E. A. Nigg and J. W. Raff, Centrioles, Centrosomes, and Cilia in Health and Disease, Cell, vol.139, issue.4, pp.663-678, 2009.
DOI : 10.1016/j.cell.2009.10.036

M. Bornens, The Centrosome in Cells and Organisms, Science, vol.335, issue.6067, pp.422-426, 2012.
DOI : 10.1126/science.1209037

B. R. Mardin and E. Schiebel, Breaking the ties that bind: New advances in centrosome biology, The Journal of Cell Biology, vol.111, issue.1, pp.11-18, 2012.
DOI : 10.1038/ncb1140

E. A. Nigg and T. Stearns, The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries, Nature Cell Biology, vol.13, issue.10, pp.1154-1160, 2011.
DOI : 10.1038/nature01241

A. M. Fry, C-Nap1, a Novel Centrosomal Coiled-Coil Protein and Candidate Substrate of the Cell Cycle???regulated Protein Kinase Nek2, The Journal of Cell Biology, vol.98, issue.7, pp.1563-1574, 1998.
DOI : 10.1038/378578a0

T. Mayor, Y. D. Stierhof, K. Tanaka, A. M. Fry, and E. A. Nigg, The Centrosomal Protein C-Nap1 Is Required for Cell Cycle???Regulated Centrosome Cohesion, The Journal of Cell Biology, vol.59, issue.4, pp.837-846, 2000.
DOI : 10.1016/S0955-0674(99)80015-5

J. Yang, M. Adamian, and T. Li, Rootletin Interacts with C-Nap1 and May Function as a Physical Linker between the Pair of Centrioles/Basal Bodies in Cells, Molecular Biology of the Cell, vol.17, issue.2, pp.1033-1040, 2006.
DOI : 10.1091/mbc.E05-10-0943

S. Bahe, Y. D. Stierhof, C. J. Wilkinson, F. Leiss, and E. A. Nigg, Rootletin forms centriole-associated filaments and functions in centrosome cohesion, The Journal of Cell Biology, vol.114, issue.1, pp.27-33, 2005.
DOI : 10.1128/MCB.25.10.4129-4137.2005

K. Kim, S. Lee, J. Chang, and K. Rhee, A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization, Experimental Cell Research, vol.314, issue.20, pp.3692-3700, 2008.
DOI : 10.1016/j.yexcr.2008.09.016

P. Meraldi and E. A. Nigg, Centrosome cohesion is regulated by a balance of kinase and phosphatase activities, J. Cell Sci, vol.114, pp.3749-3757, 2001.

E. A. Nigg, Centrosome duplication: of rules and licenses, Trends in Cell Biology, vol.17, issue.5, pp.215-221, 2007.
DOI : 10.1016/j.tcb.2007.03.003

J. Azimzadeh and M. Bornens, Structure and duplication of the centrosome, Journal of Cell Science, vol.120, issue.13, pp.2139-2142, 2007.
DOI : 10.1242/jcs.005231

S. C. Goetz and K. V. Anderson, The primary cilium: a signalling centre during vertebrate development, Nature Reviews Genetics, vol.18, issue.5, pp.331-344, 2010.
DOI : 10.1038/nrg2774

M. Bettencourt-dias, F. Hildebrandt, D. Pellman, G. Woods, and S. A. Godinho, Centrosomes and cilia in human disease, Trends in Genetics, vol.27, issue.8, pp.307-315, 2011.
DOI : 10.1016/j.tig.2011.05.004

G. K. Thornton and C. G. Woods, Primary microcephaly: do all roads lead to Rome? Trends Genet, pp.501-510, 2009.

E. Griffith, Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling, Nature Genetics, vol.23, issue.2, pp.232-236, 2008.
DOI : 10.1038/ng.2007.80

E. Kalay, CEP152 is a genome maintenance protein disrupted in Seckel syndrome, Nature Genetics, vol.70, issue.1, pp.23-26, 2011.
DOI : 10.1073/pnas.0603779103

M. S. Al-dosari, R. Shaheen, D. Colak, and F. S. Alkuraya, Novel CENPJ mutation causes Seckel syndrome, Journal of Medical Genetics, vol.47, issue.6, pp.411-414, 2010.
DOI : 10.1136/jmg.2009.076646

M. Willems, Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families, Journal of Medical Genetics, vol.47, issue.12, pp.797-802, 2010.
DOI : 10.1136/jmg.2009.067298

A. Rauch, Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism, Science, vol.319, issue.5864, pp.816-819, 2008.
DOI : 10.1126/science.1151174

C. Arquint and E. A. Nigg, STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification, Current Biology, vol.24, issue.4, pp.351-360, 2014.
DOI : 10.1016/j.cub.2013.12.016

A. Duchesne, A Generalized Caprine-like Hypoplasia Syndrome is localized within a 6-cM interval on bovine chromosome 13 in the Montb??liarde breed, Animal Genetics, vol.83, issue.2, pp.112-120, 2008.
DOI : 10.1007/s00335-002-3001-x

E. Zelzer and B. R. Olsen, The genetic basis for skeletal diseases, Nature, vol.16, issue.6937, pp.343-348, 2003.
DOI : 10.1002/ajmg.a.10807

P. C. Conroy, C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis, Cell Cycle, vol.23, issue.20, pp.3769-3778, 2012.
DOI : 10.4161/cc.21986

J. Yang, The Ciliary Rootlet Maintains Long-Term Stability of Sensory Cilia, Molecular and Cellular Biology, vol.25, issue.10, pp.4129-4137, 2005.
DOI : 10.1128/MCB.25.10.4129-4137.2005

T. U. Mayer, Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen, Science, vol.286, issue.5441, pp.971-974, 1999.
DOI : 10.1126/science.286.5441.971

K. Kaseda, A. D. Mcainsh, and R. A. Cross, Dual pathway spindle assembly increases both the speed and the fidelity of mitosis, Biology Open, vol.1, issue.1, pp.12-18, 2012.
DOI : 10.1242/bio.2011012

B. R. Mardin, EGF-Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival, Developmental Cell, vol.25, issue.3, pp.229-240, 2013.
DOI : 10.1016/j.devcel.2013.03.012

S. Graser, Cep164, a novel centriole appendage protein required for primary cilium formation, The Journal of Cell Biology, vol.115, issue.2, pp.321-330, 2007.
DOI : 10.1146/annurev.physiol.69.040705.141301

T. Vinogradova, Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance, Molecular Biology of the Cell, vol.23, issue.5, pp.820-833, 2012.
DOI : 10.1091/mbc.E11-06-0550

F. Pouthas, In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum, Journal of Cell Science, vol.121, issue.14, pp.2406-2414, 2008.
DOI : 10.1242/jcs.026849

S. Etienne-manneville, Microtubules in Cell Migration, Annual Review of Cell and Developmental Biology, vol.29, issue.1, pp.471-499, 2013.
DOI : 10.1146/annurev-cellbio-101011-155711

V. Ho and A. T. , Neural Crest Cell Lineage Restricts Skeletal Muscle Progenitor Cell Differentiation through Neuregulin1-ErbB3 Signaling, Developmental Cell, vol.21, issue.2, pp.273-287, 2011.
DOI : 10.1016/j.devcel.2011.06.019

S. Khateb, A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome, Journal of Medical Genetics, vol.19, issue.(R1), pp.460-469, 2014.
DOI : 10.1136/jmedgenet-2014-102287

T. Hardy, Multisite phosphorylation of C-Nap1 releases it from Cep135 to trigger centrosome disjunction, Journal of Cell Science, vol.127, issue.11, pp.2493-2506, 2014.
DOI : 10.1242/jcs.142331

M. S. Hussain, A Truncating Mutation of CEP135 Causes Primary Microcephaly and Disturbed Centrosomal Function, The American Journal of Human Genetics, vol.90, issue.5, pp.871-878, 2012.
DOI : 10.1016/j.ajhg.2012.03.016

C. Charlier, Highly effective SNP-based association mapping and management of recessive defects in livestock, Nature Genetics, vol.325, issue.4, pp.449-454, 2008.
DOI : 10.1038/ng.96

L. Flori, The Genome Response to Artificial Selection: A Case Study in Dairy Cattle, PLoS ONE, vol.6, issue.84, p.6595, 2009.
DOI : 10.1371/journal.pone.0006595.s008

URL : https://hal.archives-ouvertes.fr/hal-01193382

Y. Bobinnec, Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells, Cell Motility and the Cytoskeleton, vol.59, issue.3, pp.223-232, 1998.
DOI : 10.1002/(SICI)1097-0169(1998)39:3<223::AID-CM5>3.0.CO;2-5