
HAL Id: hal-01194616
https://hal.science/hal-01194616

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking Restricted Sets of Timed Paths
Nicolas Markey, Jean-François Raskin

To cite this version:
Nicolas Markey, Jean-François Raskin. Model Checking Restricted Sets of Timed Paths. Proceedings
of the 15th International Conference on Concurrency Theory (CONCUR’04), 2004, London, UK,
Unknown Region. pp.432-447, �10.1007/978-3-540-28644-8_28�. �hal-01194616�

https://hal.science/hal-01194616
https://hal.archives-ouvertes.fr

Model Checking Restricted Sets of Timed Paths

Nicolas Markey and Jean-François Raskin

Département d’Informatique
Université Libre de Bruxelles
Bld du Triomphe – CP 212
1050 Brussels – Belgium

email: {nmarkey,jraskin}@ulb.ac.be

Abstract. In this paper, we study the complexity of model-checking
formulas of three important real-time logics (MTL, MITL, and TCTL)
over restricted sets of timed paths. The classes of restricted sets of timed
paths that we consider are (i) a single finite (or ultimately periodic) timed
path, (ii) a infinite set of finite (or infinite) timed paths defined by a finite
(or ultimately periodic) path in a region graph, (iii) a infinite set of finite
(or infinite) timed paths defined by a finite (or ultimately periodic) path
in a zone graph.

Introduction

Timed automata have been introduced in [2] as a formal notation to model behav-
iors of real-time systems. Requirements for real-time systems modeled as timed
automata are conveniently expressed using real-time logics. Real-time logics are
quantitative extensions of temporal logics. Three main logics have been defined
to express real-time requirements: TCTL [1] is a real-time extension of the CTL

logic, while MTL and MITL [3] are extensions of the LTL logic. The model check-
ing problems for those logics over sets of timed paths defined by timed automata
have been studied. The results are as follows: For the logic TCTL, the model
checking problem has been shown PSPACE-complete in [1]. For the logic MTL,
the problem has been shown undecidable in [4]. For the logic MITL, the problem
has been shown EXPSPACE-complete in [3].

In this paper, we study the model checking problems for those real-time
logics on several classes of restricted sets of timed paths. We consider the model
checking problems related to TCTL, MTL, and MITL when the set of timed
paths is (i) a single finite (or ultimately periodic) timed path, (ii) a set of finite
(or infinite) timed paths defined by a finite (or ultimately periodic) path in a
region graph, (iii) a set of finite (or infinite) timed paths defined by a finite (or
ultimately periodic) path in a zone graph. Note that in cases (ii) and (iii), the
sets contain uncountably many timed paths. Note also that finite or ultimately
periodic region paths as well as zone paths can be seen as simple form of timed
automata.

Beside the theoretical interest to study the complexity of the model checking
problems for those subcases, there are important practical reasons to study them.

2 Nicolas Markey and Jean-François Raskin

First, verification algorithms for timed automata have to manipulate sym-
bolically infinite state spaces. This is done either through the region graph or
through the zone graph. When the verification of a safety or a linear-time prop-
erty fails, those symbolic algorithms identify a finite or an infinite ultimately
periodic path in the region graph or in the zone graph [6]. This path is the sym-
bolic representation of an infinite set of timed paths that are counter-examples
to the property. Usually, the information that is given back to the user is a
single timed path extracted from this symbolic path. Nevertheless, it may be
much more interesting to give to the user not only a single counter-example but
the entire infinite set of counter-examples actually computed by the symbolic
algorithm. As this counter example is symbolic, the possibility to analyze this
counter-example using model checking should be given to the user. In fact, in or-
der to better understand this infinite set of counter examples, the user may want
to formulate model checking questions about this set. We should then look if we
can specialize our verification algorithms for those (possibly) simpler problems.

Second, a real-time system that is executing constructs naturally a timed
path that represent the evolution of its state along time. Correctness require-
ments about this single execution path can be expressed using a linear real-time
logic, like MTL. Can we efficiently verify properties expressed by MTL formulas
on this single timed path? In the dense-time framework, we know from the un-
decidability result for MTL that we cannot construct, as in the finite state case
for LTL, a monitor (in the form of a timed automaton for example) that will
enter a bad state in the case the formula is not satisfied. It is clear again that
we need to look at specific techniques.

Third, if a timed automaton is too complex to be completely verified, we
may be interested to test it instead. Testing a timed automaton against a set
of real-time formulas consists in: (i) extracting a set of timed paths out of the
timed automaton by executing it, and (ii) verifying that the set of extracted
path verify some given real-time formulas. The set of timed paths can be either
extracted by explicit execution of the timed automaton (in this case it is a finite
set) or, more interestingly, extracted through symbolic execution of the timed
automaton which amounts to visit a subset of its region or zone graph. In the
two latter cases, we must check real-time formulas on infinite sets of timed paths
defined by a finite set of region or zone paths. Again, for those subcases, we
should look at the existence of specialized techniques.

The results that we have obtained for the model checking problems of the
three real-time logics over the six classes of restricted sets of timed paths are
given in Table 1. To the best of our knowledge, only the three results from the
first line were known, all the other results are new. The undecidability and EXP-
SPACE-hard result for the model checking of MTL and MITL over ultimately
periodic region paths were unexpected and their proofs have required new en-
coding techniques for Turing Machine computations using timed paths. Those
hardness results imply hardness results for ultimately periodic zone paths. In
those proofs, all the information about the tape of the Turing Machine (TM
for short) is encoded into the timing information of the path, the sequence of

Model Checking Restricted Sets of Timed Paths 3

MTL MITL TCTL

Timed Automata Undecidable [4] EXPSPACE-c. [3] PSPACE-c. [1]

Ult. Per. Zone Paths Undecidable EXPSPACE-c. PSPACE-c.

Ult. Per. Region Paths Undecidable EXPSPACE-c. PTIME

Finite Zone Paths co-NP-c. co-NP-c. PSPACE-c.

Finite Region Paths co-NP-c. co-NP-c. PTIME

Ult. Per. Timed Paths PTIME PTIME PTIME

Finite Timed Paths PTIME PTIME PTIME

Table 1: Complexity of path model checking

propositional assignments being fixed by the ultimately periodic region path.
This situation is rather different from the classical proofs in [4] and in [3]. Note
also that the complexity of TCTL model checking goes from PSPACE-complete
to PTIME in the case of region paths which is not the case for zone paths for
which the problem stays PSPACE-complete. On the other hand, when we con-
sider finite region or zone paths, the model checking problem for MTL becomes
decidable and is co-NP-complete. The proofs for those results are based on (i) a
polynomial time algorithm for checking the truth value of a MTL formula over
a single finite timed path and on (ii) the proof that transitions between regions
(respectively zones) in a region (respectively zone) path can be chosen nondeter-
ministically in a finite subset of the rationals with polynomially many elements
to establish if a region (respectively zone) path has at least one concretization
that satisfies the MTL formula.

Related work. Path model checking has been introduced in [10], where efficient
algorithms are proposed for several untimed temporal logics (LTL, LTL+Past, ...).
The basic remark there is that a CTL algorithm can be applied in order to verify
LTL specifications, since path quantifier would refer to the only possible run of
the structure. This does not hold here when we deal with region or zone paths.

Runtime verification and monitoring is another related issue. In that case,
properties are verified on the fly during the run, as the events occur. Recently,
monitoring algorithms have been proposed in the discrete-time framework for
MTL [11].

In our work, we verify properties expressed in three important timed temporal
logics. The case where the property is expressed as a timed automaton is treated
in [5], where the authors show that deciding if a timed trace corresponds to
an execution of a given timed automaton is PSPACE-complete. This result can
easily be extended to region paths.

Structure of the paper. The rest of the paper is structured as follows. In a first
section, we define the classes of restricted sets of timed paths for which we study

4 Nicolas Markey and Jean-François Raskin

the complexity of the model checking problems. We also recall in this section
the syntax and semantics of MTL, MITL, and TCTL. In a second section, we
present complexity results that can be interpreted as negative: we show that for
some classes of restricted sets of timed models, some model checking problems
are not easier than in the general case (when the set of timed paths is defined by
a timed automaton). In a third section, we present complexity results that can
be interpreted as positive: we show that for some interesting classes of restricted
set of timed paths, some model checking problems are easier than in the general
case.

1 Preliminaries

1.1 Timed automata and paths

We write R+ for the set of positive real numbers. In the sequel, all intervals we
consider are convex subsets of R

+ with rational greatest lower and least upper
bounds. An interval is said to be singular if it contains only one value. Given
two intervals I and J , and a positive rational number t, we write I− t for the set
{x ∈ R+ | x+ t ∈ I} and I − J for the set {x ∈ R+ | ∃y ∈ J. x+ y ∈ I}. Given
an interval I, we note l(I) the greatest lower bound of I and r(I) least upper
bound of I. An interval J follows an interval I if I ∪ J is convex, I ∩ J = ∅ and
r(I) = l(J). A finite (resp., infinite) sequence of intervals (Ii), with 0 ≤ i ≤ n
(resp. 0 ≤ i) partitions a set D ⊆ R+ if for any 0 < i ≤ n (resp. 0 < i), interval
Ii follows Ii−1 and ∪i=ni=0 Ii = D (resp. ∪i=+∞

i=0
Ii = D).

Let H be a set of variables. We define the set C(H) of clock difference con-
straints inductively as follows:

C(H) ∋ δ, δ′ ::= x ∼ c | x− y ∼ c | δ ∧ δ′

for any two variables x and y inH, for ∼ in {<,≤,=,≥, >}, and for any integer c.

Given a valuation v for the variables in H, the boolean value of a difference
constraint δ is defined in the obvious way. Moreover, for any real t, we define
the valuation v + t as being the valuation x 7→ v(x) + t, and for any subset C
of H, the valuation vC as being the valuation x ∈ C 7→ 0, x /∈ C 7→ v(x).

Definition 1.1. Given a set of states Q, and a set of clocks H, a timed path1

τ = (qi, vi, Ii) is a (finite or infinite) sequence s.t.:

– (qi) is a sequence of states in Q;
– (Ii) is a sequence of intervals forming a partition of R+ (or possibly of an

interval [0, p] or [0; p) in the case of a finite path);
– vi : H → R+ is the valuation of clocks in H when entering location qi, at

date l(Ii). We require that, for each i and each clock x, either vi+1(x) = 0
or vi+1(x) = vi(x) + r(Ii) − l(Ii);

1 For the sake of brevity, we only consider dense time in the sequel. However, our
results still hold when considering super-dense time [9].

Model Checking Restricted Sets of Timed Paths 5

– for each i, either qi+1 6= qi, or there exists a clock x s.t. vi+1(x) 6= vi(x) +
r(Ii) − l(Ii). This ensures that, at each step along that sequence, either we
change location or we reset at least one variable2.

A position along a timed path τ = (qi, vi, Ii) is a triple (q, v, t) ∈ Q×RH ×R

for which there exists an integer j s.t. q = qj and v = vj + t − l(Ij) and t ∈ Ij .
For each t ∈ ∪iIi, there exists exactly one position (q, v, t) along τ , which we
denote by τ (t). Given a timed path τ = (qi, vi, Ii) and a position (qj , v, t) along ρ,
the suffix of ρ starting at position (qj , v, t), denoted by ρ≥t, is the timed path
(q′i, v

′
i, I

′
i) where (1) q′i = qi+j for all i, (2) v′i = vi+j for i > 0, and v′0 = v,

(3) I ′i = Ii+j − t for i > 0, and I ′0 = ([t,+∞) ∩ Ij) − t.

Definition 1.2. A timed automaton (TA) is a 6-tuple A = (Q,Q0, H, l, Inv,
T, F) where: Q is a (finite) set of states; Q0 is a subset of Q containing the set
of initial states; H is a finite set of real-valued clocks; l is a function Q → 2AP

labeling each state with atomic propositions of AP ; Inv is a function Q→ C(H)
labeling each state with a set of timing constraints (called “invariants”); T ⊆
Q × C(H) × 2H × Q is a set of transitions; F ⊆ Q is a subset of Q containing
the set of accepting states.

In the sequel, we generally identify a location q ∈ Q with its labeling l(q), if
no ambiguity may arise from this notation. A position in a TA is a couple (q, v)
where q is a state and v is a valuation of clocks in H satisfying Inv(q).

Definition 1.3. Given a set of states Q and a set of clocks H, a timed path
(qi, vi, Ii) is a concretization of a TA (Q,Q0, H, l, Inv, T) if

– q0 ∈ Q0;
– For each j, and for each t ∈ Ij, valuation vj + t− l(Ij) satisfies Inv(qj);
– For each j, there exists a transition (qj , ϕ, C, qj+1) ∈ E s.t. valuation vj +
r(Ij)−l(Ij) satisfies ϕ, and for all x ∈ C, vj+1(x) = 0, and for all x ∈ HrC,
vj+1(x) = vj(x) + r(Ij) − l(Ij).

– either the timed path is infinite or its last state qn is accepting, that is qn ∈ F .

Definition 1.4. Two clock valuations v and v′ are said to be equivalent w.r.t.
a family (cx)x∈H of constants, if the following conditions hold:

– for all clocks x ∈ H, either both v(x) and v′(x) are greater than cx, or both
have the same integer part;

– for all clocks x ∈ H, if v(x) ≤ cx, then v(x) ∈ N iff v′(x) ∈ N;
– for all x, y ∈ H with v(x) ≤ cx and v(y) ≤ cy, if fract(v(x)) ≤ fract(v(y)),

then fract(v′(x)) ≤ fract(v′(y)), where fract stands for the fractional part.

This obviously defines an equivalence relation. A clock region is an equiva-
lence class for the equivalence relation between clocks. [2] proves that there are
finitely many clock regions, more precisely at most |H|! · 4|H| ·

Q
x∈H

(cx + 1).

2 This conditions rules out “stuttering” paths. This is not restrictive as our logics, as
you’ll see later, cannot distinguish between timed traces with or without stuterring.

6 Nicolas Markey and Jean-François Raskin

A clock region α is a time-successor of a clock region β if for each valuation
v ∈ β, there exists a positive t ∈ R s.t. valuation v+ t is in α, and for each t′ s.t.
0 ≤ t′ ≤ t, valuation v+ t′ is in α∪β. It can be proved that, each clock region α
has exactly one time-successor, which we will denote by succ(α) in the sequel. A
clock region α is a boundary class if for any valuation v ∈ α and for any positive
real t, valuation v + t is not in α.

Definition 1.5. Given a TA A = (Q,Q0, H, l, Inv, T, F), and the family (cx) of
maximal constants to which each clock x is compared in A, the region graph RA

of A is the labeled graph (V, l′, E) defined as follows:

– V is the product of the set of states of A and the set of clock regions;
– l′ : V → 2AP is defined by l′(q, α) = l(q);
– E is the set of edges, containing two type of edges: Edges representing the

elapse of time: for each vertex (q, α) in V , there is an edge to (q, succ(α)), if
succ(α) exists and contains a valuation satisfying the invariant Inv(q); Edges
corresponding to transitions in A: for each vertex (q, α) in V , for each edge
(q, ϕ, C, q′) in T , if there exists a valuation v ∈ α satisfying ϕ and s.t. vC
satisfies Inv(q′), then there is an edge from (q, α) to (q′, β) where β is the
region containing valuation vC .

Definition 1.6. A region path is a (finite or infinite) sequence ρ = (qi, αi)
where qi are locations and αi are regions s.t. for all i either αi+1 = succ(αi),
and qi+1 = qi, or there exists a valuation v ∈ αi and a set of clocks C s.t.
vC ∈ αi+1.

Definition 1.7. A zone is a convex union of regions. It can equivalently be
defined as the set of clock valuations satisfying a difference constaint in C(H). A
zone path is a (finite or infinite) sequence ρ = (qi, Zi, Ci) where qi are locations,
Zi are zones and Ci are the sets of clocks that are reset when entering Zi.

A region (resp. zone) path π is said to be ultimately periodic (u.p. for short)
if it can be written under the form u · vω, where u and v are finite region (resp.
zone) paths. In both cases, finite paths are special cases of u.p. paths. A timed
path is ultimately periodic if it is finite or if there exist two integers m and p > 0,
and a real t, s.t. for any i ≥ m, qi+p = qi, vi+p = vi, and Ii+p = Ii + t.

Note that a finite (or u.p.) region path is a special case of a TA, where states
are pairs (qi, αi), the set of initial states is the singleton {(q0, α0)}, invariants are
region constraints, clocks that are reset are clocks whose value is 0 when entering
the target region, and the set of final states F is the last state pair (qn, αn) if
the path is finite and is empty otherwise. A concretization of a region path is
a concretization of the corresponding TA. The following proposition provides a
simplified characterization.

Proposition 1.8. Let ρ = (pi, αi)i be a region path. We say that a timed path
π = (qj , vj , Ij)j is compatible with ρ, or is a concretization of ρ, iff (1) ρ and
π are either both finite or both infinite, and for all k, pk = qk, (2) for all j, for
all t ∈ Ij, valuation vj + t− l(Ij) belongs to region αj.

Model Checking Restricted Sets of Timed Paths 7

Similarly, finite or u.p. zone paths form another subclass of the class of TA.
We have the following simplified characterization of a concretization for a zone
path:

Proposition 1.9. Let ρ = (pi, Zi, Ci)i be a zone path. We say that a timed path
π = (qj , vj , Ij)j is compatible with ρ, or is a concretization of ρ, iff (1) ρ and π
are either both finite or both infinite, and for all k, pk = qk, (2) for all k, for all
t ∈ Ik, valuation vk + t− l(Ik) belongs to zone Zk, (3) for all k, for all x ∈ Ck,
vk(x) = 0.

Note that a concretization of an u.p. region (or zone) path is generally not
u.p. However, verifying that an u.p. timed path is a concretization of a region
(or zone) path may be done in polynomial time [5].

1.2 Timed Temporal Logics

Definition 1.10. Let AP be a set of atomic propositions. The logic MTL is
defined as follows:

MTL ∋ ϕ, ψ ::= ¬ϕ | ϕ ∨ ψ | ϕUI ψ | p | q | ...

where I is an interval with integer greatest lower and least upper bounds and
p, q, ... belong to AP . The logic MITL is the sub-logic of MTL where intervals
may not be singular.

MTL (and MITL) formulas are interpreted along timed paths3. Given a timed
path τ = (qi, vi, Ii) and an MTL formula ϕ, we say that τ satisfies ϕ (written
τ |= ϕ) when:

if ϕ = p then p ∈ l(q0)
if ϕ = ¬ξ then τ 6|= ξ

if ϕ = ξ ∨ ζ then τ |= ξ or τ |= ζ
if ϕ = ξU Iζ then there exists a position (q, v, t) along τ s.t. t ∈ I, τ≥t |= ζ

and, for all t′ ∈ (0; t), τ≥t
′

|= ξ.

Standard unary modalities F I and G I are defined with the following semantics:

F Iξ
def
= ⊤U Iξ and G Iξ

def
= ¬F I¬ξ, where ⊤ is always true. We simply write F

and G for F R+ and G R+ , respectively.

Definition 1.11. Let A be a TA, and ϕ be an MTL formula. The model checking
problem defined by A and ϕ consists in determining if, for any concretization τ
of A starting in an initial state, we have that τ |= ϕ.

Definition 1.12. Let AP be a set of atomic propositions. The logic TCTL is
defined as follows:

TCTL ∋ ϕ, ψ ::= ϕ ∨ ψ | ¬ϕ | E (ϕUI ψ) | A (ϕUI ψ) | p | q | ...

where I is an interval with integer greatest lower and least upper bounds and
p, q, ... belong to AP .

3 For the sake of simplicity, we interpret MTL (and MITL) formulas directly on timed
paths instead of defining a notion of timed model where states and clocks are hidden.

8 Nicolas Markey and Jean-François Raskin

TCTL formulas are interpreted at a position in a TA. Given a TA A, a position
(q, v) and a TCTL formula ϕ, we say that position (q, v) in A satisfies ϕ, written
A, (q, v) |= ϕ, when:

if ϕ = p then p ∈ l(q0)
if ϕ = ¬ξ then A, (q, v) 6|= ξ

if ϕ = ξ ∨ ζ then A, (q, v) |= ξ or A, (q, v) |= ζ
if ϕ = E (ξU Iζ) then there exists a concretization τ = (qi, vi, Ii) of A s.t.

q0 = q and v0 = v, and a position (q′, v′, t′) along τ ,
s.t. t′ ∈ I, A, (q′, v′) |= ζ and all intermediate position
τ (t′′) = (q′′, v′′, t′′) with 0 < t′′ < t′, A, (q′′, v′′) |= ξ

if ϕ = A (ξU Iζ) then for any concretization τ = (qi, vi, Ii) of A with q0 = q
and v0 = v, there exists a position (q′, v′, t′) along τ ,
s.t. t′ ∈ I, A, (q′, v′) |= ζ and all intermediate position
τ (t′′) = (q′′, v′′, t′′) with 0 < t′′ < t′, A, (q′′, v′′) |= ξ

We also define standard unary abbreviations EF Iξ, AF Iξ and EG Iξ, AG Iξ
respectively as E (⊤U Iξ), E (⊤U Iξ) and ¬AF I¬ξ, ¬EF I¬ξ. We omit the
subscript I when it equals R+.

Since region and zone paths can be seen as TA, satisfaction of a TCTL formula
at a position along a region or zone path is defined in the obvious way. Note
that contrary to the untimed case [10], TCTL is not equivalent to MTL along a
region or zone path, since such a path contains (infinitely) many timed paths.

Definition 1.13. Let A be a TA, (q, v) be a position of A, and ϕ be a TCTL

formula. The model-checking problem defined by A, (q, v) and ϕ consists in de-
termining if A, (q, v) |= ϕ.

In the sequel, for the two problems defined above, we consider the subcases where
A is (i) a single finite (or u.p.) timed path, (ii) a finite (or u.p.) region path,
(iii) a finite (or u.p.) zone path.

2 Negative results

The main goal of restricting to subclasses of TA is to obtain feasible algorithms
for problems that are hard in the general case. This section presents cases where
our restrictions are not sufficient and do not reduce complexity.

2.1 Linear time logics along ultimately periodic region paths

What we expected most was that model checking MTL would become decidable
along an u.p. region path. This is not the case, as shown in Theorem 2.1. The
proof of this theorem requires an encoding of a TM computation by timing infor-
mation only. Remember that the proof for the general model checking problem
(for sets of models defined by TA) is simply a reduction from the satisfiability
problem of MTL. The technique needed here is different: We encode the tape of
an unbounded TM on a unit-length path by an atomic proposition being true
for a strictly positive (but as small as we want) amount of time. MTL can dis-
tinguish between those two cases, and allows us to ensure that the path really
encodes a computation of the TM. See Fig. 1 for an example.

Model Checking Restricted Sets of Timed Paths 9

a a b a a b b #

tape head

p q p q p q p q p q p q p q p

1 time unit

rr r r r r r

| {z }
control state

| {z }
tape

| {z }
config.

separator

Fig. 1: Encoding of the tape of a Turing Machine

b
x=0

b
0<x<1

q
0<x<1

b
0<x<1

r
0<x<1

b
0<x<1

p
0<x<1

b
0<x<1

d
0<x<1

b, p
x=0

Fig. 2: The region path ρ

Theorem 2.1. Model checking a MTL formula along an u.p. region path is un-
decidable.

Proof. This is done by encoding the acceptance problem for a TM (does M
accept w?) to the problem of verifying a MTL formula along a region path. Wlog,
we assume that the alphabet has only two letters {a, b}, and a special symbol #
for empty cells. Since the ordering of atomic propositions along the path is fixed,
the contents of the tape has to be encoded through timing informations only.
Since we have no bound on the total length needed for the computation, encoding
of one letter must be arbitrarily compressible. Encoding of an a is done by atomic
proposition q being true at only one precise moment (with duration 0), while b
is encoded by q being true for a positive amount of time. An atomic proposition
p is used in the same way for indicating the beginning and end of the encoding
of the tape. See top of Fig. 1 for an example. For any atomic proposition x, we
write x+ = xU>0 ⊤ and x0 = x∧¬x+. Then a is encoded with p+ and b with p0.

A third letter, r, is used for encoding the position of the control head: r+ is
true (between p and q) at the position where the control head stands, and r+ is
false everywhere else. Encoding the control state (sk, for some k between 0 and
n−1) is done through n 1-time-unit-long slices of the path. Along each slice, q+

and r+ will never be satisfied; p+ will be true only in the k+1-th slice, meaning
that the current control state is sk, and false everywhere else. Fig. 1 shows a
complete encoding of one configuration. The configuration separator will be the
only slice where d+ will hold, for a fourth atomic proposition d. There is one last
atomic proposition, b, used for filling up all the gaps. The region path generating
such an encoding is shown on Fig. 2.

With this encoding, it is possible to write MTL formulas ensuring the correct
behavior of the TM. �

10 Nicolas Markey and Jean-François Raskin

In the same way, MITL model checking problems are not easier with u.p.
region paths than in the general case. Again, the proof for the general model
checking problem is a reduction from the satisfiability problem for MITL. Here,
we cannot proceed that way and must encode the computation of an exponential
space TM using a single region path and an MITL formula.

Theorem 2.2. Model checking an MITL formula along an u.p. region path is
EXPSPACE-complete.

2.2 TCTL along finite or ultimately periodic zone paths

Since zones are more general than regions, hardness results for region paths
extend to zone paths. Thus model checking MITL and MTL along a zone path is
respectively EXPSPACE-complete and undecidable.

Regarding TCTL, the algorithm we propose for region paths (see Section 3.3)
could be extended to zone paths, but would result in an exponential explosion
in the number of states (since a zone may contain an exponential number of
regions). In fact, this explosion cannot be avoided (unless PTIME=PSPACE),
since we have the following result:

Theorem 2.3. Model checking TCTL along an ultimately periodic zone path is
PSPACE-complete.

3 Positive results

Restricting to paths sometimes allows for more efficient algorithms. This happens
for MTL and MITL along single timed paths as well as along finite region or zone
paths, and for TCTL along u.p. region paths.

3.1 Linear time logics and timed paths

Along a timed path, all quantitative information is precisely known, and model
checking MTL can be performed quite efficiently.

Theorem 3.1. Model checking MTL along a u.p. timed path is in PTIME.

Proof. Consider a finite4 timed path τ = (qi, vi, Ii)i=0..p. The idea is to compute,
for each subformula ψ of the MTL formula ϕ under study, the set of reals t s.t.
τ≥t |= ψ. We represent this set Sψ as a union (which we prove is finite) of
intervals whose interiors are disjoint.

The sets Sψ = {Jψi } are computed recursively as follows:

– For atomic propositions, the intervals are trivially computed by “reading”
the input path;

– For boolean combinations of subformulas, they are obtained by applying
the corresponding set operations, and then possibly merging some of them
in order to get disjoint intervals. Obviously the union of two families ∪mi=1Ii
and ∪nj=1Jj of intervals contains at most m+n intervals, and the complement
of ∪mi=1Ii contains at most m + 1 intervals. Thus the intersection of ∪mi=1Ii
and ∪nj=1Jj contains at most m+ n+ 3 intervals;

4 We describe our algorithm only for finite paths, but it can easily be extended to
infinite u.p. paths, by reasoning symbolicaly about the periodic part.

Model Checking Restricted Sets of Timed Paths 11

– For subformulas of the form ϕUI ψ, the idea is to consider, for each interval
Jϕi ∈ Sϕ and each interval Jψj ∈ Sψ, the interval ((Jϕi ∩ Jψj) − I) ∩ Jϕi . It
precisely contains all points in Jϕi satisfying ϕUI ψ with a witness for ψ in

Jψj .
This construction seems to create |Sϕ| · |Sψ| intervals, but a more careful
enumeration shows that it only creates at most |Sϕ| + |Sψ| + 3: indeed,
the procedure only creates at most one interval for each non-empty interval
Jϕi ∩J

ψ
j , and the intersection of ∪mi=1Ii and ∪nj=1Jj contains at most m+n+3

intervals.

At the end of this procedure, Sϕ contains O(p · |ϕ|) intervals, and τ |= ϕ iff 0 is
in one of these intervals. Our algorithm thus runs in time O(|τ | · |ϕ|). �

Timed paths could be seen as timed automata if rational difference con-
straints were allowed in guards and invariants. In that case, the semantics of
TCTL along a timed path would have been equivalent to the semantics of MTL,
since timed automaton representing a timed path would be completely deter-
ministic.

3.2 MTL and MITL along finite region and zone paths

The difficulty for model checking MTL along infinite u.p. region or zone paths
was that we had to remember precise timing information about the (infinite, not
periodic) concretization against which we verify the MTL formula. In the finite
case, we prove we only have to guess and remember a finite (in fact, polynomial)
amount of information, making the problem decidable:

Lemma 3.2. Model checking MTL along a finite zone path is in co-NP.

Proof. We prove that the existential model checking problem is in NP, which is
equivalent. The basic idea is to non-deterministically guess the dates ti at which
each of the n transitions is fired. Once these dates are known, we have a timed
path and we can check in polynomial time that this path is a concretization of
the initial zone path and that it satisfies the MTL formula (see Theorem 3.1).

What remains to be proved is that ti’s can be chosen in polynomial time,
i.e. the number of non-deterministic steps is polynomial. To that purpose, we
consider an MTL formula ϕ, and prove that if ϕ is true along the region path,
i.e. if there exist timestamps s.t. the corresponding timed path satisfies ϕ, then
there exists timestamps in the set {p/(n + 1) | 0 ≤ p ≤ (n + 1) · (cZ + cϕ)}
where n is the number of states in the zone path, cZ is the sum of the constants
appearing in the zone path and cϕ is the sum of the constants appearing in ϕ.

The proof of this last statement is as follows: the set of (in)equalities ti’s
must satisfy are: (In)equalities related to the zone path: when ti’s are “fixed”, we
can compute all valuations of clocks along the zone path. The constraints those
valuations must satisfy give constraints that ti’s must satisfy. These constraints
have the form a ≤ ti− tj ≤ b or a ≤ ti ≤ b; (In)equalities related to the formula:
for each subformula, we can compute a set of disjoint time intervals (depending
on ti’s) in which the subformula is true (see proof of Theorem 3.1).

12 Nicolas Markey and Jean-François Raskin

This leads to a disjunction of difference constraints, which has a solution
iff the formula is true along one concretization of the finite zone path. Since
a difference constraints cannot distinguish between two equivalent valuations
(for the equivalence of Definition 1.4), if there exists a solution, any equivalent
valuation of ti’s is a solution. This ensures that if there is a solution, then there
is a solution in {p/(n+1) | p ∈ N}. Moreover, each date can be bounded with the
sum of all the constants appearing in the zone path or in the formula: Indeed,
constraints between ti’s only involves constants lower than this sum. Thus the
dates can be guessed in polynomial time. �

This algorithm is in fact optimal, and we have the following result:

Theorem 3.3. Model checking MTL or MITL along finite region (or zone) paths
is co-NP-complete.

The co-NP-hardness proof is similar to the one of Theorem 2.3, and consists
in encoding 3-SAT into an (existential) model checking problem.

3.3 TCTL along ultimately periodic region paths

We prove that TCTL properties can be verified in polynomial time along region
paths. This contrasts with the negative results we got previously for MTL and
MITL, and intuitively relies on the fact that, contrary to MTL, we don’t have to
“remember” the precise values of the clocks when we fire a transition, since path
quantifiers are applied to all modalities of the formula.

In this section, we describe our algorithm. It first requires to compute tem-
poral relations between any two regions.

Definition 3.4. Let ρ = (ρ)i be a region path. Given two integers k and l, we
say that a real d is a possible delay between regions ρk and ρl if there exists a
concretization π = (pj , vj , Ij)j of ρ, and a real t, s.t. t ∈ Ik and t + d ∈ Il. We
write delay(ρ, k, l) for the set of possible delays between ρk and ρl along ρ.

The following two lemmas prove that possible delays form an interval with
integer bounds:

Lemma 3.5. Given a region path ρ and two integers k and l, delay(ρ, k, l) is
an interval.

Lemma 3.6 ([7]). Let ρ be a region path, k, l and c be three integers. If there
exists d ∈ (c; c+ 1) s.t. d ∈ delay(ρ, k, l), then (c, c+ 1) ⊆ delay(ρ, k, l).

There remains to compute both upper and lower bounds. [8] designed al-
gorithms for computing minimum and maximum delays between valuations and
regions. We could apply them in our case. However, their algorithms would com-
pute delays between regions of a finite structure, and we need to compute delays
between any two regions of the infinite, u.p. path.

It happens that possible delays in an u.p. region path are u.p., but won’t
necessarily have the same initial and periodic parts. Below, we compute a table

Model Checking Restricted Sets of Timed Paths 13

containing the minimum and maximum delays between one region and any future
region, by computing those delays for a finite set of regions until a periodicity is
detected. Thus, we build a table containing “initial” delays of the minimal and
maximal paths, plus the length and duration of their periodic parts.

Lemma 3.7. Let ρ = u · vω be an u.p. region path. We can effectively build in
time O(|u|2·|H|) the table containing all the necessary information for computing
(i, j) 7→ delay(ρ, i, j).

Proof. We build the region graph G of the product of ρ, seen as a timed au-
tomaton, and T1 shown on Fig. 3. Graph G is not u.p. in the general case: see
Fig. 4 for an example.

Since we add one new clock which is bounded by 1, the total number of
regions is at most multiplied by 2(1 + |H|), corresponding to the 2(1 + |H|)
possible ways of inserting fract(t) among the fractional parts of the other clocks.

In automaton T1, t is the fractional part of

t ≤ 1

t = 1 → t := 0

t := 0

Fig. 3: Automaton T1

the total time elapsed since the beginning of the
path, and the number of times t has been reset
is the integral part of that total time. Extracting
the minimal and maximal delay paths is now an
easy task, since in each region of G:

– either fract(t) = 0, and possibly two transi-
tions may be firable: one corresponding to let-
ting time elapse, going to a region where t > 0,
and the other one corresponding to the transi-
tion in ρ;

– or fract(t) > 0, and clock t can’t reach value 1 in that region, because another
clock will reach an integer value before; The only possible outgoing edge is
the transition of the original region path;

– or fract(t) > 0, and clock t can reach value 1 (and then be reset to 0). Two
cases may arise: resetting t might be the only outgoing transition, or there
could be another possible transition derived from the original region path.
If there are two outgoing edges, firing the transition that resets t amounts
to letting time elapse, and firing the other transition amounts to running as
quickly as possible.

In all cases, we also have the condition that we cannot cross two succes-
sive immediate transitions, since the resulting region path would not have any
concretization.

Now, the maximal delay path is obtained by considering the path where we
always select the transition corresponding to time elapsing, i.e. resetting t or
switching from t = 0 to 0 < t < 1, when such a transition is available; The
minimal delay path is the one we get when always selecting the other transition.
Moreover, those minimal and maximal delay paths are u.p., since G has finitely
many regions and the paths are built deterministically. They have at most |u|+

14 Nicolas Markey and Jean-François Raskin

0=x=y

ρ0

0<x=y<1

ρ1

0=x<y<1

ρ2

0<x<y<1

ρ3

0=y<x<1

ρ4

0<y<x<1

ρ5

(a) The initial path

0=x=y

x=t=y

0<x=y<1

x=t=y

0=x<y<1

y=t

0=x<y<1

y<t<1

0=x<y<1

t=1

0=x<y<1

t=x=0

0=x<y<1

x<t<y

0<x<y<1

y=t

0<x<y<1

y<t<1

0<x<y<1

t=1

0<x<y<1

t=0

0<x<y<1

0<t<x

0<x<y<1

t=x

0<x<y<1

x<t<y

0=y<x<1

x<t<1

0=y<x<1

t=1

0=y<x<1

t=y=0

0=y<x<1

0<t<x

0=y<x<1

t=x

0<y<x<1

x<t<1

0<y<x<1

t=1

0<y<x<1

t=0

0<y<x<1

0<t<y

0<y<x<1

t=y

0<y<x<1

y<t<x

0<y<x<1

t=x

(b) The resulting region automaton (highlighted states are
states appearing in the minimal or maximal delay path)

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ′

2 ρ′

3 ρ′

4 ρ′

5 period

min. delay 0 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0 t.u., 4 states

max. delay 0 1− 1− 1− 1− 2− 2− 2− 2− 3− 1 t.u., 4 states

(c) Delays from the initial region

Fig. 4: Computation of possible delays between regions

2(|H|+ 1) · |v| regions in their initial part and at most 2(|H|+ 1) · |v| regions in
their periodic part.

From these paths, we can build a table containing all relevant information
for computing minimal and maximal delays between the initial region and any
region along ρ (see Fig. 4(c)). Any value inbetween is a possible delay thanks to
lemma 3.5. Computing this table takes time O(|u|+2(|H|+1) · |v|). Computing
possible delays between any two states along ρ can be achieved by repeating
the above procedure starting from the first |u| + |v| states of ρ (since removing
longer prefixes gives rise to the same paths), thus in total time O((|u|+ 2(|H|+
1) · |v|) · (|u| + |v|)) ⊆ O(|H| · |ρ|2). �

Model Checking Restricted Sets of Timed Paths 15

Theorem 3.8. Model checking a TCTL formula ϕ along an u.p. region path ρ
can be done in polynomial time (more precisely O(|ϕ| · |ρ| · |H| + |H| · |ρ|2)).

Proof. This is achieved by a labeling algorithm. We label region ρi of ρ with
subformula ψ of ϕ iff ρi |= ψ. This is not ambiguous as a TCTL formula cannot
distinguish between two equivalent valuations [1].

The labeling procedure runs in time O(|ϕ| · |ρ| · |H|). Since delays between
regions must be computed, the global TCTL model checking problem along u.p.
region paths can be performed in time O(|ϕ| · |ρ| · |H| + |H| · |ρ|2). �

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-Checking in Dense Real-Time.
Information and Computation, 104(1), pages 2–34, Academic Press, May 1993.

[2] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2), pages 183–235, Elsevier Science, Apr. 1994.

[3] R. Alur, T. Feder, and Th. A. Henzinger. The Benefits of Relaxing Punctuality.
Journal of the ACM, 43(1), pages 116–146, ACM Press, Jan. 1996.

[4] R. Alur and Th. A. Henzinger. A Really Temporal Logic. Journal of the ACM,
41(1), pages 181–203, ACM Press, Jan. 1994.

[5] R. Alur, R. P. Kurshan, and M. Viswanathan. Membership Question for Timed
and Hybrid Automata. In Proc. 19th Symp. Real-Time Systems (RTS’98),
Dec. 1998, pages 254–263. IEEE Comp. Soc. Press, Dec. 1998.

[6] A. Bouajjani, S. Tripakis, and S. Yovine. On-the-Fly Symbolic Model Checking for
Real-Time Systems. In Proc. 18th Symp. Real-Time Systems (RTS’97), Dec. 1997,
pages 25–35. IEEE Comp. Soc. Press, Dec. 1997.

[7] V. Bruyère, E. Dall’Olio, and J.-F. Raskin. Durations, Parametric Model Checking
in Timed Automata with Presburger Arithmetic. In H. Alt and M. Habib, eds,
Proc. 20th Symp. Theoretical Aspects of Computer Science (STACS 2003), Feb.-
Mar. 2003, vol. 2607 of LNCS, pages 687–698. Springer Verlag, Feb. 2003.

[8] C. Courcoubetis and M. Yannakakis. Minimum and Maximum Delay Problems
in Real-Time Systems. Formal Methods in System Design, 1(4), pages 385–415,
Kluwer Academic, Dec. 1992.

[9] Z. Manna and A. Pnueli. Verifying Hybrid Systems. In R. L. Grossman, A. Nerode,
A. P. Ravn, and H. Rischel, eds, Hybrid Systems, vol. 736 of LNCS, pages 4–35.
Springer Verlag, 1993.

[10] N. Markey and Ph. Schnoebelen. Model Checking a Path (Preliminary Report).
In R. Amadio and D. Lugiez, eds, Proc. 14th Intl Conf. Concurrency Theory
(CONCUR 2003), Aug.-Sept. 2003, vol. 2761 of LNCS, pages 251–265. Springer
Verlag, Aug. 2003.

[11] P. Thati and G. Roşu. Monitoring Algorithms for Metric Temporal Logic Spec-
ifications. In K. Havelund and G. Roşu, eds, Proc. 4th Intl Workshop on Run-
time Verification (RV 2004), Apr. 2004, ENTCS, pages 131–147. Elsevier Science,
Apr. 2004.

