π, k |= ψ ∧ ∀i ≤ j < k. π, j |= φ)

π, i |= Xφ if, and only if, π, i+ 1 |= φ

π, i |= φSψ if, and only if, ∃k ≤ i. (π, k |= ψ ∧ ∀k < j ≤ i. π, j |= φ)

π, i |= X
−1 φ if, and only if, i ≥ 1 and π, i− 1 |= φ

The classical abbreviations F (eventually) and G (always), and their past-time
counterparts, are defined by:

Fφ
def
= ⊤Uφ Gφ

def
= ¬F¬φ F

−1 φ
def
= ⊤Sφ G

−1 φ
def
= ¬F

−1 ¬φ

1Here, P in PLTL stands for Past.

2

Two formulas φ, ψ of PLTL are said to be equivalent (which we write φ ≡ ψ)
if, and only if, they verify the following property:

for any path π and any position i, π, i |= φ ⇔ π, i |= ψ.

Initial equivalence is a weaker notion of equivalence: φ and ψ are initially equiv-
alent (φ ≡i ψ) if, and only if,

for any path π, π, 0 |= φ ⇔ π, 0 |= ψ.

Both notions of equivalence clearly coincide for LTL, but not for PLTL formulas.

Translations to pure-future temporal logic. [GPSS80] proves that LTL

is expressive complete, thus as expressive as PLTL [Kam68]. Moreover, [Gab89]
presents a syntactic algorithm for translating a PLTL formula into an initially
equivalent LTL one. For many computer scientists, this has been one reason for
not considering past in temporal logics, by concern of minimality.

However, since 1980, the cost of the translation has not been precisely char-
acterized. The algorithm provided by [Gab89] is assumed to be non elementary.

By a detour through counter-free Büchi automata, it is possible to get a
more efficient algorithm: first translate the formula φ ∈ PLTL into a Büchi
automaton [LPZ85], then translate that automaton into an equivalent deter-
ministic Muller automaton. The resulting automaton can be assumed to be
counter free, since otherwise, the language it defines would not be star free.
Then [MP90, MP94] provides a translation of counter free Muller automaton
into LTL. All of the three steps possibly involves an exponential blowup, and the
size of the final formula is at most triply exponential in the size of the initial
one.

In the sequel, we prove that at least one exponential is unavoidable, i.e. there
exists a family of PLTL formulas φn with size O(n), whose equivalent formulas
have size Ω(2n).

2 LTL and Büchi automata

Let’s get back to the aforementioned translation of LTL formulas into Büchi
automata. The important theorem is the following:

Theorem 1 ([WVS83, VW86])
Given an LTL formula φ, one can build a Büchi automaton Aφ = (Σ, S, ρ, S0, F)

where Σ = 2Prop and |S| = 2O(|φ|), such that L(Aφ) is exactly the set of paths

satisfying the formula φ.

Let n be a nonnegative integer, Prop = {p0, p1, . . . , pn}. We consider the
following path property, mentionned in [EVW02]:

Any two positions of the path that agree on propositions p1,
p2, . . . , pn also agree on proposition p0.

(4)

3

This property can be expressed by the following LTL formula, which tests all
the possible valuations for the atomic propositions:

φn
def
=

∧

ai∈{⊤,⊥}

i∈[1,n]

[(

F (
n
∧

i=0

pi = ai)
)

⇒ G

(

(

n
∧

i=1

pi = ai

)

⇒ (p0 = a0)
)]

This formula has size 2O(n).
We now prove that there is no polynomial size LTL formula expressing the

same statement. The proof is adapted from [EVW02]. Assume that there exists
a polynomial-size LTL formula for the property (4). From the above Theorem 1,
there would exist a Büchi automaton of size single exponential whose language
is exactly the set of computations verifying φn.

We show that this is not possible: any automaton recognizing L(φn) = {u ∈
(2Prop)ω | u |= φn} requires at least 22n

states. Indeed, let A be an automaton
recognizing exactly L(φn), let a0, . . . , a2n−1 be any sequence of the 2n subsets
of {p1, . . . , pn}, and let K be a subset of {0, . . . , 2n−1}. We define a sequence
of letters bi ∈ Σ as follows:

bi
def
=

{

ai if, and only if, i /∈ K
ai ∪ {p0} if, and only if, i ∈ K

We also define the finite word wK
def
= b0b1 · · · b2n−1. Clearly, two different choices

of K lead to two different sequences of (bi)i=0...2n−1, thus to two different words
wK . Therefore, there exists exactly 22n

such words.
Let K and K ′ be two distinct subsets of {0, . . . , 2n − 1}. Obviously, the

words wω
K and wω

K′ are accepted by the automaton A. There exist two paths
πK and πK′ in the automaton A accepting the words wω

K and wω
K′ , respectively.

Consider the 2n-th state of each of these paths, which we name qK and qK′ . If
these states were identical, then the suffix πK starting from state qK could be
appended to the prefix of πK′ up to state qK′(= qK), thus giving an accepting
path (since the Büchi acceptance conditions are satisfied along πK) for the word
wK′ · wω

K . But that word wK′ · wω
K should not be accepted by A since it does

not satisfy the formula φn. Thus any automaton recognizing exactly L(φn) has
at least 22n

states, so that |φn| is in Ω(2n).

3 PLTL is exponentially more succinct than LTL

In order to prove the succinctness result, we will use a slightly modified property,
namely:

Any position of the path that agrees on propositions p1, p2, . . . ,
pn with the initial state also agrees on proposition p0.

(5)

This property can be expressed in PLTL through the following formula:

ψn
def
= G

[(

n
∧

i=1

(pi ⇔ F
−1

G
−1 pi)

)

⇒ (p0 ⇔ F
−1

G
−1 p0)

]

.

4

This formula clearly expresses property (5), since F
−1

G
−1 p means that p holds

in the initial state of the path. Moreover, φn has size O(n).
Since any PLTL formula can be translated into an initially equivalent LTL

formula, we let ψ′
n be an LTL formula initially equivalent to ψn, and we define

φ′n
def
= Gψ′

n. We claim that φn and φ′n are equivalent. Indeed, that some path π
satisfies φ′n exactly means that for all i, π, i |= ψ′

n. Since ψ′
n ∈ LTL, this amounts

to say that πi, 0 |= ψ′
n. Since ψ′

n ≡i ψn, it is equivalent to the fact that, for all
i, πi, 0 |= ψn, that is “for all position i, for all position j, if position j agrees
with position i on propositions p1, p2, . . . , pn, then it also agrees with position
i on proposition p0”, which we means that π satisfies φn.

Bringing all the pieces together, we get the following theorem:

Theorem 2
PLTL can be exponentially more succinct than LTL.

The proof is quite simple now: consider formula ψn, and its LTL equivalent
ψ′

n. We know that ψn has size linear in n, and we know that Gψ′
n has size

Ω(2n), since it is an LTL formula expressing property (4). Thus ψ′
n has size

at least Ω(2n). In fact, this even proves that ψ′
n has at least Ω(2n) distinct

subformulas, since in the construction of Aφ, the states are the subsets of the
set of subformulas of φ (thus ψ′

n cannot even be succinctly represented as a dag
sharing common subformulas).

Remark that the proof requires formulas with bounded temporal height,
and uses an unbounded number of atomic propositions. It can be adapted in
order to use only finitely many atomic propositions, but with an unbounded
temporal height (by encoding atomic propositions with only one atomic propo-
sition [DS02]). Moreover, the proof uses neither the U nor the S modalities. The
result thus carries over to L(F ,F−1). It can be shown however that L(F ,F−1)
is strictly more expressive (as regards to the classical notion of expressivity)
than L(F).

Conclusion

This simple proof only partially answers the question on the size of the op-
timal translation from PLTL to LTL: we proved that the gap is at least single
exponential, but the best known upper bound is triply exponential.

References

[DS02] Stéphane Demri and Philippe Schnoebelen. The Complexity of
Propositional Linear Temporal Logics in Simple Cases. Infor-
mation and Computation, 174(1), pages 84–103, Academic Press,
April 2002.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-
Order Logic with Two Variables and Unary Temporal Logic. Infor-

5

mation and Computation, 179(2), pages 279–295, Academic Press,
December 2002.

[Gab89] Dov M. Gabbay. The Declarative Past and Imperative Future: Ex-
ecutable Temporal Logic for Interactive Systems. In Behnam Ban-
ieqbal, Howard Barringer, and Amir Pnueli, editors, Proceedings
of the 1st Conference on Temporal Logic in Specification, April
1987, volume 398 of Lecture Notes in Computer Science, pages
409–448. Springer-Verlag, 1989.

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan
Stavi. On the Temporal Analysis of Fairness. In Conference
Record of the 7th ACM Symposium on Principles of Programming
Languages (POPL’80), January 1980, pages 163–173. ACM Press,
January 1980.

[Kam68] Hans W. Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, Los Angeles, California, USA, 1968.

[Lam80] Leslie Lamport. “Sometimes” is sometimes “Not Never”. In Con-
ference Record of the 7th ACM Symposium on Principles of Pro-
gramming Languages (POPL’80), January 1980, pages 174–185.
ACM Press, January 1980.

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen.
Temporal Logic with Forgettable Past. In Proceedings of the 17th
Annual Symposium on Logic in Computer Science (LICS 2002),
July 2002, pages 383–392. IEEE Comp. Soc. Press, July 2002.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The Glory
of the Past. In Rohit Parikh, editor, Proceedings of the Conference
on Logics of Programs, June 1985, volume 193 of Lecture Notes in
Computer Science, pages 413–424. Springer-Verlag, June 1985.

[MMSKR94] Louise E. Moser, P. Michael Melliar-Smith, George Kutty, and
Y. Srinivas Ramakrishna. Completeness and Soundness of Ax-
iomatizations for Temporal Logics without Next. Fundamenta In-
formaticae, 21(4), pages 257–305, IOS Press, October 1994.

[MP90] Oded Maler and Amir Pnueli. Tight Bounds on the Complex-
ity of Cascaded Decomposition of Automata. In Proceedings of
the 31st Annual Symposium on Foundations of Computer Sci-
ence (FOCS’90), October 1990, pages 672–682. IEEE Comp. Soc.
Press, October 1990.

[MP94] Oded Maler and Amir Pnueli. On the Cascade Decomposition of
Automata, its Complexity and its Application to Logic. Avail-
able at: <http://www-verimag.imag.fr/PEOPLE/Oded.Maler/

Papers/decomp.ps>, 1994.

6

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Science
(FOCS’77), October-November 1977, pages 46–57. IEEE Comp.
Soc. Press, October 1977.

[Pri57] Arthur N. Prior. Time and Modality. Clarendon Press, 1957.

[VW86] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Ap-
proach to Automatic Program Verification. In Proceedings of the
1st Annual Symposium on Logic in Computer Science (LICS’86),
June 1986, pages 332–344. IEEE Comp. Soc. Press, June 1986.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning
about Infinite Computation Paths. In Proceedings of the 24th An-
nual Symposium on Foundations of Computer Science (FOCS’83),
November 1983, pages 185–194. IEEE Comp. Soc. Press, Novem-
ber 1983.

7

