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Abstract

In this paper, we will give some remarks on links between the spectral gap of the
Ornstein-Uhlenbeck operator on the Riemannian path space with lower and upper bounds
of the Ricci curvature on the base manifold; this work was motivated by a recent work of
A. Naber on the characterization of the bound of the Ricci curvature by analysis of path
spaces.
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1 Introduction

Let M be a complete smooth Riemannian manifold of dimension d, and Z a C1-vector field
on M . We will be concerned with the diffusion operator

L =
1

2
(∆M − Z),

where ∆M is the Beltrami-Laplace operator on M . Let ∇ be the Levi-Civita connection and
Ric the Ricci curvature tensor on M . We will denote

RicZ = Ric +∇Z.

It is well-known that the lower bound K2 of the symmetrized RicsZ , that is,

RicsZ(x) =
1

2

(

RicZ(x) + Ric∗Z(x)
)

≥ K2 Id, (1.1)

where Ric∗Z denotes the transposed matrix of RicZ , gives the lower bound of constants in the
logarithmic Sobolev inequality with respect to the heat measure ρt(x, dy), associated to L;
more precisely,
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∫

M

u2(y) log
( u2(y)

||u||2ρt

)

ρt(x, dy) ≤ 2
1− e−K2t

K2

∫

M

|∇u(y)|2 ρt(x, dy), t > 0, (1.2)

where ||u||2ρt =
∫

M
u2(y) ρt(x, dy).

Given now a finite number of times 0 < t1 < . . . < tN , consider the probability measure
νt1,...,tN on MN defined by

∫

MN

f dνt1,...,tN =

∫

MN

f(y1, . . . , yN ) pt1(x, dy1)pt2−t1(y1, dy2) · · · ptN−tN−1
(yN−1, dyN )

(1.3)
where f is a bounded measurable function on MN . Then with respect to the correlated
metric | · |C on TMN (see definition (1.10) below), the logarithmic Sobolev inequality still
holds for νt1,...,tN , that is, there is a constant CN > 0 such that

∫

MN

f2 log
( f2

||f ||2νt1,...,tN

)

dνt1,...,tN ≤ CN

∫

MN

|∇f |2C dνt1,...,tN , f ∈ C1(MN ). (1.4)

It was proved in [20, 6] that under the hypothesis

sup
x∈M

|||RicZ(x)||| < +∞, (1.5)

where ||| · ||| denotes the norm of matrices, the constant CN in (1.4) can be bounded, that is

sup
N≥1

CN < +∞. (1.6)

A natural question is whether (1.6) still holds only under Condition (1.1)? In a recent work
[21], A. Naber proved that if the uniform bound (1.6) holds, then the Ricci curvature of
the base manifold has an upper bound. It is well-known that Inequality (1.2) implies the
lower bound (1.1), therefore Condition (1.6) implies (1.5). The main purpose in [21] is to get
informations on RicZ from the analysis of the Riemannian path space. Let’s explain briefly
the context.

Let O(M) be the bundle of orthonormal frames and π : O(M) →M the canonical projection.
Let H1, . . . ,Hd be the canonical horizontal vector fields on O(M), consider the Stratanovich
stochastic differential equation (SDE) on O(M):

dut(w) =
d

∑

i=1

Hi(ut(w)) ◦ dwi
t −

1

2
HZ(ut(w))dt, u0(w) = u0 ∈ π−1(x), (1.7)

where HZ denotes the horizontal lift of Z to O(M), that is, π′(u) ·HZ(u) = Z(π(u)). It is
well-known that under Condition (1.1), the life-time τx of the SDE (1.7) is infinite. Let

γt(w) = π(ut(w)). (1.8)

Then {γt(w); t ≥ 0} is a diffusion process on M , having L as generator. The probability
measure νt1,...,tN considered in (1.3) is the law of w → (γt1(w), . . . , γtN (w)) on MN . Now
consider the following path space

W T
x (M) =

{

γ : [0, T ] →M continuous, γ(0) = x
}

.
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The law µx,T on W T
x (M) of w → γ·(w) is called the Wiener measure on W T

x (M). The inte-
gration by parts formula for µx,T was first estalished in the Seminal book [5], then developed
in [16, 10]; the Cameron-Martin type quasi-invariance of µx,T was first proved by B. Driver
[9], completed and simplified in [18, 19, 13]. By means of Cameron-Martin, we consider the
space

H =
{

h : [0, T ] → R
d absolutely continuous; h(0) = 0, |h|2

H
=

∫ T

0
|ḣ(s)|2

Rd ds < +∞
}

where the dot denotes the derivative with respect to the time t. Let F : W T
x (M) → R be a

cylindrical function in the form: F (γ) = f(γ(t1), · · · , γ(tN )) for some N ≥ 1, 0 ≤ t1 < t2 <
· · · < tN ≤ 1, and f ∈ C1

b (M
N ). The usual gradient of F in Malliavin calculus is defined by

DτF (γ(w)) =
N
∑

j=1

utj (w)
−1(∂jf)(γt1(w), · · · , γtN (w))1(τ≤tj), (1.9)

where ∂j is the gradient with respect to the j-th component. The correlated norm of ∇f is

|∇f |2C =

N
∑

j,k=1

〈utj (w)−1(∂jf), utk(w)
−1(∂kf)〉 tj ∧ tk, (1.10)

where tj∧tk denotes the minimum between tj and tk. Notice that the norm |∇f |C is random.
The generator Lx

T associated to the Dirichlet form

E (F,F ) =

∫

WT
x (M)

(

∫ T

0
|DτF |2(γ) dτ

)

dµx,T (γ)

is called the Ornstein-Uhlenbeck operator. The powerful tool of Γ2 of Bakry and Emery [3] is
not applicable to Lx

T , the reason for this is the geometry of W T
x (M) inherted from H is quite

complicated, the associated “Ricci tensor” being a divergent object (see [7, 8, 12]). When
the base manifold M is compact, the existence of the spectral gap for Lx

T has been proved in
[14]. The logarithmic Sobolev inequality for DτF defined in (1.9) has been established in [2],
as well as in [20] or [6] where the constant was estimated using the bound of Ricci curvature
tensor of the base manifold M . The method used in [14] is the martingale representation,
which takes advantage the Itô filtration; this method has been developed in [12] to deal with
the problem of vanishing of harmonic forms on W T

x (M). The purpose in [21] is to proceed in
the opposite direction, to get the bound for Ricci curvature tensor of the base manifold M
from the analysis of the path space W T

x (M).

The organization of the paper is as follows. In section 2, we will recall briefly basic objets
in Analysis of W T

x (M). On the path space W T
x (M), there exist two type of gradients: the

usual one is more related to the geometry of the base manifold, while the damped one is easy
to be handled. In section 3, we will make estimation of the spectral gap of Lx

T as explicitly
as possible in function of lower bound K2 and upper bound K1 of Ric. In section 4, we will
study the behaviour of the spectral gap Spect(Lx

T ) as T → 0. Roughly speaking, we will get
the following result:

1− K1T

2
+ o(T ) ≤ Spect(Lx

T ) ≤ 1 +
K2T

2
+ o(T ), as T → 0

under the following condition (3.1).
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2 Framework of the Riemannian path space

We shall keep the notations of Section 1, and throughout this section, ut(w) denotes always
the solution of (1.7) and γt(w) the path defined in (1.8). For any h ∈ H, we introduce first
the usual gradient on the path space W T

x (M), which gives Formula (1.9) when the functional
F is a cylindrical function. To this end, let

q(t, h) =

∫ t

0
Ωus(w)

(

h(s), ◦dw(s) − 1

2
us(w)

−1Zγs(w)ds
)

(2.1)

where Ωu is the equivariant representation of the curvature tensor on M . Let ricZ be the
equivariant representation of RicZ , that is,

ricZ(u) = u−1 ◦ RicZ(π(u)) ◦ u, u ∈ O(M).

Consider ĥ(w) ∈ H defined by

˙̂
ht(w) = ḣ(t) +

1

2
ricZ(ut(w))h(t). (2.2)

Let F : W T
x (M) → R be a functional, we denote F̃ (w) = F (γ·(w)). Then according to [16],

we define

(DhF )(γ·(w)) =
{ d

dε
F̃
(

∫ ·

0
eεq(s,h) dw(s) + ε ĥ

)}

ε=0
. (2.3)

By [5, 16], if F is a cylindrical function on W T
x (M), then

(DhF )(γ·(w)) =

∫ T

0
〈DτF (γ·(w)), ḣ(τ)〉 dτ

where DτF was given in (1.9). Consider the following resolvent equation

dQt,s

dt
= −1

2
ricZ(ut(w))Qt,s, t ≥ s, Qs,s = Id. (2.4)

For a cylindrical function F on W T
x (M) given by F (γ) = f(γ(t1), · · · , γ(tN )) with f ∈

C1
b (M

N ), following [16], we define the damped gradient D̃τF of F by

D̃τF (γ·(w)) =
N
∑

j=1

Q∗
tj ,τ

(

utj (w)
−1∂jf

)

1(τ≤tj ), (2.5)

where Q∗
τ,s is the transpose matrix of Qτ,s. The damped gradient D̃τF on the path space

W T
x (M) plays a basic role in Analysis ofW T

x (M). Let (vt)t≥0 be a R
d-valued process, adapted

to the Itô filtration Ft generated by {w(s); s ≤ t} such that E(
∫ T

0 |vt|2 dt) < +∞. Consider
two maps v → ṽ and v → v̂ defined respectively by

ṽt = vt −
1

2
ricut(w)

∫ t

0
Qt,svs ds, (2.6)

and

v̂t = vt +
1

2
ricut(w)

∫ t

0
vs ds. (2.7)
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Then ˆ̃v = ˜̂v = v. The two gradients DtF and D̃tF are linked by the following formula

∫ T

0
〈D̃tF, vt〉 dt =

∫ T

0
〈DtF, ṽt〉 dt. (2.8)

The good feather of the damped gradient is that it admits a nice martingale representation

F = E(F ) +

∫ T

0
〈EFt(D̃tF ), dwt〉

where EFt denotes the conditional expectation with respect to Ft. The following logarithmic
Sobolev inequality holds ([11, 17]):

E

(

F 2 log
F 2

‖F‖2
L2

)

≤ 2E

(
∫ T

0
|D̃tF |2dt

)

. (2.9)

3 Precise lower bound on the spectral gap

The inconvenient of Inequality (2.9) is that the geometric information of the base manifold
M is completely hidden. Now we use the usual gradient DtF to make involving the geometry
of M . By (2.9), the matter is now to estimate

∫ T

0 |D̃tF |2dt by |DtF |. We assume that

K2 Id ≤ ricsZ , |||ricZ ||| ≤ K1 (3.1)

for two constants K1,K2 with K1 ≥ 0 and K1 +K2 ≥ 0.

Theorem 3.1. Let 0 < t ≤ T . Set

Λ(t, T ) = 1 +
K1

K2

(

1− e−
K2(T−t)

2

)

+
K1

K2

(

1− e−
K2t
2

)

+
(K1

K2

)2
[

(

1− e−
K2t
2

)

+
1

2

(

e−
K2(T+t)

2 − e−
K2(T−t)

2

)

]

.

(3.2)

Then we have the relation:

∫ T

0
|D̃tF |2dt ≤

∫ T

0
Λ(t, T )|DtF |2dt. (3.3)

Proof. From (2.5) and (2.8), we have

D̃tF = DtF − 1

2

∫ T

t

Q∗
s,t ric

∗
us
DsFds. (3.4)

Thus,

|D̃tF |2 = |DtF |2 −
〈

DtF,

∫ T

t

Q∗
s,tric

∗
us
DsFds

〉

+
1

4

∣

∣

∣

∣

∫ T

t

Q∗
s,tric

∗
us
DsFds

∣

∣

∣

∣

2

:= I1 + I2 + I3 respectively.

In the following we will estimate the term of I2 and I3. Under the lower bound in (3.1),

|||Q∗
s,t||| ≤ e−

K2(s−t)
2 , s ≥ t.
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Let

Λ1(t, T ) :=

∫ T

t

(

e−
K2(s−t)

4

)2

ds.

Then

|I2| ≤ |DtF |
∫ T

t

e−
K2(s−t)

2 K1|DsF |ds

≤ |DtF |

√

K1

∫ T

t

(

e−
K2(s−t)

4

)2

ds

√

K1

∫ T

t

e−
K2(s−t)

2 |DsF |2ds

= |DtF |
√

K1Λ1(t, T )

√

K1

∫ T

t

e−
K2(s−t)

2 |DsF |2ds

≤ 1

2

{

|DtF |2K1Λ1(t, T ) +K1

∫ T

t

e−
K2(s−t)

2 |DsF |2ds
}

.

and

|I3| ≤
1

4

∣

∣

∣

∣

∫ T

t

e−
K2(s−t)

2 K1|DsF |ds
∣

∣

∣

∣

2

≤ 1

4
K2

1Λ1(t, T )

∫ T

t

e−
K2(s−t)

2 |DsF |2ds.

Combining all the above inequalities, we get

|D̃tF |2 ≤
(

1 +
K1

2
Λ1(t, T )

)

|DtF |2 +
(

1 +
K1

2
Λ1(t, T )

)K1

2

∫ T

t

e−
K2(s−t)

2 |DsF |2ds

=
(

1 +
K1

2
Λ1(t, T )

)

(

|DtF |2 +
K1

2

∫ T

t

e−
K2(s−t)

2 |DsF |2ds
)

.

Therefore, we obtain

∫ T

0
|D̃tF |2dt ≤

∫ T

0

(

1 +
K1

2
Λ1(t, T )

)

|DtF |2dt

+

∫ T

0

(

1 +
K1

2
Λ1(t, T )

)K1

2

∫ T

t

e−
K2(s−t)

2 |DsF |2dsdt

=

∫ T

0

(

1 +
K1

2
Λ1(s, T )

)

|DsF |2ds

+

∫ T

0
|DsF |2ds

∫ s

0

K1

2

(

1 +
K1

2
Λ1(t, T )

)

e−
K2(s−t)

2 dt

:=

∫ T

0

(

1 +
K1

2
Λ1(s, T )

)

|DsF |2ds +
∫ T

0
(J1(s) + J2(s))|DsF |2ds,

where

J1(s) :=

∫ s

0

K1

2
e−

K2(s−t)
2 dt, J2(s) :=

∫ s

0

(K1

2

)2
Λ1(t, T )e

−K2(s−t)
2 dt.

Next, then we compute the term J1(s) and J2(s). By direct computation, we have

J1(s) =
K1

K2

(

1− e−
K2s
2

)
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and

J2(s) =
(K1

2

)2
∫ s

0

2

K2

(

1− e−
K2(T−t)

2

)

e−
K2(s−t)

2 dt

=
(K1

2

)2 2

K2

[
∫ s

0
e−

K2(s−t)
2 dt− e−

K2(T+s)
2

∫ s

0
eK2tdt

]

=
(K1

2

)2 2

K2

[

2

K2

(

1− e−
K2s
2

)

− 1

K2
e−

K2(T+s)
2 (eK2s − 1)

]

=
(K1

2

)2 2

K2

[

2

K2

(

1− e−
K2s
2

)

+
1

K2
e−

K2(T+s)
2 − 1

K2
e−

K2(T−s)
2

]

.

Adding J1(s) to J1(s) implying that

J1(s) + J2(s)

=
K1

K2

(

1− e−
K2s

2

)

+
(K1

K2

)2
[

(

1− e−
K2s

2

)

+
1

2

(

e−
K2(T+s)

2 − e−
K2(T−s)

2

)

]

:= Λ2(s, T )

Thus,
∫ T

0
|D̃tF |2dt ≤

∫ T

0
Λ(t, T )|DtF |2dt,

with

Λ(t, T ) = 1 +
K1

2
Λ1(t, T ) + Λ2(t, T )

= 1 +
K1

K2

(

1− e−
K2(T−t)

2

)

+
K1

K2

(

1− e−
K2t
2

)

+
(K1

K2

)2
[

(

1− e−
K2t
2

)

+
1

2

(

e−
K2(T+t)

2 − e−
K2(T−t)

2

)

]

.

The proof is completed. �

Notice that as K2 → 0, by expression (3.2),

Λ(t, T ) → 1 +
K1T

2
+K2

1

(T t

4
− t2

8

)

.

Now we study the variation of the function t→ Λ(t, T ). It is quite interesting to remark that
its monotonicity is dependent of the sign of K2.

Proposition 3.2. (i) If K2 < 0, then t → Λ(t, T ) is strictly increasing over [0, T ]. (ii) If
K2 > 0, then the maximum is attained at a point t0 in (0, T ).

Proof. Taking the derivative of t→ Λ(t, T ) gives

Λ′(t, T ) = −K1

2
e−

K2(T−t)
2 +

K1

2
e−

K2t
2

+
K2

1

2K2
e−

K2t
2 − K2

1

4K2
e−

K2(T+t)
2 − K2

1

4K2
e−

K2(T−t)
2 .

In addition, we have

Λ(0, T ) = 1 +
K1

K2

(

1− e−
K2T
2

)
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and

Λ(T, T ) = 1 +
K1

K2

(

1− e−
K2T
2

)

+
(K1

K2

)2
[

(

1− e−
K2T

2

)

+
1

2

(

e−K2T − 1
)

]

= 1 +
K1

K2

(

1− e−
K2T
2

)

+
1

2

(K1

K2

)2(

1− e−
K2T

2

)2

=
1

2
+

1

2

[

1 +
K1

K2

(

1− e−
K2T

2

)

]2

=
1

2
+

1

2
Λ2(0, T ).

From the second equality in the above, we observe that Λ(T, T ) ≥ Λ(0, T ). Moreover,

Λ′(0, T ) = −K1

2
e−

K2T
2 +

K1

2
+

K2
1

2K2
− K2

1

4K2
e−

K2T
2 − K2

1

4K2
e−

K2T
2

=
K1

2

(

1− e−
K2T

2

)

+
K2

1

2K2

(

1− e−
K2T

2

)

=
K1

2
(K1 +K2)

1− e−
K2T

2

K2
≥ 0;

(3.5)

and

Λ′(T, T ) = −K1

2
+
K1

2
e−

K2T
2 +

K2
1

2K2
e−

K2T
2 − K2

1

4K2
e−K2T − K2

1

4K2

= −K1

2
+
K1

2
e−

K2T

2 − K2
1

4K2

(

1− 2e−
K2T

2 + e−K2T
)

= −K1

2

(

1− e−
K2T

2

)

− K2
1

4K2

(

1− e−
K2T

2

)2
.

(3.6)

We see that

{

Λ′(T, T ) > 0 if K2 < 0,
Λ′(T, T ) < 0 if K2 > 0.

(3.7)

Now we look for t ∈ [0, T ] such that Λ′(t, T ) = 0. We have

Λ′(t, T ) = 0

⇔
(

− K1

2
e−

K2T
2 − K2

1

4K2
e−

K2T
2

)

eK2t +
(K1

2
+

K2
1

2K2
− K2

1

4K2
e−

K2T
2

)

= 0

⇔ − K1

4
e−

K2T
2

(

2 +
K1

K2

)

eK2t +
K1

4

(

2 +
2K1

K2
− K1

K2
e−

K2T
2

)

= 0

⇔ e−
K2T

2

(

2 +
K1

K2

)

eK2t =
(

2 +
2K1

K2
− K1

K2
e−

K2T
2

)

.

(3.8)

Therefore there exists at most one t such that Λ′(t, T ) = 0. For the case where K2 < 0,
if there exists t0 ∈ (0, T ) such that Λ(t0, T ) < 0. Then by (3.5) and (3.7), the equation
Λ′(t, T ) = 0 has at least two solutions, it is impossible. Therefore for K2 < 0, Λ′(t, T ) ≥ 0.
For K2 > 0, we suppose t0 such that Λ′(t0, T ) = 0. Let β = K1

K2
, then by (3.8)

eK2t0 =
(

1 +
β

2 + β

(

1− e−
K2T

2

))

e
K2T

2 ,

or t0 ∈ (0, T ) is such that

e
K2t0

2 =

√

1 +
β

2 + β

(

1− e−
K2T
2

)

e
K2T

4 . (3.9)

The proof is completed. �
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Proposition 3.3. Let β =
K1

K2
, then (i) if K2 > 0,

sup
t∈[0,T ]

Λ(t, T ) = (1 + β)2 −
(

β +
β2

2

)

√

1 +
β

2 + β

(

1− e−
K2T

2

)

e−
K2T

4

−

(

β + β2 − β2

2 e−
K2T
2

)

√

1 + β
2+β

(

1− e−
K2T
2

)

e−
K2T

4 .

(3.10)

(ii) if K2 < 0,

sup
t∈[0,T ]

Λ(t, T ) =
1

2
+

1

2

(

1 +
K1

K2

[

1− e−
K2T

2

])2
. (3.11)

Proof. For K2 > 0, we have

Λ(t0, T ) = 1 + β
(

1− e−
K2T
2 · e

K2t0
2

)

+ β
(

1− e
K2t0

2

)

+ β2
[

(

1− e−
K2t0

2

)

+
1

2

(

e−
K2T

2 · e
−K2t0

2 − e−
K2T
2 · e

K2t0
2

)

]

= 1 + 2β + β2 −
(

β +
β2

2

)

e−
K2T
2 · e

K2t0
2 −

(

β + β2 − β2

2
e−

K2T
2

)

e−
K2t0

2 .

Using (3.9) yields (3.10). For K2 < 0, supt∈[0,T ] Λ(t, T ) = Λ(T, T ), which gives (3.11). �

Combining (2.9) and (3.3), we get

Theorem 3.4. Let C(T,K1,K2) = sup
t∈[0,T ]

Λ(t, T ); then it holds

E

(

F 2 log
F 2

‖F‖2
L2

)

≤ 2C(T,K1,K2)E

(
∫ T

0
|DtF |2dt

)

(3.12)

for any cylindrical function F on W T
x (M).

It is well-konwn that the above logarithmic Sobolev inequality implies that the spectral gap
of Lx

T , denoted by Spect(Lx
T ), has the following lower bound

Spect(Lx
T ) ≥

1

C(T,K1,K2)
.

Theorem 3.5. Assume (3.1) holds, then (i) if K2 > 0, we have

Spect(Lx
T )

−1 ≤
(

1 +
K1

K2

)2
− K1

K2

√

(

2 +
K1

K2

)(

2 + 2
K1

K2
− K1

K2
e−

K2T
2

)

e−
K2T

4 ; (3.13)

(ii) if K2 < 0, we have

Spect(Lx
T )

−1 ≤ 1

2
+

1

2

(

1 +
K1

K2

[

1− e−
K2T

2

])2
. (3.14)

Proof. Using the elementary inequality: A + B ≥ 2
√
AB to the last two terms in (3.10)

yields (3.13). Inequality (3.14) is obvious. �

It is quite interesting to remark that
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Proposition 3.6. Let ψ(T,K1,K2) be the right hand side of (3.13) when K2 > 0 and the
right hand side of (3.14) for K2 < 0, then

ψ(T,K1,K2) → 1 +
K1T

2
+
K2

1T
2

8
as K2 → 0. (3.15)

Proof. It is easy to see that the right hand side of (3.14) tends to 1+ K1T
2 +

K2
1T

2

8 as K2 → 0.
For the right hand side of (3.13), we first remark that

(a)
K1

K2
e−

K2T
4 =

K1

K2
− K1T

4
+
K1K2T

2

32
+ o(K2).

Secondly
(

2 +
K1

K2

)(

2 + 2
K1

K2
− K1

K2
e−

K2T
2

)

=
(

2 +
K1

K2

)(

2 +
K1

K2
+
K1T

2
− K1K2T

2

8
+ o(K2)

)

=
(

2 +
K1

K2

)2
(

1 +
K1T
2 − K1K2T

2

8 + o(K2)

2 + K1
K2

)

Therefore
√

(

2 +
K1

K2

)(

2 + 2
K1

K2
− K1

K2
e−

K2T
2

)

=
(

2 +
K1

K2

)

(

1 +
1

2

K1T
2 − K1K2T

2

8 + o(K2)

2 + K1
K2

− K1K2T
2

32
+ o(K2

2 )

)

=
(

2 +
K1

K2

)

+
K1T

4
− 3K1K2T

2

32
+ o(K2).

Combining this with (a), we get

K1

K2
e−

K2T
4

√

(

2 +
K1

K2

)(

2 + 2
K1

K2
− K1

K2
e−

K2T
2

)

=
(

2 +
K1

K2

)K1

K2
− K1T

2
− K2

1T
2

8
+ o(K2).

Then (3.15) follows from the right hand side of (3.13). �

Corollary 3.7. Assume (3.1) holds.
(1) If K1 = K2 = K > 0, then

ψ(T,K,K) = 4−
√

3
(

4− e−
KT
2

)

e−
KT
4 → 1 as K → 0.

(2) If K2 = −K1 = −K, then

ψ(T,K,−K) =
1

2
(1 + eKT ).

Remark. Our results improve estimates obtained in [1].
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4 Behaviour of Spect(LxT ) as T → 0

In this section, we consider the case where Z = 0. Then Condition (3.1) can be readed as

K2 Id ≤ ric ≤ K1 Id, with K1 +K2 ≥ 0 (4.1)

and SDE (1.7) is reduced to

dut(w) =

d
∑

i=1

Hi(uu(w)) ◦ dwi
t, u0(w) = u0 ∈ π−1(x). (4.2)

The path γt(w) = π(ut(w)) is called Brownian motion path on M . Let ρ(x, y) be the Rie-
mannian distance. By [22, p. 199], there is ε > 0 such that

sup
t∈[0,T ]

E

(

exp
(

ε
ρ(x, γt)

2

2t

)

)

< +∞. (4.3)

Assume that the curvature tensor satisfies the following growth condition

|||Ωu|||+
d

∑

i=1

|||(LHi
Ω)u||| ≤ C

(

1 + ρ(x, π(u))2
)

(4.4)

where LHi
denotes the Lie derivative with respect to Hi.

Let v ∈ H, consider the functional FT :W T
x (M) → R defined by

FT (γ(w)) =

∫ T

0
〈v̇(t), dwt〉.

Let h ∈ H; then by (2.3), we have (see also [15])

(DhFT )(γ(w)) =

∫ T

0
〈v̇(t), q(t, h)dwt〉+

∫ T

0
〈v̇(t), ˙̂ht(w)〉 dt. (4.5)

Let a ∈ R
d and consider v(t) = ta with |a| = 1 in (4.5), we have

(DhFT )(γ(w)) = −
∫ T

0
〈q(t, h)a, dwt〉+

∫ T

0
〈a, ˙̂ht(w)〉 dt. (4.6)

Let {e1, · · · , ed} be an orthonormal basis of Rd; define

Ci(w, t, τ) = −
∫ t

τ

Ωus(w)

(

ei, ◦dw(s)
)

1(τ<t).

Then by Fubini theorem, the term q(t, h) has the expression

q(t, h) = −
d

∑

i=1

∫ T

0
ḣi(τ)Ci(w, t, τ) dτ.

According to (4.6), the gradient DτFT has the following expression:

(DτFT )(γ(w)) =

d
∑

i=1

(

∫ T

τ

〈Ci(w, s, τ)a, dws〉
)

ei + a+
1

2

∫ T

τ

ricZ(us) a ds. (4.7)

We have
Var(FT ) = E(F 2

T )− E(FT )
2 = |a|2T = T. (4.8)
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Proposition 4.1. Assume (4.4). Let

χT =
E

(

∫ T

0 |DτF |2 dτ
)

Var(FT )
.

Then

χT = 1 +
T

2
〈ricZ(u0)a, a〉 + o(T ) as T → 0 (4.9)

where u0 is the initial point of (4.2).

Proof. We have, using (4.7),

|DτFT |2 =
d

∑

i=1

(

∫ T

τ

〈Ci(w, s, τ)a, dws〉
)2

+ |a|2 + 1

4

∣

∣

∣

∫ T

τ

ric(us)a ds
∣

∣

∣

2

+
〈

a,

∫ T

τ

ric(us)a ds
〉

+ 2

d
∑

i=1

∫ T

τ

〈Ci(w, s, τ)a, dws〉 ai

+ 2

∫ d

0

∫ T

τ

〈Ci(w, s, τ)a, dws〉 ·
∫ T

τ

〈ric(us)a, ei〉 ds.

Put respectively

E

(

∫ T

0
|DτFT |2 dτ

)

= I1(T ) + I2(T ) + I3(T ) + I4(T ) + I5(T ) + I6(T ).

It is obvious that I2(T ) = |a|2T = T and I5(T ) = 0. We have

I1(T ) =

d
∑

i=1

∫ T

0

(

∫ T

τ

E(|Ci(w, s, τ)a|2) ds
)

dτ.

Now by growth condition (4.4) and (4.3), there is a constant δ > 0 such that

E(|Ci(w, s, τ)a|2) ≤ δ (s− τ). (4.10)

So that I1(T ) ≤ δT 3/6. By condition (4.1), it is easy to see that I3(T ) ≤ K2
1T

3

12 . It follows

that I6(T ) ≤
√
δK1
6 T 3. Now for I4(T ), we have

lim
T→0

I4(T )

T 2
=

1

2
〈ric(u0)a, a〉.

Combining these estimates together with (4.8), we get (4.9). �

Theorem 4.2. Assume (4.1) and (4.4). Let K2(x) be the lower bound of Ricx. Then as
T → 0,

1− K1T

2
+ o(T ) ≤ Spect(Lx

T ) ≤ 1 +
K2(x)T

2
+ o(T ). (4.11)

Proof. For K2 > 0, set β = K1
K2

. As T → 0, we have
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√

(2 + β)
(

2 + 2β − βe−
K2T

2

)

=

√

(2 + β)2
(

1 +
β

2 + β

(

1− e−
K2T

2

))

= (2 + β)

√

1 +
β

2 + β

K2T

2
+ o(T )

= (2 + β)
(

1 +
β

2 + β

K2T

4
+ o(T )

)

.

So, for K2 > 0, as T → 0,

β

√

(2 + β)
(

2 + 2β − βe−
K2T

2

)

e−
K2T

4

= β(2 + β)
(

1 +
β

2 + β

K2T

4
+ o(T )

)(

1− K2

4
T + o(T )

)

= β(2 + β)
[

1 +
T

4

( K1

2 + β
−K2

)

+ o(T )
]

= β(2 + β)
[

1− K2T

2(2 + β)
+ o(T )

]

.

By (3.13), we get

Spect(Lx
T )

−1 ≤ (1 + β)2 − β(2 + β)
[

1− K2T

2(2 + β)
+ o(T )

]

= 1 +
K1T

2
+ o(T ),

which implies that

Spect(Lx
T ) ≥ 1− K1T

2
+ o(T ).

For K2 < 0, by (3.14),

Spect(Lx
T )

−1 ≤ 1

2
+

1

2

(

1 +K1
1− e−

K2T
2

K2

)2
=

1

2
+

1

2

(

1 +
K1

K2

(K2T

2
+ o(T )

))2

= 1 +
K1T

2
+ o(T ),

which implies again

Spect(Lx
T ) ≥ 1− K1T

2
+ o(T ).

Now in (4.9), taking the vector a such that ric(u0)a = K2(x)a yields

Spect(Lx
T ) ≤ 1 +

K2(x)T

2
+ o(T ).

The proof of (4.11) is completed. �

Corollary 4.3. Assume (4.4). In the case where Ric = −K1Id with K1 ≥ 0, we have

∣

∣

∣
Spect(Lx

T )− 1 +
K1T

2

∣

∣

∣
= o(T ) as T → 0.
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