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Convergence of an infinite dimensional stochastic process
to a spatially structured trait substitution sequence

Héléne Leman*

September 7, 2015

Abstract

We consider an individual-based spatially structured population for Darwinian
evolution in an asexual population. The individuals move randomly on a bounded
continuous space according to a reflected brownian motion. The dynamics involves
also a birth rate, a density-dependent logistic death rate and a probability of mu-
tation at each birth event. We study the convergence of the microscopic process
when the population size grows to +o0o and the mutation probability decreases to 0.
We prove a convergence towards a jump process that jumps in the infinite dimen-
sional space of the stable spatial distributions. The proof requires specific studies
of the microscopic model. First, we examine the large deviation principle around
the deterministic large population limit of the microscopic process. Then, we find
a lower bound on the exit time of a neighborhood of a stationary spatial distribu-
tion. Finally, we study the extinction time of the branching diffusion processes that
approximate small size populations.

Keywords: structured population; birth and death diffusion process; large deviations studies;
exit time; branching diffusion processes; nonlinear reaction diffusion equations; weak stability;
Trait Substitution Sequence.

1 Introduction

The spatial aspect is an important issue in ecology [30], 12]. The influence of the hetero-
geneity of the environment on the phenotypic evolution has been explored for a long time
[13], 17, 20]. For example, the emergence of phenotypic clusters under a heterogeneous
space has been extensively studied [11, 27, 21]. In [II, 21], the authors suggest that
clustering and aggregation of individuals can be a consequence of the spatial competi-
tion between individuals. Those phenomena generate a structured population based on
isolated patches. In [27], the authors draw attention to the influence of the boundary of
the spatial environment. The sensibility to heterogeneously distributed resources is also
a key point to study the spatial dynamics of population [19]. In this context, the effect
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of a spatial structure on the evolution of a population is fundamental.

In this paper, we use a population model that describes the interplay between evo-
lution and spatial structure. We are interested in a macroscopic approximation of the
microscopic model under three main biological assumptions : rare mutations, large pop-
ulation size and the impossibility of coexistence of two traits for a long time scale. The
main result of this paper implies a convergence of the microscopic model to a jump pro-
cess that jumps in an infinite dimensional space characterized by the spatial profiles of
the population. This result is correlated with several works on adaptive dynamics and
in particular with the model of Trait Substitution Sequence (TSS). Metz and al. [26]
have introduced this model from an ecological point of view. It describes the evolution of
phenotypic traits in the case where the ecological time scale, related to the dynamics of
the population, and the evolutionary time scale, related to the mutations, are separated.
In the evolution time scale, the model describes the succession of invading phenotypic
traits as a jump Markov process in the space of phenotypic traits. The link between the
microscopic model and the TSS model has been completely proved by Champagnat [3]
in a simpler ecological context. Recently, some papers have generalized this approach
in the case of an aged-structured population [31], of a multi-resources chemostat model
[4] or of a prey-predator model [6]. But only [31] deals with some processes with values
in infinite dimensional spaces, and the age structure is deterministic. In contrast with
it, we are concerned with the spatial aspect of a population living on a heterogeneous
environment where the individuals move randomly.

We study an individual-based model in which any individual birth and death events
are described. This Markov process has been initially introduced by Champagnat and
Méléard in [5]. For any time ¢ > 0, each individual ¢ is described by two characteristics
(X},U}). X} represents its location in an open, bounded and convex subset X of R? with
a C%-boundary. U/ denotes its phenotypic trait which belongs to a compact subset U of
R?. The phenotype of an individual does not change during its life time contrary to its
location. The location space may represent a geographic landscape or a theoretical space
that describes a gradient of temperature, a gradient of elevation or a resource parameter
as seed size for a population of birds [II]. In the context of the last example, the phe-
notype may represent the beak size of a bird and it is interesting to study the adequacy
between the beak size and the seed size when evolution occurs [19].

The total population is represented at any time ¢ by the finite measure

1

K

vl =22 D0 i (1.1)
i=1

where J, corresponds to the Dirac measure at y, NNy is the number of individuals at time
t. The parameter K scales the population size and the biological assumption of large
population size is stated into mathematics by K tends to +oc.

The dynamics of the process is driven by a birth and death diffusion process, in which
the motion, birth, mutation and death of each individual depends on its location and
trait.

Any individual ¢ with phenotypic trait u moves according to a diffusion process driven



by the following stochastic differential equation normally reflected at the boundary 90X,
dX} = 2muId - dB; — n(X])dl (1.2)

where B is a d-dimensional brownian motion, /; is an adapted continuous and non-
decreasing process with [y = 0, it increases only when X} € X and the diffusion coeffi-
cient m* is a function of the trait.

We consider a population with asexual reproduction. An individual with location
x € X and trait u € U gives birth at rate b(xz,u). This rate can also be denoted by b*(x)
when u is fixed and it is assumed to be bounded. The offspring appears at the location
of its parents. Furthermore, a mutation may occur with probability qxp, making the
phenotypic trait of the offspring different. The law of the mutant trait is then given by a
kernel k(x,u,-). The mutation probability p may depend on the trait and the location.
The parameter qx scales the mutation probability and the biological assumption of rare
mutations is stated by gx — 0.

The death rate depends on the characteristics of the individual and on the com-
petition between all individuals. The natural death rate is d(z,u). The competition
exerted by an individual (y,v) on an individual (z,u) depends on the location y and on
the two traits through a competition kernel ¢ : U x X x U — RT. For the population
v=23", O(ziu;) € Mp(X X U), the competitive pressure exerted on individual (x, u)
is

1 — 1
covla) = o Y clumiu) = o [ clus oty do)
=1

X xU

Remark that the competition kernel does depend on y. This spatial dependence yields
non-trivial mathematical difficulties. In Champagnat-Méléard [5], the competition kernel
depends also on x but the long time behavior of the deterministic limit is still unknown,
to our knowledge. Finally, the total death rate is d(x,u) + ¢ - v(x,u). As for the birth
rate, d(x,u) can also be denoted by d"(z) and c(u, y,v) by ¢"’(y) when u and v are fixed.
Let us state the assumptions on the parameters.

Assumption 1.1. 1. m, b, d, k and c are continuous and non-negative on their do-
mains and b, d and c are Lipschitz functions with respect to x and y.

2. There exist m, b, b, d, ¢, ¢, k € R such that for any (z,u,y,v) € (X x U)?,
0<m*<m, b<blz,u)<b dz,u)<d c<cluyv)<e kz,uv)<k,
and d is not the zero function.

3. The sequence of initial measures (V) k>0, which belongs to Mp(X xU), converges
in law to some deterministic measure denoted by & and it satisfies sup E[(v{<, 1)3] <
+00.

4. qi tends to 0 when K tends to +oc.

Before going further, let us set and recall the notation, which we use in the entire

paper.
Notation



e For all z € 90X, n(x) denotes the outward normal to the boundary of X at point x.

e For sufficiently smooth f and for all (z,u) € X XU, O, f(z,u) denotes the scalar
product Vg f(z,u) - n(x).

o C]Tf’l(/\,’ x U) represents the set of functions f such that f € C*(X x U) and
Onf(z,u) =0 for all (z,u) € DX x U. We define C (X x U x [0,77) similarly.

e For any f € CPM (X xU x [0,T)), f is the function on X x U such that fy(z,u) =
f(z,u,s).

e For any compact set X, we denote the space of finite measures on X by Mp(X).

o CLP(X) denotes the set of all positive Lipschitz-continuous functions f on X
bounded by 1 and with a Lipschitz constant smaller than 1.

e We define the Kantorovich-Rubinstein distance on Mp(X) by : for any v,u €

Mp(X),
/dez/—/xfdp‘.

As X is a compact set, this metric is a metrization of the topology of weak conver-
gence. It is equivalent to the 1%!-Wasserstein distance.

e B(v,7) represents the ball of center v and radius v in Mp(X) for the previous
distance.

e D([0,T], Mr(X)) denote the space of cadlag functions from [0, 7] to Mp(X), equipped
with the Skorokhod topology.

e For any £ € Mp(X x {u,v}), we identify the two following ways of writing :
§(dz, dw) = £"(dx)du(dw) + £(dx)dy(dw) and € = (§",€") € (Mp (X)),

Wi(v,p) =  sup
feCLin(x)

2 Main theorem

A full algorithmic description and a mathematical formulation of the model described in
the previous part are detailed in Champagnat and Méléard [5]. Moreover, a macroscopic
approximation has been proved as a large population limit.

Theorem 2.1 (Theorems 4.2 and 4.6 in [5]). Suppose that Assumption|[1.1] holds. For all
T > 0, the sequence (V) ko of processes belonging to D([0,T], Mp(X x U)) converges
in law to a deterministic and continuous function £, i.e. £ € C([0,T], Mp(X x U)) such
that sup,cpo (S, 1) < +00 and Vf € C(x xU),

(€ ) = (€0, )+ / / {mqu £ @y w)+ [bl, u)—d(e, w)—c-Ey(@, )] f(x,u)}gs(dx,du)ds.
0 XxU
@2.1)

Moreover, if U is finite, for any u € U and t > 0, &(.,u) has a density with respect to
Lebesgque measure which is a C?-function.

The limiting equation (2.1)) is a nonlinear nonlocal reaction-diffusion equation defined
on the space of traits and locations. In [I0, [I], the authors have studied the existence of



the steady states of similar equations in the context of frequent mutations. Our study
involves a rare mutations assumption and mutation terms disappear in the limit. The
stability of the steady states and the long time behavior of the solutions to have
been characterized in [22] [7] in the particular cases of a monomorphic population (all
individuals have a same phenotype) and a dimorphic population (two traits are involved).
The stationary states and their stability are described using the following parameters.

Definition 2.2. For any u € U, we define H* by,

U= min 2dr — WY ()2 () do .
= peH (X ¢3_toH¢H { /’Vd) )I7d /( —d*)(@)¢"(z)dz |, (2.2)

where HY(X) is the Sobolev space of order 1 on X. H" is thus the principal eigenvalue of
the operator m™“ A, -+(b% —d®)- with Neumann boundary condition on X. Let g* € H*(X)
be the eigenfunction of the previous operator associated with the eigenvalue H such that

/ ¢ (y)g" () dy = H".
X

According to [22], g* € C1(X). If g* > 0, we define the associated measure in Mp(X)
£4(dx) := g"(x)dx.

Finally, for any (u,v) € U, we set

€ [ gy ( / g“(y)dy)l.

As proved in [22], H* > 0 is the condition ensuring that a monomorphic population
with trait u is able to survive for a long time at the ecological time scale. In that case,
the stationary stable state is described by the positive spatial profile g“.

The dimorphic case implies four distinct stationary states : the trivial state (0,0), two
monomorphic states and one co-existence state. To ensure that the co-existence state is
unstable, we set the following assumption.

Assumption 2.3. Let u be in U, for almost all v e U,
1. either, H'k"* — H*Kk"™ <0,

Hr"™ — H","™ >0
2. or
{ HYR" — Hk"' < 0.

Using [22], we notice that Assumption states into mathematics the impossibil-
ity of co-existence of two traits for a long time, this assumption is also known as the
"Invasion-Implies-Fixation" principle. Under Assumption any solution to con-
verges either to (g%, 0), or to (0,g"), which are two monomorphic states. More precisely,



Condition (1] ensures the stability of the equilibrium (g*,0). Thus, if a mutant popula-
tion with phenotype v is emerging in a monomorphic well-established population with
phenotype u, it will not be able to survive. Under Condition 2] the authors of [22]
prove that the deterministic solution to converges to the stable equilibrium (0, g¥)
whatever the initial condition is. In the light of the previous considerations, we refer
to HYk" — H"k" as the invasion fitness of the individuals with type v in a resident
population with type w. Furthermore, the probability of success of such an invasion is
described precisely by means of the geographical birth position xg of the first individual
with trait v and the function ¢"* defined below. That probability is precisely ¢”"(zo).

Definition 2.4. For any u,v € U, ¢ is the function on X such that
1. If H'r"™ — HY5"™ <0, ¢""(z) =0 for all x € X.

2. If H'r"™ — HYg" > 0, ¢ is the unique positive solution to the elliptic equation

m" Az (x) + <b”(96) —d’(z) - /X C”“(y)gu(y)dy> $a) —b"(2)¢(x)* = 0,¥z € X,

Ono(x) = 0,Vx € 0X.
(2.3)

We are now ready to state the main result of this paper.

Theorem 2.5. We suppose that Assumptions[1.1 and|[2.5 hold. We also assume that the
scaling parameters satisfy

Kqg log(K) vy +oo and Kqre®V

— 0, for any V > 0. (2.4)

K .
Then for any T > 0, (V(t/K‘JK))te[o,T} converges towards a jump Markov process (At)tz[o,T}

as K — +o0o. At any time t, Ay belongs to the subspace {£"6y,u € U} of Mp(X x U),
where for any u € U, £ € Mp(X) is the spatial pattern defined in Definition 2.9, The
process (A¢)i>0 jumps from the state characterized by the trait uw € U to the state charac-
terized by v € U at the infinitesimal rate

/pb“(x)¢““(w)g“(x)k(m,u,v)da:dv.
X

This convergence holds in the sense of convergence of the finite dimensional distributions.

Remark that £* describes the spatial distribution of the monomorphic population
with trait u. The limiting process jumps from a spatial distribution to another one de-
pending on the mutant trait. It models an evolutionary phenomenon using a sequence
of monomorphic equilibria described by their spatial patterns.

Although the structure of Theorem [2.5]s proof is similar to the one of Theorem 1 in
[3], the spatial structure of the process leads us to deal with infinite dimensional pro-
cesses. Two key points of the proof have to be approached differently. The first point



concerns the study of the process when it is close to a monomorphic deterministic equi-
librium. The aim is to estimate the exit time of a neighborhood of a stationary state to
. We give the behavior of the stochastic process around its deterministic equilibrium
taking into account a small mutant population and the possibility of other mutations.
Thanks to it, we avoid the comparisons used in [3], where the behavior of the resident
population process is compared with the behavior of a theoretical monomorphic popula-
tion evolving alone. Those comparisons are much more involved when the population is
spatially structured. Moreover, to estimate this exit time, we have to study a large devi-
ation principle of the stochastic process (vf€);>0 around its deterministic limit when
K is large. The large deviations studies for processes combining diffusion process and
jumps are still unresolved, to our knowledge. Those studies have thus their own interest.
The second point which is approached differently concerns the study of small population
size processes. The aim is to understand the dynamics of a population descended from
a mutant which has appeared in a well-established monomorphic population. As long
as the mutant population size is small, the competitive terms between mutants can be
neglected. Thus, the dynamics of the mutant population can be compared with the dy-
namics of a branching diffusion process. We describe finely the survival probability of a
branching diffusion process by means of the eigenparameters defined previously and we
link it with the conditions presented in Assumption [2.3]

In Section [3] we explicit the upper bound of the large deviation principle by using
ideas in 9 25| 31]. Then we study the functional rate associated with the large deviation
principle. Section [d] deals with the exit time of a neighborhood of a stationary state to
. In Section |p| we study a branching diffusion process. First, we evaluate its prob-
ability of survival. Then, we characterize the scale time under which its size is of order
K. Section [f] is devoted to the proof of Theorem 2.5 We detail two key propositions.
The first one deals with the dynamics of the individual-based process in the case where
only one trait are involved. The second one gives the dynamics of the process after the
time of the first mutation but as long as only at most two traits are involved. Finally,
Section [7] presents a numerical example that illustrates Theorem

3 Exponential deviations results

In this section, we are concerned by the large deviations from the large population limit
for the process (l/tK)te[QT] when K tends to +o0o and gk tends to 0. First of all,
Theorem gives the upper bound of the large deviations principle. This theorem
involves a rate function. Let us first explicit it. That requires specific notation which
will be only used in this subsection : let us fix 7" > 0,

o £=XxU x{1,2}.
e ¢ is the mapping such that for any function f € C?%Y(X x U x [0,T]), for any



(x,u,mt) € & x10,T],

f(x,u,t) ifr=1,

()@, u,t,m) = { — f(z,ut) ifw=2.

e For all v = (v)sep0,1) € D([0, T], Mp(X xU)), we define the positive finite measure

f (d, du, dr) = [b(z,w)d1(dr) + (d(z,u) + ¢ ve—(z, u))d2(dm)] vi—(dz, du).

(3.1)

e Finally, we introduce the log-Laplace transform p of a centered Poisson distribution
with parameter 1, p(x) = e* —x — 1, and its Legendre transform p*,

p (y) = ((y+1)log(y +1) —y)Lgys—1y + Lgy——13 + 00 Tgye_1y.

We are now ready to define the rate function in which we shall be interested : for all
& € Mp(X xU) and v € D([0,T], Mp(X x U)),

sup If’T(z/), if vg = &
[g;)(y) = { feCROM (X xuUx[0,T)) (3.2)
+ o0, otherwise,
where
T T 2 8fs
12 (v) =(vr, fr) = o, fo) = | (mBafs +m|Vafs|™ + 5=, vs)ds
0

T
-jﬁ Ll;(#&fd(x,u,swﬂ)*—p(¢(f)0ulu8,ﬂﬁ)>du5d&

When there is no ambiguity, we will write I” (v) instead of IL (v).

Theorem 3.1. Suppose that Assumptions holds. For all « > 0, § € Mp(X xU),
for all compact set C C B(&o, ), for all measurable subset A of D([0,T], Mp(X x U))
such that there exists M > 0 with A C {v|sup,cpo (v, 1) < M},

1
limsup — sup logP x (v € A) < — inf Ig(u), (3.3)
K—too K yxcenms 0 §eCrved

where ME = {+ Zf\;l Oz )y with N € N, (w5,u;) € X xU}.
Proof. We will show the following upper bound
1
limsup — logP(v® € A) < —inf IL (v), 3.4
imsup - log P/ € 4) <~ inf 1], (v) (34

indeed (3.3)) can be directly deduced from this bound by a similar reasoning as in the proof
of Corollary 5.6.15 in Dembo and Zeitouni [9]. To prove (3.4), we need the exponential
tightness of the process (v )tefo,r] Which is described by the following lemma.
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Lemma 3.2. Suppose that Assumption holds, and that there exists Cipye > 0 such
that supK€N<1/0K, 1) < Cinit a.s.. Then for all L > 0, there exists a compact subset Cr, of
the Skorohod space D([0,T], Mp(X x U)) such that

1
limsup— log P(vX ¢ Cp) < —L
K—4o0 K

We do not detail the proof of Lemma as it may be easily adapted from [ 18] B1].

Then, set 7% = inf{t > 0, (v, 1) > M}. Note that Lemma|3.2]is also true for (th/(\ K )t>0-
™ T

Using a proof similar to Theorem 4.4.2 of [9], we deduce the inequality

1 1
lim sup— log P(v® € A) = limsup— log P(v® . € A
K~>+OI;)K g ( ) K~>+OEK g lP( AT )
<—imf (s (IFT() - H(IMT))),
VEA N reo20 (xxyx[0,T))
where H(I77) = limsupg_, , o, + log E[GXP(KIf’T(V.I/fTﬁ)]. Let us show that H(I/T) =
0. Let

N7 = exp (KIf’T(ufTﬁ)

k| e (@) [ o2kt wwidu — o(1)w0) ) ) ds ).

where ¢(z) = x + p(x) = e* — 1. Tt&’s Formula implies that (Np,T > 0) is a local
martingale. The definition of 7{% implies that N7 is bounded. So it is a martingale of
mean 1 and there exists a constant C(|| f|loc, M) > 0 such that

exp(—ai KC(|f o0, M)) < E [exp (KIT (V5 )] < explax KO flloo, M)).

We conclude easily, since gx tends to 0 when K — +oc. O

The aim is now to write the rate function under a non-variational integral formulation
which is more workable than that of . Firstly, this integral formulation is convenient
to use Chasles” Theorem. Secondly, it will be used to bound from above the distance
between a solution to and any v, this upper bound is proved below in Proposition
[3.:4] Those two points are required to prove the results about the exit time in Section []
Before writing the non-variational formulation, let us define two functional spaces.

e The Orlicz space associated with p* is L, 7 the set of all bounded and measurable
functions h on £ x [0, 7] such that

h
| Pl o+, 7 :=1inf < @ > 0,/ P <H> dutds <15 < 4o0. (3.5)
Ex[0,T] «

The Orlicz space associated with p is defined on the same way.



e [2 is the set of functions h € L2(X x U x [0,T],RY) such that

1/2

T
1Al = (/ 2<us,m|hs\2>ds> < s (3.6)
0

Theorem 3.3. Suppose that Assumption (1.1 holds. Let T > 0 and v € D([0,T], Mp(X x
U)), such that It (v) < +oo, then there exist two measurable functions (hY,hYy) € Ly« 1 %

L% such that for all f € CEM (X x U x [0,T7)),

T
(s f2) = (0, fo) + / / (L4 B s, 5, m) () (2, 5, ) s

/ / Agfs(x,u) +2m hy(z,u, s) - Vy fs(z,u) + 9fs (ZL‘,U))I/S(dl’, du),
X' xU s

(3.7)

and the rate function can be written as follows

/ﬁ/ MMM@+/WW@MW$<+M (3.8)

The proof of Theorem [3.3] uses convex analysis arguments which can be adapted
from Leonard [23, 24]. We do not detail its proof but we give the main ideas. For all
v e D([0,T], Mp(X x U)), I"(v) is equal to the Legendre transform I'* of

F_Cmvgww%Xxumem — R )
' (91,9) = Jo Jeplgn)dutds + [ (ve,mlgal)ds

(3.9)
at a well chosen point [,,. If [, belongs to the interior of the set domI™ of linear maps
I with T'*(I) < +o00, we can exhibit [, by means of the derivative of T, the Legendre
biconjugate of I'. Studying directly T is difficult. The key point is thus to work on
the product space L, 7 X £2T. In this way, we can study the Legendre biconjugate of
an extension of I' on that space, in order to deal with the diffusive part and the jumps
part separately. The diffusive part is treated using ideas of Dawson and Gartner [§] and
Fontbona [14] whereas the jumps part is treated using ideas of Leonard [23] 24]. The
next step is to deduce the Legendre biconjugate of I' by restricting the definition domain.
Finally, to deal with points v for which [, does not belong to the interior of domI™, we
use a continuity argument similar to that of Theorem 7.1’s proof in [25].

The last result of this part gives an upper bound on the distance between a solution
to (2.1) and any v, this bound is used in Subsection

Proposition 3.4. Let T' > 0 and M > 0. There exists C(T, M) such that, for any v
satisfying sup,<p vy, 1) < M and for all (§)i>0 solution to (2.1)) with the initial condition

& = o,
sup Wi(v, &) < O(T, M) (I%) n \/I%)) |

te[0,7)

10



Proof. Let v be such that (14,1) < M for all t € [0,T]. If I"(v) =0, i.e. vy =&, or if
I (v) = +00, the result is obvious, so let us assume that 0 < I” () < 4oc0. Theorem [3.3]
implies the existence of (h1,ho) € Ly= 1 X L',QT such that

// (hy) du”ds+/ m(vs, |ha|*)ds. (3.10)

We easily deduce that for any t < T,
h2llZ2 e < hallZ2 7 < 217 (v). (3.11)
Let us also find an upper bound on ||h1[[,« 7. Note that for all z € R,

{ifaz 1, pr(|zl/a) < p(Jz])/a < p*(z)/a,
) /a? < p*(x)/a?.

Moreover, the non-variational formulation (3.10)) implies that IT(Z/) 2 fOT Je p*(ha)dpZds.
Thus, using (3.12] (3-3), we obtain that if

"(v) > 1, fOngp* (|ha]/I"(v)) dukds < 1, ie. ”hIHp*T < IT( v), and if I7(v) < 1,
f(;f Jep* (|h1|/\/IT(V)> dptds < 1,1e. ||hi||p« 1 < A/IT(v). Thus, for any ¢t < T,

Wl < Il < (1%) n \/mu)) | (3.13)

Let (&)i>0 be the solution to with initial condition 1. We want now evaluate
Wi (v, &). Let us denote the semigroup of the reflected diffusion process which is the
solution to with the initial condition = and the diffusion coefficient m* by (P}*)>0.
Using Theorem [3.3] we find the following mild formulation for (14);>0 in a similar way
to Lemma 4.5 in [5] : for all f € CLP(X x U),

| (3.12)
if0<a<l, p*(z|/a)<p*(|z]

(v, f / /1/} P f)duds +/ /d) P f)hiduids +/ (s, 2mN o Pi_ f - ho)ds.

(3.14)

In addition with a mild equation for (&);>0, we deduce that for all f € C*¥P(X xU) and
forall t < T,

t
|<Vt_£t7f>| :’/0 /g@z}(Pt—sf d,usds—d,ugds / /¢ Pt sf hldﬂZdS

¢
—|—/ (s, 2mN o P;_ f - ha)ds
0

t
e /0 oup Wil &) + [P Sl + 92|
re|0,s

(¥

(3.15)
The second line is a consequence of Holder’s inequality (see for example Theorem 6 of
Chapter 1 in [28] about Hélder’s inequalities in Orlicz spaces).
Furthermore, the following Lemma insures that PYf € CLP(X).
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Lemma 3.5 (Part 2 of [32]). As X is a convez set in R?, for all f € CYP(X), u € U,
and t € RT, Pif € C1P(Xx).

Let us now find an upper bound on ||{)(P;_ f)||,+ f belongs to CLP(X x U) and

supyepo,r) (¥, 1) < M. So, for all a >0, ¢t <T

[ [ (ol <[ [ ()

so, for any t < T,

P Do < [0 (77 +1d+cM])]1 -0

Furthermore, Lemma implies also that for any ¢t < T,

<

< TM[b+d+eM]p <1> ,

(0%

t
IVaPi fl22, = / 2vs, m|Vo P f|*)ds < 2mMt < 2mMT := Cs.
’ 0

Using the last two inequalities with (3.11)), (3.13]) and (3.15)), we find

T
o Wi &) <1 [ sup Wil &)ds +Co (170 +/170)) + 200170,
rel0,7) 0 refo,s]

We use Gronwall’s Lemma to conclude. O

4 Lower bound on the exit time of a neighborhood of the
stationary state

In this section, we assume that initially, two traits v and v are involved. The stochastic
process starts in a state Vg( = VOK’u + I/é(’v such that Vé(’u is close to £* and there exist
only a few individuals with trait v. Since the considered initial state is close to the
equilibrium (£%,0) and according to Theorem the dynamics of the stochastic process
vE is close to the equilibrium (£%,0) on a finite interval time when K is large. Our aim
is to control the exit time of the stochastic process VtK’“ from a neighborhood of the
stationary solution &% in Mp(X) when K is large and gx is small. We define the exit
time by :

for all v > 0, RX = inf{t > 0, W1 (", €") > 7)}. (4.1)

Theorem gives a lower bound on Rff . The lower bound involves the first time when
a new mutation occurs and the first time when the v-population size is larger than a
threshold:

SE —inf{t >0, 3w & {u, v}, V(X x {w}) # 0}, (4.2)
for all € > 0, TX = inf{t > 0, <VtK’v, 1) > €} (4.3)

12



Theorem 4.1. Suppose that Assumption holds and that H* > 0. Let v > 0 such
that v < HU(k") ™' and if H*x" — H'&"™ > 0, v satisfies also the assumption v <
ETZ - %| . Then, there exist v/ > 0, € > 0, and V > 0 such that, if
vl = Vé(’u + l/é(’v with Wl(l/é(’u,f_“) <+ and <V5(’v,]l> < €, then

Jm P, (RY > MV ATE A ST = 1.

Thus, a well-established monomorphic population v is minimally affected during the
emerging of a mutant population v.

The assumptions on the radius v of the neighborhood ensure that there exists only
one steady state in the neighborhood.

The result is proved using ideas similar to the ones of Freidlin and Wentzell [15].
In our framework, the difficulties come from the continuous space motion. Firstly, our
processes have values in an infinite dimensional space, thus, the required deterministic
results are much more involved, see Subsection [£.I} Secondly, we deal with two kind

of randomness : jump process and spatial diffusion process. The end of the section is
devoted to the proof of Theorem

4.1 Stability for the weak topology

This subsection deals with the deterministic solution to (2.1). We denote by (&)i>0
the solution to equation with initial condition & € Mp(X x {u,v}). In this case,
& € Mp(X x {u,v}) for all t > 0. We prove that, as long as the size of the v-population
density is small, the u-population density stays in a W;-neighborhood of its equilibrium

FU

g

Proposition 4.2. Suppose that Assumption holds. Let v > 0. There exist v >0
and € > 0 such that for any {o = &0 + 50y with Wi (&, &%) </,

for all t <t =inf{t >0,(, 1) >}, Wi(&, %) < ~/2.

The proof of Proposition implies two main difficulties. First, using ideas similar

to Part 3.3 of [22], we can prove that the solution & to stays close to £ if the initial
condition admits a density which is close to the density g* of £* for the L2-distance.
However, this is not sufficient since we will deal with discrete measures later. Thus, we
need to enlarge the result for W;-distance. Secondly, we are concerned with the trajec-
tories of the u-population process. Even though the v-population size is small, it does
have an impact on the death rate of individuals u which we cannot ignore.
The proof is divided into three steps. Firstly, we study how fast a solution with initial
condition close to £* moves away from &% in W;-distance during a small time interval
[0,0]. Then, as to > 0, { admits a density and so, we can compare the WW;-distance
and the L?-distance of the densities between &, and €. We finally prove a L2-stability
result similar to the one of Part 3.3 in [22] but including the v-population process with
a small size.

13



Proof of Proposition[{.3 First we may assume that ¢ < 1 and ' < 5. Hence, there
exists M > 0 such that any considered initial state satisfies ({p, 1) < M.
We fix tg > 0 and we start with the first step. On the one hand, we can find an upper
bound to sup,¢( (&, 1). Indeed
ot
G0 < (1) +5 [ (€ 1)ds, (1.4
0
and using Gronwall’s Lemma, we deduce that sup,cp (5, 1) < MeP for all t > 0. On

the other hand, using (2.1) with &/ = {u,v} and a mild formulation similar to Lemma
4.5 in [5], we find that £ satisfies: for any f € CFP(X),

t
(€ =& f) =& — & ) + /0 (€ =& (0" —d" — " - )P f)ds

t - t
+/0 N (S L E,Pf_sﬁds_/o (- €& B f)ds.

For any g Lipschitz-continuous, we denote by ||g||zip the smallest constant such that
9/19|Lip € CLP(X). Since SuPseo,r,)(6¢» 1) < €, using Lemma [3.5/and the definition of
distance Wi, we obtain that, for all ¢t < t.,

t
(€ — & )] <WI(ELE) + (b + d + el 1)) /0 Wi(s, E)ds

t B (4.5)
T el sup (€4,1) ( | e gnas + ) |
rel0,t] 0

Finally, (4.4), (4.5) and Gronwall’s Lemma imply that there exist Cj, Co independent of
¢ and ~/ such that

sup  WA(EY,€") < (&5, €") + € Co)e“rionte < (4 4 € Cy)etio, (4.6)
r€[0,to At /]

According to (6], we have to choose 7' and € such that (7' + €'Cy)e®1% < /2. Note
that if for all £§ € M;(X), te < to, the proof of Proposition is complete. In what
follows, let us assume that ¢t > to for the considered initial state &g.

The next step is to compare the L?-distance and the W-distance between &, and £,
According to Theorem for any o > 0, & has a Lipschitz-continuous density with
respect to Lebesgue measure on X that we denote by gi (z). In addition with the fact
that g* € C1(X), we have

lgt, — g“1I72 = /X(gé‘o(w) = g"(2))*dx < Wi(&iy, €)(lgiglzip + 19" Lip).  (4.7)

U

Let us bound ||g! || zip from above. For any t > 0, we define h{(x) = g{*(x) exp(f(fo (c" - g¥
The exponent of the exponential term is positive and independent of x, thus ||gj! || Lip <

14
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|Ait || Lip- Furthermore, according to Part 4 of chapter 5 in [16], Af () = [, Ty (2, y)éo(dy)
where I' is the fundamental solution to the system

oL = m"AT + (V" (z) — d"(x))T on X x R,
0,' =0 on X x RT,
(0, dz) = &(dx).

As tg > 0, [Tyl zee(x) and ||V, || Loo(x) are bounded from above and there exists C3
such that
19t [ ip < Aty llzip < C3(éps 1) < C3M, (4.8)

where M has been defined in the beginning of the proof. Combining (4.6, (4.7), (4.8)
and the fact that Wi (&, &%) <+, we find Cy(¢’,~") > 0 such that

u —Uu U Fu —u 1/2
g — g"ll1e < (OML(EL, E%) + Cae )P0 (CsM + [17%|ip))

< (7 + Coe ) (CsM + g% | 1) /2 1= Cale', ).

We now deal with the last step of the proof. We define (A, Ag)r>1 the spectral basis
for the operator m"A,.+ (b" —d"). with Neumann boundary condition such that (Ag)r>1
is a non-decreasing sequence with H" := XAy > A > A3... and (Ag)k>1 is an orthonormal
basis of L?(X). Note that g* is equal to ||g%||;241. Let us express g* — g% in the basis

(Ar)k>1

+o00
g () = g"(x) + > ci(t) Ai(w),
i=1
and denote for all t € RT,
t
B(t) =1+ O_éi( ) .
g% 22

From ([2.1)) and the representation of g* — g* and 9,g" with respect to the basis (Ag)x>1,
we find the following dynamical system

O (t) = ag(t) <)\k — H" —/ cqp — / (g4 — g“)) , for all £ > 2, (4.9)
X X

2,5(t) = A1) (H - [ emai - 3t [ ema) - H“ﬁ(t)) . (110
=2

The last step of the proof consists in proving that if € and +" are sufficiently small such
that
H"— Xy vy

2 21|

U
max {1, 9"l } (€e+ 3| 2Cule, ) < min{

T } (4.11)

then for all ¢t < t., Wi(g¢, g%) < /2. Let us fix K > 0 such that

€E+ 3] e 2Ca(e 7)) < K/2 < (H — \9)/2, (4.12)
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and
tmax = inf{t Z th |/ Cuu(gf - gu)‘ 2 K}

Let us prove that ty,a, > te. Att =to, | [, (g8 —g")| <[] 2Ca(€',v) < K/2 < K.

A continuity argument implies that ¢4, > to. Then using (4.9), we deduce that for any
k > 2, for any tg <t < tpar A te,

Oék(t)Q < Oé(t())Q exp(2()\k - H" + K)(t — to)) < Oé(t())z.

+o0 1/2 +o0o 1/2
“(Seer) (e

Thus

+o00
;ai(t)/x(c“ufli)

=2
1o /2 /ico 1/2
< (Zai@o)?) <Z< / CWA»?) < Cy( ) e =
=1 =1
(4.13)

Inserting (.13)) in Equation (4.10) implies that, for all ¢ < taq A te,

B(t) (H* — e — Cu(e',y)|c™|| L2 — H B(t)) < 0iB(t)
< B(t) (H“ + e+ Cule, )™ 12 — H“B(t)) .

Moreover, |8(to) —1|[|g*||z2 < Ca(€',7'). Using properties of logistic equations, we deduce
that for all tg <t < tpee A te,

_ g 2
oa (0] = 18(0) ~ "2 < 2 (¢ 4 (e )l o) + Cule ). (410
Thus, for all tg <t < tmaez A ter, and (4.14) imply that

1

CU’LL az uuAi
/ Yo [ @
H‘F;THC4(€/,"}/).

By definition, H" = [, c¢"*g" < ||¢*"| 12|g*| > and ([£.12) gives for all t < taq A te,

K
[ g = | < et 30l ze < - (4.15)

X
Inequality (4.15) implies that tyae Aty < tmaz, that is, tmee Ate = te and all inequalities

2
proved above are true for all ¢ < to. In addition, (4.11), (4.13) and (4.14) imply that,

for all t < to,

<lai(t)
Hg ||L2

< €e+ 204, )| |2 +

Wi, g") < llgit = 3"l 210l 2 < (1|2 <|a1 |+|Za 12| 1/2)

=1
]l U
< 19082 (2 4 g e 1) < 2.
That ends the proof. O
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4.2 Exit time

This subsection is devoted to the proof of Theorem .1 We split the proof into three
lemmas similar to the ones in Dembo and Zeitouni [9].

Let v > 0 satisfying the assumptions of Theorem [4.1 We consider ¢ and v’ as in
Proposmon and set € = E—/ and p = 7 < . R , S1 and TX have been defined by

.7 and and let us define
T =inf{t > 0, W1 (", €) &]p, v[}-

Lemma 4.3. Under Assumption we have

lim limsup 1 log sup P x(t ATEASE > 1) = —oc0.
7400 Koo Vot €(B(€",y)x B(0,e))NME
That is, the probability that the process %% stays a long time in the ring B(£%,7) \
B(£", p) is exponentially small. The proof requires a comparison with the deterministic
paths of Equation , the difficulty is to prove that there exists a finite time after
which all deterministic paths starting in the ring are out of the ring. The fact that the
probability is exponentially small is a consequence of Theorem [3.1]

Lemma 4.4. Under Assumption there exists V> 0 such that

1
limsup — log sup P x W (vE% €9 > v, 7 < TE A SEYy <~V
Koo Vi e(B(E y)xBOONME

Once again, the proof is based on a comparison with the deterministic paths, it is a
consequence of Proposition and Theorem

Lemma 4.5. Under Assumption for all C >0, there exists T(C,p) > 0 such that,

1
limsup — log sup IP)VK< sup Wl(ytK’“, 1/5’“) > p) < —=C.
K—+o0 vt eB(Evy)NME t€[0,T(C,p)]

This lemma means that there exists a small time interval during which any process stays
close from its starting point with an exponentially high probability. The stochastic pro-
cess includes jump parts and diffusive parts. Thus, we study not only the size of the
population process during a small time interval, but also a sum of reflected diffusion
processes.

Theorem .| is proved using the two last lemmas [4.4] and f.5] We do not detail its
proof as it can be adapted from [9]. The main change is that the proof has to be done
on {t < TK A SE} to ensure that the v-process size (v¥?, 1) is small and that no other
mutation appears, but Lemma is sufficient to circumvent this difficulty.

There remains to prove the three lemmas.
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Proof of Lemma[{.3 Remark that if Wl(yé(’“,ﬁ_“) < p for all K > 1, the result is obvi-
ous. Otherwise, let us define the following set;:

A(T) = adh{v € D([0, T], Mp(X x{u,v})),Vt € [0, T|, W1 (v}, £*) €]p,y[ and (v}, 1) < €},

(4.16)
where adhS is the closure of the set S. Remark that (VK e AT} = {TATEANSE > T}
a.s. and that the set C = adh(B(£",~) x B(0,¢)) is a compact set of Mp(X x {u,v})
as X is bounded. By applying Theorem with the closed set A(T') and the initial
compact set C, we find

1
limsup —log sup P x(ve€ A(T)) < — inf IT(v).
K—+00 vieenmk veA(T)

Thus, the lemma will be proved if we show that inf, ¢ 4(7) IT(v)—+oc0 as T tends to +oo.
To this aim, we will first show that any solution to cannot belong to A(Ty) if Ty is
large enough. Precisely, we set § €]0, p/2[, and we will prove that there exists Ty > 0, such
that any (&;)¢>0 solution to with an initial condition satisfying W (£, £%) €]p, 7|
and (£, 1) < e satisfies
i 3 > 0. .

uegll(fTo)teb[Bl,Ij)“o]Wl (&11) 2 8 (4.17)
Assume that holds.  Since sup,c 4(z) SuPsefo,1y) (v 1) is bounded, we can use
Proposition to deduce that there exists C > 0 such that for any v € A(Tp),
§ < O(IT(w) + /ITo(v)). As z — x + /7 is a bijective function from RT to RT, we
find a constant C(8) > 0 which is a lower bound on I”°(v) and inf,ec 41, I7°(v) > C(6).
Finally, for T > Ty and v € A(T), we decompose v as a sum of n := [T/Tp] terms :
using Chasles” Theorem and the non-variational formulation of I" > 0, we find a
sequence (v);—1.n € A(Tp) such that

Tw) > oy > :
I (y)_;l (V)_C’(&)nT_>—+>OO—|—oo

There remains to prove that (17) holds. Let Wi (&%, &%) €]p,v] and {(€5,1) < e,
and let (&)¢>0 be the solution to with initial condition & = &§d, + £j0,. Using
Theorems 1.2 and 1.4 in [22], we know that { € Mp(X x {u,v}) converges to a stationary
state. Theorem 1.2 in [22] implies that this stationary state is either £“6, or £Y6, or a

state with coexistence but the assumptions on 7 insure that those stationary states do
not belong to (B(&%,v) \ B(%, p)) x B(0,¢). Therefore, there exists T, such that

Wl(&%§07gu) g h/ + 267 p— 25] or <§%§Ovn> e+ 20. (418)

However T¢, depends on §y. Thus, we will use a compactness argument toiﬁnd a uniform
time and conclude. First, using Gronwall’s Lemma, we obtain : for M > (€%, 1) +2v+2e,

sup (&, 1) < (€0, 1)e" 0 < Mo (4.19)
tE[O,TgO}
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Then we show that two solutions (& )¢>0 and ((t)¢>0 to (2.1)) which are close initially stay
close during a short time. Indeed, using the mild equation of Lemma 4.5 in [5], for any
feclct?(x x {u,v})

t t
(€ —Co f) = (E0—Cos Pof) + /0 (64— Cor (b—d—c-6) Pres f)ds — /0 (€0r - (64— C) Prs f)ds.

According to Lemma and Assumptions we can find a constant C7 such that
(b—d—c-&)P_sf/Cy and ¢/C belong to CFP(X x {u,v}). We deduce that for all
t< Ty,

¢ ¢
[(&—Ces )] <W1(§07C0)+Cl/0 sup Wi (&, ¢ )ds+Cqp sup }(&«Jl)/o sup Wi (&, ¢r)ds.

r€(0,s] r€[0,T, rel0,s]
(4.20)
Using Gronwall’s Lemma and , we conclude that there exists a constant C(Tg,)
such that
sup. Wi(&r, Gr) < C(Tey )W (80, Co)-
7€[0,Tg, ]
Choosing ag, = 0/C(Tg,), we find for all (o with Wi (&, (o) < g, SUD,¢[0,7y, | Wi(&r, Gr) <
d. In addition with (4.18) and (4.16)), we find that for all (o with Wi ({o,&0) < ag,,

sup  sup Wi((, ) > 0.
tE[O’TEO] VEA(T())

Remark that adh((B(£%, )\ B(£%, p)) x B(0,¢€)) is a compact set of Mp(X x {u,v}) as
X is bounded. It is covered by Ug c(p(eu 1)\ B(Exp)x B(0,6)) B (€0, g, ). We extract a finite
cover U B(&, 0456). Finally, defining Ty = max;—1. T%, we conclude : for any & with
Wi (&4, E) €]p,y] and (€5, 1) < €, we have

inf  sup Wi(&,v) > 0.
veA(To)te(o,Tp] 16, v1)

Proof of Lemma [£.3]is now complete. O

Proof of Lemma[{.4. Lemma [£.3] gives T} such that

1
limsup — log sup Px(tATEASE >T) < —1. (4.21)
K—+00 v e(B(Eny)xB0,))NME "

Thus we limit our study to the time interval [0,71]. Since the considered initial states
satisfy (v, 1) < ((€%,1) + 2 + 2¢), using Lemma , we find N > 0 such that

1
limsup — log sup P x( sup (v, 1) > N) < —1. (4.22)
K—too K7 yice(puq)xBoe)nmE " ten.1]
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Let M > ({(€%,1) + 2y + 2¢) V N and
A= {V € D([OleLMF(X X {u>v})) ‘ dt € [OaTl]awl(Vg7£u) < 77tes[})11;]<yfa]l> <€
s41
and sup (v, 1) < M}. (4.23)
tel0,T1]
For all 1/5 ,and K,
P, Wi(vf o, €0) > v, 7 S TS AST)

< Pyé((T <Ty, sup <1/tK,]l) > M) —I—]P’Vér((T <, v5e A) +]P>zzé<(7_ >T,7< TEK A SlK)
t€[0,T1]

< Pyé{( s[up ](z/tK,]l) > M) +Pyé<(I/K €A +Pyé{(T/\T€K ASE > 1),
tel0,T1

Then, we use Theorem [3.1] the definition of A ([£.23)), (£.21)), and (£.22) to find

1 _
limsup — log  sup P x(vX € B(€%, 7)) < max {—1, — inf ITl(y)} )
K—+o00 vifecnME 0 veA,vpeC

where C = adh(B(£%,3p) x B(0,¢)). There remains to prove that the r.h.s. is strictly
negative. Proposition implies that any solution (& );>0 to (2.1) with & € C satisfies
the property :

if sup (&,1) <€ =2¢ then Wi(&', &) < /2.
t€[0,11]

We deduce immediately that for any v € A, with vy € C, if £ is the solution to (2.1)) with
£o = 1o,

sup Wi, &) > sup max{Wi(, &), Wi(4,€))} > £ A
t€[0,11] te[0,11]

We conclude the proof using Proposition and a compactness argument similar to the
one at the end of the previous proof. O

Proof of Lemma[f.5 Let us fix f € C*P(X) and study the following difference, using
the construction of the process v

(AN T B SETIC <R A SR Fie ) R S eI B

; notdead ; dead ; born
1EN] 1€ Ny €Ny

where Npotdead ig the set of indices of the individuals with trait v alive at time 0 and not
dead during [0,t]; N34 represents the set of indices of the individuals with trait u alive
at time 0 and dead during [0, ]; and NP°™ is the set of indices of the individuals with
trait u born during ]0,¢]. As f € CLP(X),

dead born
N{ + N

1 . .
K, K,
(v ) = (i 01 < XX+ %

ieN;wtdead
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As this is true for all f € CF?(X), we find the same upper bound for Wy (v/"", yi").
We use now the stopping time

= inf{t > 0,|(}", 1)| > N}.

On {7 > t}, Wiy, 5)"") is stochastically bounded by & S5V | X7 — X§| + y,
where {(X})i>0}ieq1..kny are KN independent reflected diffusion processes driven by
Equation (1.2) with the diffusion coefficient m" and (P(t))+>0 is a Poisson process with

intensity (b +d + N¢)KN. Finally,

IP’( sup Wi (" ") > p)
te[0,7)

<P <)+ P( = T, sup Wiy ™) 2 p),
S (4.24)
KN
<P(+E<T +]P>(— sup IXZ—XZ|>*>+P< Sup*z*)’
(TN ) K;te[oﬂ t 0 tefo,r] K 2

Using Lemma, we can fix N € N such that

1
limsup— log P(§ < T) < —C.
K—+o00 K

Let us now consider the second term of (@.24). For z = (z!,..,2%") € XKV we denote
the probability under which (X}, .., XE¥) is equal to Z by Pz. Let T be the stopping
time T = inf{s > 0, Zfi]g | X! — X}| > pK/2}. Using the Markov property, we find

KN 4 e
Pe(sup 317 - Xl > ) = Ba(T < 7)
te[0,T] ;5 2
KN K EN oK
<Pa(T < TQ%!X%—X@\ > 22) 4T gT,;\X%—Xw > 28
1= 1=
KN T KN
<o et - X012 O ) B [P (D X012 O e
1= 1=
KN
. . K
<2 s Py( Yo Ixi-oxi =20
GEXKN scl0,T]  NiTg 4

(4.25)
The aim is thus to find an upper bound on the last term for any z € X%V and any
s € [0,7T]. Using Markov’s inequality,

KN KN i_ i
i i pK _Kp |X5—‘:r,\
PE(ZIXS—XO\ZT)ge 4\/TH]EZ,¢[6 v ] (4.26)
1=0 i=1
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If we denote the kernel of the semigroup P¥ of the reflected diffusion process by p¥(z,y),
Part 3 in [32] and the fact that X" is compact imply that there exist two positive constants
C1,C5 such that for any z,y € X,

Oy _le—yl?

pi(e,y) < gpe @ (4.27)

Thus, using (4.27)) then a change of variables, we find that there exists C5 > 0 indepen-
dent from s such that

X1 -] ¢y _lz—y® ly—al LT
E,: {6 v } S/ € e Vdy< | Cie relfldz =05 < too. (428
Rd S Rd

We deduce with the last line in (4.25)), (4.26) and (4.28) that

pK —__In
Pi( sup Zth Xi| > ) <2 K (71 (CB)N)
te[0,T] ;=
where ﬁ —In(C3)N tends to 400 when T' tends to 0, i.e. there exists 77 such that for

all T < Ty, 722 —In(C4)N > C.

Finally, concerning the third term of (4.24)), let » = log (m),

P(Supp(t)2p> < ]P’(e ()>elgp>
t€[0,T] K 2
< e—pgKE[erP(T)]
< 6(—K(%—(5+J+EN)NT(eT—1)))’
< 6(-1((%[m%m)—lh(éﬂhmwﬂ).
There exists Tp < T} such that for all T < Tp, § [log (W) — 1} +(b+d+
¢N)NT > C. We conclude the proof : for all T' < T,
1
lim sup — log P( sup Wl(ujlf’u,ug’u) >p) < —C.
K—+oo t€[0,T
]

5 Survival probability for a branching diffusion process

In this part, we study a distinct model which is a branching diffusion process. This model
is correlated with the other one as explained at the end of Section 2] Any individual is
characterized by its location X} € X which is described as before by a diffusion process
normally reflected at the boundary of X, , with the diffusion coefficient m > 0.
Moreover, each individual with location = € X gives birth to a new individual at rate
b(xz) and dies at rate d(z). Those rates are assumed to have some regularity that we
detail.
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Assumption 5.1. b,d are two Lipschitz functions, b is a positive function and there
exists b,b,d such that for all x € X, b < b(x) < b and 0 < d(z) < d. Moreover, d is a
non-zero function.

Let M; denote the number of individuals at time t. We describe the dynamics of the
diffusion process at each time by the finite measure

My
m=_ Ox;
=1

The aim of this part is to describe the survival probability of the population using its
parameters. Let
Yo = inf{t > 0, M; = 0}.

The first Theorem concerns the survival probability of the population assuming that,
initially, there is only one individual at location x. This probability is characterized as
a solution to an elliptic differential equation on the location space X. Remark that the
location of the first individual plays a main role. Indeed, if the first individual appears
in a place where the growth is low or negative, it has a high probability to die with no
descendants.

We denote the probability measure under which ny = d, by Ps, .

Theorem 5.2. Let H be the principal eigenvalue of the elliptic operator mA,. + (b— d).
with Neumann boundary conditions on X, see (2.2). If H > 0, there exists a unique
positive C?-solution ¢* to the elliptic equation

{ 0 =mA;¢"(x) + (b(x) — d(x))¢" () — b(x)¢" (2)*, Yz € X,

On¢* () =0, Vo € 0X, (5.1)

and ¢*(x) = limy_oo Ps, [Yo > t] for all x € X.
If H <0, (5.1) has no non negative solution, we set ¢* =0, and limy_,o Ps [To >t =0
forallx € X.

The second result of this part estimates the probability that the population size is of
order K after a logarithmic time log K. For all € > 0 and K € N*, we set

Yex =inf{t >0, (n, 1) > eK}.

Theorem 5.3. Let e > 0 and (tx) k>0 be a sequence of times such that limg _, 1 ot /log(K) =
+00. Then for all x € X,

A P [T <ti] = ¢"(2).

The end of this part is devoted to the two proofs.
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Proof of Theorem[5.3, We first study the behavior of the probability Ps [Ty < t]. We
denote the time of the first event (birth or death) of the population by F;. The law

of Ey is given by Ps [E1 < t] = Es, [fo Xs))e = Jo (0(Xr) +d(Xr))d’rdS:| We set

= fo (b(X,) + d(X,))dr. Using the Markov property of 7, we obtain
Ps,[Yo <t = Es, {ﬂElgt]l{MEl o} + Ley<el arg, =2y Basy, (L, :0]}
t
- E. [ / ((X0) + B(X,)Pay, Yo < t - 5]2)e—f<8>d5],
0

where X under P, is solution to (1.2) with the initial condition x and the diffusion
coefficient m. Thus g(z,t) = Ps_[Yo < t] satisfies for all z € X, and all ¢ > 0,

g(z,t) = E, [ /0 t (d(XS) (X g( Xt — 8)2)6—“5)(15} V(z,t) € X x R,

g(x,0) =0, Vz € X.

(5.2)

Using Gronwall’s Lemma for bounded functions, we deduce immediately that (5.2) has
a unique bounded solution.
We will now show that there exists a unique C?-solution to

Of (w,8) = mALf(,1) — (b(z) + d(x)) f (&, 1) + d(x) + b(z) [ (2, )%, V(z,t) € X x RY,
Onf(z,t) =0, V(z,t) € 0X x RT
f(z,0)=0, Vz € X,

(5.3)
such that f € C%1(X x RY), is positive and is smaller than 1 by using super- and sub-
solutions arguments. Indeed, let F'(z, f) = —(b(x) + d(xz)) f + d(z) + b(z) f*. We easily
see that f =0 and f =1 satisfy:

Of <mALf+ F(z, f), V(z,t) € X x RT,
ohf > mA,f + F(x, f), V(z,t) € X x R,
<

f(x,0) < f(x,0) < f(z,0),z € X,
Onf(z,t) <0< 0nf(2,0),2 € 0X,t € RT.

That is, f (resp. f) is a sub-solution (resp. super-solution) to (5.3). Moreover, F' and
ot F belong to C(X x R) and F is a Lipschitz function with respect to z by means of
Assumptions We apply Theorem 4 of Chapter III of [29] to deduce that admits
a solution f € C*Y(X x R") satisfying 0 < f < 1. The uniqueness of the solution is a
consequence of the maximum principle.

The next step is to use a Feynman-Kac formula to deduce that f is also a solution
to . Indeed, for X solution to , let, for all t > 0, and s € [0, ¢],

H(s,Xs) = f(Xg,t—s)e 1),
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Applying It6 Formula to H (s, X;), and using (1.2)), (5.3) and the fact that 9, f(x,t) =0
for all x € 90X, we find for all s € [0, ],

H(s, Xs) = H(0,Xo) — / (d(X(,) +0(Xy) f( Xy, t — a)Q)e*HU)da
s (5.4)
- /O Vom(0yf(Xy,t —0))e 1 dB,.

We take the expectation of for s < t. The expectation of the last term is equal
t0 0 as [y Oz f(Xg,t —o)e 1l dBs)reo,s) 18 @ martingale. In addition, E.[H (0, Xo)] =
f(z,t). Tt stays to make s tend to t using the dominate convergence Theorem. As
E.[H (s, X5)] ué E.[H(t,X¢)] = 0, we deduce that f is a solution to (5.2). admits
a unique bounded solution, thus both solutions are equal, i.e. Ps_[To < t] = f(z,1).
Finally, we deduce the survival probability lim;, (1 — f(x,t)) using results on
Equation described in |2] and in Theorems 9 and 11 of Chapter I1I in |29]. Indeed,
they prove that if H > 0, there exists a unique positive solution ¢* to the elliptic equation
(B-1), and that ¢(t,z) = 1 — f(z,t) = P,(To > t) tends to ¢*(z) in C*(X) as t — +oo.
Moreover, if H < 0, the unique solution to is the zero function and ¢(t,x) — 0
uniformly in X as ¢t — +o0. O

Proof of Theorem [5.8 First, we split the studied probability into three parts :

Ps,(Yer < tx) = Ps,(Tex < tr,loglog(K) < T < +00)

(5.5)
+sz (Td( < tK,loglog(K) > To) +P5I(T€K < tg, Ty = +OO).

Let us start with the first term of (5.5)) :

Ps, (Ter < tx,loglog(K) < Ty < +00) < Ps_(loglog(K) < To < 400) . _->i- 0.
—+o00
The second term of (5.5) will be treated using a comparison with a pure birth process.
Let us consider a birth process with constant birth rate b and started with only one
individual. Y.x denote the first time when N, the population size of the process, is
greater than eK.

Ps, (Tere < tx,loglog(K) > Yo)

IN

Ps, (YTer < loglog(K))
Pl(TeK < loglog(K))
Pl(NloglogK > EK)

ePloeloe K j(e)c) .
K—+oo

IN A

IN

There remains to deal with the third term in (5.5). Note that if H < 0, Theorem ([5.2)
implies that the third term is equal to zero, and the proof is done.
From this point forward, we assume that H > 0. Let h be a positive eigenvector of the
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operator mA,. + (b—d). with Neumann boundary conditions on 0X associated with the
eigenvalue H. Thanks to It6’s Formula, we find

t t Me
(ne, e R = (no, h)+ / (ns, e H¥mA h+(b—d)he B — Hhe %) ds+ / Zv mV h(X)e T5dBL,
0

As mAzh + (b—d)h = Hh and Vh is bounded on X, (e ! (n;, h));>0 is a martingale.
Moreover it is positive, so, it converges a.s. to a non-negative random variable that will
be denoted by W. Obviously, {Yo < 400} C {W = 0}. Our aim is to prove that this is
an a.s. equality. As done in the previous proof we denote the time of the first event of the
population by Ej and we set I(s fo (X;))dr. Using the Markov property
and the independence between 1nd1v1duals we ﬁnd an equation satisfied by Ps, [W = 0]:

Ps, [W = 0] = E, [ /O 1) (d(Xs) + (X, Py [W = 0]2)ds] . (5.6)

Finally, g(x) :=Ps, [W > 0] =1 — P;,[W = 0] is solution to

+o00
g(z) = E, [ | e - g()@))ds] Vo€ . (5.7)

Let us show that there exists at most one non-zero solution with value in [0, 1] to Equation
(5.7). Let g1 and g2 be two such solutions. We define

v =sup{y > 0,91 (x) — Jg2(x) > 0,Va € X}.

Assume first that v < 1.

+oo
n0) =) = B2 | [ T [2H0n () ~20200) ~ a1 (Xm0 s
(5.8)
As v <1, g% - yg% < (g1 —v92)(91 + v92) and we find

+oo
7o) = 10(o) 2 B | [ 00 1K)~ 902(X0)] 2~ n(X.) = (X)) ds} .
Moreover, by the definition of 7, there exists xg € X such that g1(x) — vg2(x0) =
+oco I
0= x| [ OB 1 () — 202(X0)] 2~ 1 (X.) — 202(X ]

Thus for a.e. s € RT, Py-a.s., b(Xs)[91(Xs) — 792(Xs)][2 — g1(Xs) — 792(Xs)] =
Let us note that for all x € X, for i = 1,2, (5.6) implies that

+o00
1—gi(z) > E, [/ e 1) d(X,)ds| =Py, [Mg, = 0] > 0,
0
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that is, for all x € X, 2 — g1(x) — vg2(z) > 0. As b is positive, for a.e. s € RT P, -a.s.
g1(Xs) — v92(X5) = 0. In addition with the fact that yg3 — g% = vg3(1 — ) — (g1 —
v92)(91 + 7g2), (6.8) implies that,

0 = gi(zo) —v92(z0)

+o0
Eﬂﬁo [/O eil(s)b(Xs)’YgZ(Xs)[l - ’V]ds .

Using the same argument as before and that 1 — v > 0, we deduce that for a.e. s € RT,
Pyo-a.s., g2(Xs) = 0. Moreover, under P,,, the random variable X has a density with
respect to Lebesgue measure, that is, for Lebesgue-a.a. = € X, go(x) = 0. This is a
contradiction with the fact that gs is a non-zero solution.

Finally if v > 1, we define instead ' = sup{¥ > 0,¢2(x) — Jq1(z) > 0,Vz € X} < 1
and we use symmetric arguments to reach a contradiction. Thus, there is at most one
solution to with values in [0, 1].

The next step is to show that ¢*, which is solution to (5.1)), is also solution to (5.7). Let
us write f* =1 — ¢*, which satisfies

(5.9)

0=mA,f*—(b+d)f*+d+b(f*)? on X,
Onf*=0, on OX.

We apply It6’s Formula to f*(X;)e™ Jo (X p)+d(Xn))dr — Phep taking the expectation and
using Equation (5.9)), we deduce

f*(z) =E. { /Ot e IO [d(X,) + b(X) F*(Xs)?) dg] VE, [7(x0e 0]

Our aim is now to let ¢ tend to infinity. Note that I(t) > bt for all ¢ € RT and that f*
is bounded by 1. Hence, we use the dominated convergence Theorem to find those two
convergences:

E, [f*(Xt)e_I(t)HgEx [e—““] =0

t—+00

E, [ /t +ooel(s)[d+b(f*)2](Xs)ds} <E, [ /t +ooef“)(ber)ds] — 0.

t—+o00

Thus, we make ¢ tend to infinity and we find, for all € X,

P =B [ [ eI + 0 (s

Since ¢* = 1 — f*, we conclude that ¢* is a solution to (5.7)). There exists at most one
non-zero solution to (5.7), thus we have either Ps,[W > 0] = ¢*(x) for all € X, or
Ps, [W > 0] = 0 for all z € X. Using Ité’s Formula, it is easy to check that in the case
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H >0, ((n, e h));>0 is bounded in L?. So this martingale is uniformly bounded and
it converges in L! to W, hence Es, [W] = h(x) > 0. Finally,

Pgm [W > O] = (b*(l') = P(gl [TO = +OO] = {W > 0} = {TO = +OO} a.s. (5.10)
Thus, on {Yy = o0},

log(eK) __ log((nr e, he P} | ret T
TEK - TEK K—rtoo -

as (Ny . h) < eK||hllso, Tex — +00 when K tends to infinity and W > 0. Hence,

: Tex : tK
| - d 1
K—3poc log(eK) < Fooan K—poc log(eK)

= +OO,
and so, the third term in (5.5)) satisfies

Tex o _tK
log(eK) ~log(eK)

Ps,(Terc < tx,To = +00) =Py, < , To= +OO> w0 o, (To=+0o0).

(5.11)
Finally, we have shown that the two first terms in (5.5 tend to 0, so using additionally
(5.11)

lim Ps, (TEK <tg)="Ps, (To=400)= ¢*(x)
K—+o0

That ends the proof for H > 0. ]

6 Proof of Theorem

This section is devoted to prove Theorem 2.5] The structure of the proof of Theorem
is similar to the one of 3], thus, we do not repeat all the details but only the points that
are different.

The first proposition concerns the behavior of the first time of a mutation S{*, when the
initial state is a monomorphic population.

Proposition 6.1. Suppose that Assumptions and (2.4) hold. Let uw € U and C* a
compact subset of Mp(X x {u}) such that 0 ¢ C*. If yl* € C* U ME(X), then

e forany v >0, lim P« |SFK >logK, sup  Wi(vf,€45,) >~ | =0.
K—oo 70 tellog K,SK]

e Furthermore, lim P, x (SlK > %q}() = exp < —t [y bU(x)pU(x)gU(dx)>

K—+oco

Proposition [6.1]can be proved using similar arguments as those of the proof of Lemma
2 in [3]. It is a consequence of the following lemma.
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Lemma 6.2. For any o > 0, there exists Ty, > 0 such that for any & € C%, for any
t > To, Wi(&, €") < «, where (&)e>0 is the solution to Equation (2.1) with initial state

&o.

Proof. On the one hand, Theorem 1.4 in [22] implies that the density of £* is a stable
monomorphic equilibrium for the L?-distance. Using a proof in three steps as that of
Proposition 4.2 we prove a W;-stability : there exists o/ such that for any & € B(£%, /)
and for any t > 0, Wy (&, &%) < a.

On the other hand, for any & € C%, & converges towards . There exists T¢, such that
W1(5T5075u> < /2. Using Lemma and arguments similar to and (4.6), we
show that for any ¢t > 0, any (p € Mp(X

9

sup Wi (G, &) < C(t)Wi(Co, o),

r€(0,t]

where ({;)i>0 is the solution to (2.1) with initial state (o € Mp(X x {u}). Consequently,
there exists d¢, > 0 such that for any (o € B(&o,d,), Wi((ry,,ér,) < '/2. Thus, for

any (o such that Wi (Co, &) < 0¢,, for any t > Ty, Wi (G, €Y) < o
Finally, as C* is a compact set, there exists a finite number of balls such that C* C
U?ZlB(fé, 556)' Defining T, = max;—1. T§é7 we deduce the lemma. O

Proof of Proposition[0.1. First, remark that the first probability of Proposition is
non-increasing with . Thus, it is sufficient to prove the property for any small v > 0.
Let us assume that -+ satisfies the assumptions of Theorem Theorem in the
monomorphic case implies that : there exist v/ > 0, V > 0, such that

sup P (Ré( < SK A eKV) — 0, (6.1)
v eB(En y)NME Koo

Rﬁ( is defined by (4.1). We set 2a = +/, then Lemma and Theorem imply that

sup P (Wl(ujfi,f_“) >2a) — 0. (6.2)

I/é<€C“ K—+4o00

Using the Markov property, we deduce if K is sufficiently large such that log(K) > T,

P, x (Sf >logK, sup WK, &%) > fy)
0 te(log K,SK]

IN

P Wi (vr,,€) = 9) + By | Lisrsiogo)mawh, g<yy  SU W', €Y) Zv]

t€[Tu,SE+T,)]

IN

Pug (Wl(V£>gu) = ,)/) + EVDK []l{S{(zlog(K),V\h(V%{a,E“)<7/}Pujlfa (R"[{( < S{(v)]

< Pyg(Wl(uﬁ,ﬁ_“) >2a)+  sup {]P’I,O(Rff < SEANEVY 1P, (R < Rff < SlK)}
voEB(E4,y)
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The first term and the second term tend to 0 when K tends to 400 according to
and respectively. There remains the third term. On {t < Rff < 83, the number of
mutations M; is stochastically bounded from below by a Poisson process with parameter
Kqr((b*p, €*) — ~||b%p|| Lip) Which is positive if v is small enough. We conclude with the
fact that P(e"*V < RE < SfY) <P(M xv = 0) oo, 0 under Assumption (2.4). That
ends the proof of the first point.

The second point of Proposition is easily deduced from this first point and Lemma 2
in [3]. O

The second proposition studies the process with a dimorphic initial state. Let us
define :

e 0y is the first time when the population becomes monomorphic again,
e 1/ is the phenotypic trait of the population at time 6.

Proposition 6.3. Suppose Assumptions and hold, and that the initial state
vl € Mp(X x {u,v}) is such that I/é(’u converges weakly to £ in Mp(X) and Z/é(’v = 6“70
Then,

lim P(Vp=v)=1— lim P(Vy = u) = ¢"“(x0).

K—oo K—o0

Moreover,

; K Ui : K W
\V/'r] > 0, [(lgnoop <9[) S Sl A\ m) = 1, and V’y > O, ](IEHOO]P) (Wl(l/eo,é 0 < ")/) =1.

Proof. We set v > 0 small enough to use Theorem : there exist 4/, €,V such that

_ sup ]P’Vg (Rﬁ( >TEANSE A eKv) i 0,
vo M EB(EY )1y €B(0,€)

where R, TX have been defined by (4.1, ([£.3).
Let assume that € < v and that K is large enough such that ¢x < . Then on {t <

Rff ANTE A SEY, the process (VtK’U)tZO is stochastically bounded:
1., 1
7Zznf ~ Kv < _—_gsup
O

Zmf 75U are two branching diffusion processes starting with one individual at location
xo, their birth rates are respectively b”(x)(1 — ) and b”(x), and their death rates are

d(x) + ¢ - € + 28y and d*(2) + ¢ - £ — o,

Let us set
TP =inf{t > 0,(Z;"",1) > Ke},
Y5 = inf{t > 0,(Z*,1) = 0},
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and respectively T}?g , Ténf associated with Z™f.
Using same kind of computations as in Lemma 3 in [3], we deduce that

P, (00 < SN e Vo = w W, €) < 7)
> P, (Tgup < QKLK m@‘f) ~P,x (q;K > s{‘) ~Px ((HZ’K ASEANTE > Rf) .
(6.3)

Theorem implies that the last term tends to 0 under Assumption . The second
term tends also to 0 as the number of individuals is stochastically bounded from above by
a birth and death process with birth rate b and competition rate c, thus Lemma 2 in [3]

implies that for any § > 0, there exists n > 0 such that limsupg_, ., P(SF < KLqK) <.
Thus the main difficulty is to evaluate the first term. Theorem implies that

sup Ui sup sup 1 47svu
Ps,, (TO < K A TKE) K:-oo Ps, (Yo" < 400) =1—¢7"(x0), (6.4)
where ¢7"*" is the solution to the following elliptic equation on X with Neumann bound-
ary condition

mY Ay ¢T V" (x) + [b0(x) — d¥(x) — - Y + Ey]gT V(1) — b“(x)qﬁ%”“(:r)z =0.

Let us show that this solution is close to ¢"*. Theorem implies that ¢7v" is positive
if and only if

U . VU

HY — . % 4oy =H" — +ey > 0. (6.5)

Ruu
First case: Hk"" — H"k"™ < 0 (Point 1 in Assumption
We can find 7 small enough such that (6.5) is not satisfied, thus ¢?* = ¢ = 0. In
addition with (6.3]) and (6.4)), we deduce that

n

Pug{ (00 < S{( A %7,

Vo :u,Wl(Vgg,g“) <’y> K:l-oo 1.

Proposition [6.3]is proved for this case.

Second case: H'x"* — H"k"" > 0 (Point 2 in Assumption

Hence (/6.5)) is satisfied for all v > 0. Let C be m and set L7(f) = m A, f+
Y

(b (z) — d¥(x) — ¥ - €% + &y) f — b¥(x) 2. We have

L7(¢™) = ey¢™ = 0,
L((1+C)o™) = (1+ C)¢p™[ey — Cb°¢™] < 0.

As @7V is the unique solution to £7(f) = 0, we deduce the following inequalities from
a comparison theorem (see for example Theorem II1.5 in [29]) : for any = € X,

(1+C) o™ (x) = ¢7"(x) = 9™ (). (6.6)
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We split the end of the proof into three steps regarding as the proof of Lemma 3 in [3].
Let us fix a > 0. (6.3)), (6.4) and imply that if K is large enough,

n

On the other hand, if K is large enough :

- n
P, (TGK " A SE /\RK>
inf 77 inf ) n K\ n K K K
Z ]P)(Swo <TK€ é qKK /\TO > PV()K' <qKK Z Sl ) ]P)VOK (qKK /\ Sl /\Te Z R’Y > 3
> ¢""(xo) — o

Thus, the v-process 1% reaches a non-negligible size Ke, before qKLK A SlK A R,If, with

a probability that tends to ¢"“(xg).
Once the mutant population has reached a non-negligible size, we can compare the
stochastic process and the deterministic limiting process. Under point 2 in Assump-
tion there exist 7' > 0 and 2 > 0 such that for any & € adh(B(£%,7) x (B(0,2¢) \
B(0,¢€)), for any t > T,

& € B(0,72) x B(£",72),

where £ is the solution to (2.1)) with a dimorphic initial state &y € Mp(X x {u,v}). This
can be proved using similar arguments than those of the proof of Lemma [6.2]
Moreover, using Theorem [3.1] and Proposition [3.4]

SupP x| sup WI(vE, & k) <o - 0,
vl <te[0 T] to St K—+o0

with & - the solution to ([2.1)) with initial state v*. The two previous results and the
Markov property imply that, if K is large enough,

- n n K, =
PV()K <T6K KK A Sl AR’{/(’SII( = F +T, TK+T B(O 2"}’2), TKU_i_T B(6U72’72)>

> §"(z0) — 2a.

Finally, we use the Markov property at time T 4+ T and we conclude as in Lemma 3
in [3]. If - is sufficiently small, we prove that, with a probability that tends to 1, after
time TX + T, the u-population process v* will become extinct before its size reaches
the threshold /92 and before the v-process v5¥ moves away from a neighborhood of the
equilibrium £°.

That concludes the proof of Proposition for the second case. O

Theorem [2.5] is deduced from Propositions [6.1] and [6.3] in a similar way to Theorem
1 in [3] by using the transition probabilities of the jump process (A¢)e>0.
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7 Numerics

To end this paper, let us illustrate Theorem with a numerical example. We consider
here a set of parameters similar to the one in [I1] and [22]. The location spaceis X = (0, 1)
and the trait space is Y = [0,1]. For all trait w, we consider that the growth rate is
maximal for the location x = u. For instance, the location space state can represent
a variation of resources, as seed size for some birds, and so two populations with two
different traits are not best-adapted to same resources. For some bird species, a gradual
variation of seed size can determine a gradual variation of beak size [19]. Moreover, the
maximum value of the growth rate function is the same for all traits but when u increases,
the birth rate function goes faster to 0, as follows :

b(x,u) = max{4 — 160 - u(zx —u)?,0}, d(z,u)=1.

That is, the birds with a small trait value are more generalists than the ones with a
large trait value : they are adapted to a larger set of seed size [17]. All individuals move
with the same diffusion coefficient m" = 0.003. The competition kernel is a constant
¢ = 10 and the mutation kernel k(z,u, w) is the probability density of a Gaussian random
variable with mean v and standard deviation 0.05 conditioned on staying in &/. The initial
population is composed of K individuals at location z = 0.5 and with trait u = 0.6.

|

Scaled number of individuals

Scaled number of individuals
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Figure 1: Simulations with K = 100000, gx = 1075.

In Figure[I we observe the evolution of the trait associated with a change of spatial
niches and spatial patterns over time. After a short time (a), the spatial distribution of
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the monomorphic population with trait u = 0.6 stabilizes. Then, in Figures (b), (¢) and
(d), we observe a phenomenon of invasion and replacement : some individuals with trait
u = 0.515 appear, invade and finally replace the previous population with trait v = 0.6.
Remark the change of spatial niche, see Figure (c). The locations of the population with
trait u = 0.515 are slightly smaller than the one of trait u = 0.6. Three other phenomena
of invasion and replacement with a displacement of the spatial niche are detected until
the time t = 2330 (Figure (e)). In a second phase, the population evolve to become more
and more generalists (Figure (f)) : the length of the spatial niche is increasing at each
event of invasion and replacement.

The simulations are computed using the algorithm presented in Parts 3 and 6 in Cham-
pagnat, Méléard [5]. It is an iterative construction, which gives an effective algorithm
of the process. The diffusion motion is simulated using an Euler scheme for reflected
diffusion process.
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