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Abstract—This paper addresses the task of community de-
tection and proposes a local approach based on a distributed
list building, where each vertex broadcasts basic information
that only depends on its degree and that of its neighbours.
A decentralised external process then unveils the community
structure. The relevance of the proposed method is experimentally
shown on both artificial and real data.

I. INTRODUCTION

Social networks are usually represented as graphs, where
each vertex is a person and each edge between two vertices
reflects a particular relationship, e.g. these people know each
other or share a common interest [1]. The structure of a social
network graph often reveals the presence of communities, in-
tuitively defined as subsets of vertices more densely connected
within themselves than with others.

When interacting in today’s real world in this context,
most people carry a wireless communication device –such
as a smartphone but also so-called smart objects, such as
smart watches or wearables to name a few– and constitute
the vertices of a volatile ad-hoc delay-tolerant communication
network known as opportunistic mobile social network, a class
of Mobile Ad-hoc NETwork (MANET), and encompasses a
community structure as well [2], [3]. The automatic identi-
fication of these communities can prove beneficial to better
route the traffic inside that network [4].

Hui et al. [5] showed that knowing the community structure
of such a network can help improving the routing of packet
traffic inside it. If the network is formed through human-
carried devices, thus reflecting a probable social organisation,
the improvement can be significant [2], [6].

Moreover, if the emergence of a network occurs at specific
place, such as a museum or a store, or during a specific event
such as an exhibit or a job-dating, the live uncovered com-
munity structure can be used to offer an enhanced experience
to the visitor/customer by recommending specific content or
places, and thereby to increase merchant benefits. Experiments
conducted at MIT where each user carries a small electronic
communicating badge on their shirt show that these badges
are useful to successfully live build affinity models among
participants and infer interest between people [7], [8]. We
believe that adding the community structure to the features

used to build the models, bringing a social dimension, could
improve the models quality. However, it is a difficult task
and a challenging problem in the field of graph mining, as
detailed in Section II. Most existing methods, at the protocol
level implementation, require vertices of the network to share
a certain amount of information implying many exchanges
between them, or calculations requiring many inputs.

This paper proposes a simple distributed method with
reduced propagation, therefore easily deployable in the context
mentioned above. We show that, only by having vertices share
a list based on the degrees of their neighbours, we are able to
unveil a coherent community structure.

This paper is organised as follows: the next section dis-
cusses related works, Section III describes the method we pro-
pose and Section IV presents and discusses some experimental
results.

II. RELATED WORKS

The community detection task aims at decomposing a
graph into subgraphs that are more densely connected within
themselves than with others. Several formal definitions of com-
munity have been proposed [9], [10], though none is univer-
sally accepted, opening the way to many different approaches.
We propose to distinguish between 2 main categories, namely
global and local methods.

A. Global Approaches

The global approaches, introduced first, initially derived
from computational graph analysis, like partitioning, clustering
or clique-finding [11]–[13].

The exploitation of graph topology analysis then led to
the introduction of the modularity measure [14], [15], used in
numerous algorithms, such as Clauset [16] or Louvain [17]
to name two examples. Other criteria have been proposed to
address the limits of modularity [18], [19]. Other approaches
include techniques based on statistical models [20] or infor-
mations flows [21] for example.

However, these methods require to know the entire graph
topology, imposing to dispose of the whole graph for their
processing.
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B. Local Approaches

The second category, made of local approaches, detect
communities by means of a local measure, processing only
a subset of the graph, e.g. a subset of vertices, a subset of
edges, or a subgraph. These local approaches allow an analysis
portion by portion, thereby facilitating the conception of a
distributed implementation. They also make it easier to process
dynamic graphs, as they can adapt to local modifications
of the graph [22]. In particular, they apply to the case of
opportunistic networks mentioned in the introduction, such
as Pocket Switched Networks [23]: in this case, community
detection is difficult using a global approach because there is
no central unit knowing all the network vertices at the same
time.

Local approaches can be defined as variations of global
methods described in the previous subsection: modularity has,
for instance, been adapted for such a local exploitation [24].

Other recent local approaches include label propagation
[25] and seed-centric [26]. Label propagation basically consists
in assigning a label to each vertex and propagating these labels
between neighbours and throughout the network following
given rules. After achieving convergence, vertices labelled with
the same label will be considered as belonging to the same
community. However, propagation to the whole network can
lead to flooding effects and can be a significant downside as
opportunistic networks are often delay-tolerant so the synchro-
nisation can be tough. Seed-centric consists in identifying a
vertex or group of vertices displaying specific properties that
will constitute a basis (the seed) on which the community
detection is performed.

The local approach we propose, as detailed in the next
section, requires little computation, no centralised process and
limits the information exchange to the close neighbours.

III. PROPOSED ALGORITHM

This section presents the algorithm we propose, first ex-
posing the underlying concepts, then describing each part
separately and examining its properties.

We consider an undirected and unweighted graph without
isolated vertices nor self-loops, denoted G = (V,E), where V
is the set of vertices, E the set of edges, n = |V | and m = |E|,
dv is the degree and Γ(v) the set of neighbours of a vertex v.
The absence of isolated vertex implies that ∀v ∈ V, dv > 0.

C = {c1, ..., c|C|} is the set of communities formed after
detection, and C(v) refers to the community a vertex v belongs
to.

A. Overview and Architecture

The principle on which the proposed approach relies is that,
in a context where a vertex can be aware of its environment,
like an electronic communicating device as mentioned above,
minimal information sharing among vertices is sufficient to
serve as a basis to form communities. This method does not
optimise a mathematical property characterizing communities
like modularity, but is well suited for use in a decentralized,
mobile networking environment requiring minimal computa-
tion.

The proposed method makes the vertices perform the
essential part of the computation: metaphorically, each vertex
answers the question: “Which of my neighbours am I the most
related to?”. This step allows to identify locally the vertex
or set of vertices attracting most of their neighbours. Note
that this assumption has a meaning close to the preferential
attachment theory [27].

Then, the community structure uncovering process brings
together the vertices that most want to be together. This process
is external to the vertices, so no vertex has to propagate
information to others. At the end of the uncovering process,
each vertex knows its own community, but not the whole
community structure of the network. This structure may be
found by doing a graph traversal, or an exploration of the
graph. The advantage is that only a part of the community
structure can be retrieved, with a partial graph traversal or local
exploration for example, adjusting the computing resources
consumption to just what is needed. Indeed, the entire structure
is often not required, as for the Internet: no router knows
the full topology because it is too vast and too fast-changing.
However, a knowledge of a subpart of the Internet is sufficient
for efficiently routing the packets.

In short, the desired overall effect is first to locally identify
the densest areas in the graph where the vertices of highest
degree are found, and then to group together vertices around
them. This approach is related to the seed-centric community
detection method family, except that we do not seek to identify
a seed area but rather to have the vertices know and organise
themselves to reveal the community structure.

The proposed method requires little computation power and
memory use: the only prerequisite is that a vertex must be able
to communicate with its neighbours to get or send minimal
information, for example about the degrees. The calculation
is then easily distributed over the vertices themselves, i.e. the
connected devices constituting network.

More precisely, the algorithm is composed of 3 steps
successively detailed in the next subsections:

1) List of candidates compiling: each vertex builds a list
including some of its neighbours depending on their
degree. Each vertex can run this step independently,
at the same time.

2) Agreement computation and assignment: in this step,
each vertex v shares its list with its neighbourhood.
It calculates the proportion of vertices in common
between its list and those of its neighbours (agree-
ment). It selects the neighbour av it has the highest
agreement with.

3) Community uncovering on V: for each pair
(v, av) ∈ V , the communities of v and av are
merged.

B. List of candidates compiling

We think that having vertices share minimal information
to their close neighbourhood is a simple yet efficient way to
identify denser areas in the graph, assimilated with communi-
ties. We propose the minimal information required as an input
for a vertex v to be the degree of each of its direct neighbours,
so v disposes of dv pieces of information for input.
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Then, each vertex v keeps only its neighbours of highest
degree in a list called Sv .

More precisely, we define an integer kv such that for
each v, kv ∈ J1 ... dvK, and an ordering function σv such that
σv(i) is the index of the ith highest degree neighbour of v.

Sv is then defined for u ∈ Γ(v) as:

Sv = {uσv(1), ..., uσv(kv)}

We discuss the value to be given to kv in Section IV.

The motivation behind this way of proceeding is that a
vertex cannot know with certitude if it lies in the core of a
dense area of the graph or in a more remote part, but can
improve its knowledge with the help of information transmitted
by its neighbours.

However, to avoid using massive propagation, which is
the case for the label propagation based methods, we limit
the information exchange, about the degree, to the immediate
neighbourhood. Given the low value of diameter generally
encountered in community graphs, especially inside the sub-
graph formed by a community, the immediate neighbourhood
contains sufficient information to perform a fairly accurate
detection.

C. Agreement Computation

Once the list has been established, the next step brings
together vertices that are most likely to form a community.
We propose to compare the S lists for each connected pair
(v, u), ie Sv and Su for u ∈ Γ(v).

The idea is that if vertices share the same neighbours
in their Sv , they are more likely to be part of the same
community, because the are connected to the same high-
degree vertices (common neighbourhood assumption, tied with
the preferential attachment theory). We assume that a vertex
having fewer connection wants to join a vertex having more
connections.

We thus propose to compute the agreement (agree. in short)
between two neighbour vertices u and v as the number of
vertices in common between Su and Sv:

agreement(u, v) = |Su ∩ Sv|

We then propose to associate to each vertex v its neighbour
with maximal agreement called av .

However, this choice is only relevant if the agreement
is high enough, so we use a parameter τ ∈ [0, 1] to re-
strict the selection of av among v’s neighbours having a
τ -percentage of agreement with it, imposing the condition that
u ∈ Γ(v), agreement(u, v) ≥ τ · min(du, dv). If none of v’s
neighbours fulfil an agreement greater than τ , meaning that
we lack information about v neighbourhood, we select the v’s
neighbour of maximal degree as it is the best alternative. So
the expression of av becomes:

av =

arg max
u∈Γ(v)

{agree.(u, v) | agree.(u, v) ≥ τ ·min(du, dv)}

arg max{du|u ∈ Γ(v)} if the case above returns ∅

Algorithm 1 Agreement computation and assignment
Require: vertex v, parameter τ ∈ [0, 1]
Ensure: vertex av , assigned vertex for v

1: vmax ← arg max{agreement(u, v)|u ∈ Γ(v)}
2: if agreement(v, vmax) ≥ τ ·min(dv, dvmax) then
3: av ← vmax
4: else
5: av ← arg minu∈Γ(v) s(v, u)
6: end if

Algorithm 2 Community uncovering
Require: set of vertices V ,
Ensure: set of communities C

1: C = {{v}|v ∈ V}
2: take v not processed yet
3: merge(C(v), C(av))

One of the main advantages is that, at the protocol level,
any vertex v needs to broadcast its list Sv only to its neighbours
for the agreement computation to be made. This property is
in line with the desired limited propagation of the considered
application framework.

This process is sketched in Algorithm 1.

D. Community Uncovering

The community detection finally exploits the extracted
information, namely the association of each vertex v with its
preferred vertex av . The process is initialised to a configuration
where each vertex forms its own community. The next step is
to merge the community of each vertex v with the one of its av .

This process is sketched in Algorithm 2.

To do so and to minimise propagation we introduce an
entity ε able to poll easily a certain number of vertices from
an area in the graph, denoted V ⊂ V . ε can be a high degree
vertex or a dedicated unit outside the network. For example,
in a smartphone ad-hoc network, ε can be a designated more
powerful smartphone of the network or a fixed computing unit
if the network is located in a closed space for example an
exhibit.

ε then polls a vertex v and merges its community with the
community of its associated vertex av .

The community uncovering process can be distributed on
multiple ε at the same time, thus the use of V . As a matter
of fact, ε just needs to have access to every vertex v ∈ V , the
merging being deterministic.

In order to process the whole graph, the only requirement
is that the union of all considered subsets V equals the whole
set of vertices. No condition regarding their intersection need
to be applied, in particular, they do not need to be disjoint.

E. Algorithm Properties

1) Determinism: Two out of three steps are deterministic:
the lists of candidates only depend on the degrees, so they
remain the same for every instance of the algorithm and any
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order of calculation. Merging is a symmetric action, and the
result does not depend on the order.

Agreement computation is not deterministic in itself; it is
dependent on the order in which the vertices are considered.
Also, when several candidates are suitable for an av , one is
chosen at random. However our experimental tests show that
the variations and standard deviations are minimal.

2) Complexity: The list of candidates calculation process
is run separately and simultaneously by each vertex v and
depends on the sorting of its neighbours degree. Therefore,
the complexity of this process for a single vertex v calculation
with a O(n · log n) sorting algorithm can be evaluated as
O(dvlog dv), and as O(d̄ log d̄) on average for any v ∈ V ,
where d̄ is the mean degree of the graph, for example m

n for
a balanced random graph.

Assuming that the calculations to compile the lists of
candidates are distributed over the n vertices, for the whole
graph it takes n×O(d̄ log d̄).

It is the same for the agreement computation, each vertex
v compares his Sv list to those of its neighbours, yielding
an O(dv · kv) complexity, and n × O(d̄ · k̄) for the whole
graph where k̄ is the mean kv over all v ∈ V . Given that
∀v ∈ V, kv ≤ dv , we can write the complexity as n×O(d̄2).
It is important to keep in mind that the calculations are run
separately and simultaneously by all the vertices, thus we write
the complexity that way.

Finally the community uncovering consists of a merge for
each vertex considered by the process. Each process then runs
in O(|V|), and the complexity for the whole graph is O(n).

3) Overlapping communities: In the first version of this
method, we choose not to consider overlapping communities,
because evaluating the quality of community structures with
multiple belonging vertices is harder than those with single
belonging vertices.

However, a simple way to enable the detection of overlap-
ping communities would be to make av a set and define the
agreement procedure accordingly. So a vertex v would join the
community of each vertex in the av set, instead of joining the
community of a single preferred vertex av .

IV. EXPERIMENTS

This section discusses the results of experiments both on
artificial and real-world graphs, to show the relevance of
the proposed method, after presenting the considered quality
criteria and parameter values.

A. Quality Criteria

We evaluate the obtained results using ARI and NMI,
criteria usually applied to assess the results of clustering tasks,
to compare partitions of a given set of objects.

The Adjusted Rand Index (ARI) is an enhancement of the
original Rand Index corrected for chance [28]. It produces a
value between −1 (fully incorrect match between two parti-
tions) and 1 (fully exact match between partitions), 0 being,
on average, the value for the comparison of two partitions
obtained at random.

The Normalized Mutual Information (NMI) reflects the
amount of information contained in the considered partition
compared to the ground truth, normalised by the average of
Shannon’s entropy of the two partitions [29]: 0 is the value
obtained for a random assignment and 1 for a fully similar
one. We use here the word “similar” because there can be a
higher number of clusters in the produced result than in the
ground truth, but NMI remains high as long as the obtained
partition remains close to the ground truth, even if the classifier
produces several clusters instead of one.

We consider ARI as a measure of whether the found
communities are exactly the same (same number, same vertex
partition) thus decreasing when the number of clusters differs,
and NMI as a measure of how the clusters are meaningful
with respect to the ground truth, ie that globally the vertices
tend to be put together in both partitions even if the number
of clusters is different.

B. Parameter Selection

The proposed algorithm depends on two parameters, kv
and τ .

We set kv = max(1, dv2 ), as an intermediary value. Obvi-
ously, setting k = 1 is insufficient: a vertex would choose its
av to be its highest degree neighbour, but if this highest degree
neighbour is not in its community, for example because v lies
in the border area of its community, intuitively as much linked
to other communities as to vertices of its own community, it
will not be placed in the most appropriate community. We
experimentally found that it happens frequently, distorting the
vertex partition.

On the other hand, keeping all the neighbours is not neces-
sary: communities being considered here as denser subgraphs,
a vertex is connected to the majority of its neighbours with
high probability (high clustering coefficient). Moreover, the
most significant neighbours bringing information, those of
highest degrees, represent a small part of a vertex neighbour-
hood. As a matter of fact, the degrees in the whole graph
are expected to follow a power-law distribution as it is really
common in community networks especially social networks
[27].

We experimentally set τ = 0.2: it appears to be the first
value that achieves the best NMI, which is not improved for
lower values of τ .

C. Artificial Graphs

Artificially generated graphs allow a ground truth compari-
son as their properties are known by construction. We consider
two generation procedures, one similar to Clauset’s [24] and
the well-known LFR benchmark [30].

1) Comparison with a local approach: We start here with
a comparison with another local community identification
method, from Clauset. We run the same kind of experiment
that he did in his paper [24].

Clauset uses generated graphs of n = 128 vertices divided
into four communities of the same size, 32 vertices each, which
constitutes the ground truth. Each vertex expected degree, z, is
the sum of the intra-community edges zin and inter-community
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edges zout. The edges are placed independently at random
between vertices so that z, zin and zout are, in expectation,
respected. Clauset sets z = 16 and makes zout vary, so zin =
z − zout.

We compare the performance of our method to that
of Clauset’s local modularity on the whole graph. Indeed,
Clauset’s algorithm starts from a seed vertex in the graph
and returns a community around that seed vertex, so it does
not always process the whole graph at once. Clauset runs
four detections processes, one for each community, and then
compares the results community by community against the
ground truth.

The algorithm we propose being applied to the whole
graph, we had to find a way to aggregate Clauset’s algorithm
results for the whole graph as well. First, we choose to run
Clauset’s algorithm for each community of each graph, that is
four times for each graph, selecting the seed vertex as the one
having the highest degree in each community. That’s a main
advantage given to Clauset’s method because it facilitates the
detection, telling it where to start and omitting the fact that
this method, contrary to the one we propose, cannot detect
multiple communities at the same time in the graph.

Then, we aggregate the results as follows: a vertex clas-
sified in several communities is kept in only one community
selected at random (as we do not consider overlapping com-
munities here), the unclassified vertices are each put in a self-
community in which they are the sole vertex, allowing a fair
comparison with our method, where every vertex is assigned
to only one community.

The experiment is performed for zout from 1 to 8, over
10 different graphs for each value of zout. The results are
presented in Figure 1. It can be observed that the performance
of the method we propose is not as good as Clauset’s, except
for zout = 3.

However even if the NMI remains higher for Clauset’s
method than the one we propose, the ARI shows that the
community partition found by Clauset is not very similar to
the original one. That is because Clauset’s method classifies
many vertices in several communities or not at all, so the
agregation applied smoothes these results by removing the
multi-affectations and adding the missing vertices, producing
many single-vertex communities that do not affect much the
NMI, contrary to the ARI. Our interpretation is that Clauset’s
method detects well the core of each community but gets
quickly lost when it goes toward the boundaries.

On the contrary, the performance of the method we propose
gradually decreases but the ARI remains proportional to the
NMI, showing that the meaningfulness of the community
partition, compared with the original, is gradually lost and
tends to resemble randomness when zout ≥ 7. As a matter
of fact, the ARI compared to the original partition is more
favourable for the method we propose when zout = 4 and 5
whereas the NMI is more favourable for Clauset’s method.

Also, we can notice that the standard deviation for Clauset’s
method is high when zout = 2 and 3, before the performance
drop, whereas the standard deviation for ours remains mod-
erate. We interpret this as a notable instability of Clauset’s
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Figure 1. Average ARI and NMI for all communities over 500 generations,
as compared to ground truth, for Clauset’s like graphs [24], as a function of
inter-community edges zout.

method when there is significant noise, i.e. when zout ≥ 2,
leading to the performance drop.

2) Comparison with global approaches: The Lanci-
chinetti,Fortunato,Radicchi (LFR) random graphs generator
[30] allows to produce better community graphs with regards
to the properties of such graphs [14], than models similar to
the one used by Clauset. In particular, the parameter µ ∈ [0, 1]
indicates how ”well-knit” the graph is, i.e. how much the
community are clearly separated, therefore easily identifiable.

First, we run an experiment to set the best value to
use for the parameter τ , then we compare the method we
propose to two state-of-the-art global methods: Louvain [17]
and InfoMap [21].

We consider a graph with 1000 vertices for each value of µ
from 0.1 to 0.8 increasing by 0.1, generated by LFR, and test
the algorithm we propose for different values of τ .

Figure 2 shows the obtained the ARI and the NMI, mean
and standard deviation averaged over 100 runs.

We can see that the method we propose performs well until
µ = 0.2, decreasing for higher values of µ, a sign of instability
due to the fact that the communities become less and less
identifiable.

The NMI stays higher than the ARI, meaning that for a
given µ, although the method we propose returns a different
number of clusters than the ground truth, the partition of the
vertices remains closer to the ground truth partition.

Then, we compare the method we propose to Louvain and
InfoMap using the value τ = 0.2 that yields the best results.
The results, presented on Figure 3, show that the NMI stays
over 0.9 until µ = 0.5. Louvain performs better here compared
to InfoMap, which is not always the case [31], but both see
their standard deviation increase, especially InfoMap for µ >
0.5. Although the quality of the results produced by the method
we propose decreases, the advantage here is its stability (in
addition to its distributed mode of operation, cf. Section III).

Globally, as long as the community structure remains
sufficiently defined (µ ≤ 0.5), our algorithm performs quite
well as compared to global methods.
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Figure 3. Evaluation of our method on LFR-benchmark generated graphs (1000 vertices), for different methods

D. Real-world Graphs

Contrary to artificial graphs, real-world graphs are not
generated after a given model but are the encoding of a real
situation. They come with no ground truth, even if some
of there properties are known, so the ground truth have to
be human-labelled or generated by a community detection
method.

1) Zachary’s Karate Club: Zachary’s karate club is a real
situation [32] discussing over the conflicts leading to the
separation of a karate club into two factions. The interactions
between members were observed for 3 years from a sociologi-
cal/ethnographic point of view. After the splitting of the initial
club, the new partition was found to be strongly correlated
with the interactions over the past preceding years (that was
the purpose of Zachary’s paper). The two factions are seen as
the 2 main communities which the graph can be divided into.
It is a well-known small benchmark to study the behaviour of
a community detection algorithm.

Figure 4 shows the partition made by our algorithm. The
NMI and ARI for this case are 0.65 and 0.67 respectively.
Three vertices are not put in the expected community com-
pared to the partition stated by Zachary : #9, #14 and #20
(highlighted on the figure). These vertices are at the interface
between the two communities and are all connected to vertex
#34, one of the most influent in this community (highest
degree). Therefore the classification does not seem absurd.

2) Amazon: We also apply the method we propose on a
co-purchasing network from Amazon.com, collected by Yang
and Leskovec [33] and available online [34]. The graph has
n = 334, 863 vertices and m = 925, 872 edges. It is undirected
and has no isolated vertex nor self-loop. It has a clustering
coefficient of approximately 0.40, which is really low (neigh-
bours are sparsely connected, there are few triangles). Each
vertex represents a product sold on Amazon.com and each
edge between two products means that they are frequently co-
purchased.
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Figure 4. Community partition for Zachary’s karate club. The highlighted
vertices are the only ones not compliant with the original partition.

The main advantage of this dataset is that it comes with
a ground truth, i.e. it is possible and relevant to apply the
method we propose and compare the result with the ground
truth communities.

We removed from the results of our detection the vertices
having no affected ground truth community, and we kept only
one community at random for vertices belonging to several
communities.

We achieve a NMI of 0.905, in other words our method
is not only able to find communities in computer-generated
graphs with controlled properties, but also in large graphs
modeling -or taken from- real situations.

V. CONCLUSION

We presented a decentralised method to detect communities
on a graph, using lists based on the degrees of the vertices.
The algorithm, divided in 3 steps, makes each vertex elaborate
a list of defined vertices, then an agreement with the list of its
neighbours. A process is run to put together vertices that have
the highest agreement.

This method relies on simple calculations with few inputs,
and is therefore well adapted to detect communities during a
live event, where each participant carries a wireless mobile
device (e.g. smartphone, smartwatch) that can do the compu-
tation and share information with other nearby devices.

We showed that this method performs well both on artificial
and real graphs, although less than state-of-the-art algorithms.
However, a main advantage is that it is designed to be run
on a distributed architecture, more precisely over a network
of connected “smart” devices e.g. smartphones. Furthermore,
most of the method is deterministic, giving rather stable results,
more easily predictable and more explainable.

We plan to do further experimentations with the proposed
method on a larger number of graphs of various properties and
models, to better understand the limits of the assignment based

on agreement. Future works will also include experiments
on dynamic graphs, as we think that this method is easily
adaptable to the dynamic case.

Perspective also include an extension of the proposed
method to the case of overlapping communities (cf. III-E3)
and attributed graphs: adding other information available to
constitute the lists, such as the profile of a participant carrying
the device in the considered context, would greatly improve
the quality of the community formation.
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