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Abstract Many studies report that hydrologic regimes are modulated by large-scale modes of climate
variability such as the El Nino Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Climate-
informed frequency analysis models have therefore been proposed to condition the distribution of hydro-
logic variables on climate indices. However, standard climate indices may be poor predictors in some
regions. This paper therefore describes a regional frequency analysis framework that conditions the distribu-
tion of hydrologic variables directly on atmospheric or oceanic fields, as opposed to predefined climate indi-
ces. This framework is based on a two-level probabilistic model describing both climate and hydrologic
data. The climate data set (predictor) is typically a time series of atmospheric of oceanic fields defined on a
grid over some area, while the hydrologic data set (predictand) is typically a regional data set of station

data (e.g., annual average flow at several gauging stations). A Bayesian estimation framework is used, so
that a natural quantification of uncertainties affecting hydrologic predictions is available. A case study
aimed at predicting the number of autumn flood events in 16 catchments located in Mediterranean France
using geopotential heights at 500 hPa over the North-Atlantic region is presented. The temporal variability
of hydrologic data is shown to be associated with a particular spatial pattern in the geopotential heights. A
cross-validation experiment indicates that the resulting probabilistic climate-informed predictions are skill-
ful: their reliability is acceptable and they are much sharper than predictions based on standard climate
indices and baseline predictions that ignore climate information.

1. Introduction

The variability of the climate system is a primary driver of the variability of hydrological regimes. Conse-
quently, identifying meaningful climate variables that may be associated with the changing regional hydro-
logic state is an important building block for understanding and prediction of changing hydrologic risk. The
goal of this paper is to propose a method that identifies the underlying ocean-atmosphere pattern and uses
it for hydrologic prediction at selected time scales and lead times.

1.1. Large-Scale Climate Variability

Climate is expressed through specific modes of variability, such as the North Atlantic Oscillation (NAO) or
the El Nino Southern Oscillation (ENSO), among many others. These modes of variability reflect large-scale
climatic processes affecting large areas, and their temporal variability may include some low-frequency
component ranging from a few years to a few decades. For instance, the NAO describes the strength of the
atmospheric pressure difference between the Icelandic low and the Azores anticyclone [van Loon and Rog-
ers, 1978; Hurrell, 1995; Hurrell and VanLoon, 1997]. The ENSO describes the interaction between the tropical
oceans and atmosphere which manifests as band-limited interannual oscillations in sea level pressure (SLP)
and sea surface temperature (SST) anomalies in the equatorial Eastern Pacific, with global teleconnections
[e.g., Kousky et al., 1984].

Such modes of variability are quantified by means of climate indices: for instance, the Nino3.4 index is
defined as the SST anomaly in a particular region of the equatorial Pacific Ocean (see https://www.ncdc.
noaa.gov/teleconnections/enso/indicators/sst.php). A NAO index is derived [Barnston and Livezey, 1987] as
the first component of a rotated principal component analysis (PCA) of standardized 500 hPa geopotential
height anomalies over the Northern Hemisphere (20N-90N; see http://www.cpc.ncep.noaa.gov/products/
precip/CWIink/ENSO/verf/new.nao.shtml).
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1.2. The Effect of Large-Scale Climate Variability on Hydrology

Modes of climate variability such as NAO or ENSO are associated with atmospheric/oceanic circulation
patterns over a large spatial extent. Consequently, their effects on hydrologic variables have been
reported in many regions of the globe. As an illustration, positive NAO phases correspond to warm and
wet winters in Northern Europe and precipitation deficits in Southern Europe and North Africa [Hurrell
and VanLoon, 1997]. The effect of NAO on streamflow variables has also been reported in many European
regions [Shorthouse and Arnell, 1999; Pociask-Karteczka, 2006], in particular in Northern Europe [e.g. Wilby
et al., 1997; Kiely, 1999; Stahl et al., 2001; Kingston et al., 2006], and in the Iberian peninsula [e.g., Trigo

et al., 2004; Vicente-Serrano and Cuadrat, 2007]. The impact of ENSO has an even broader spatial extent,
since its effects have been reported in many regions of the world (e.g., Kripalani and Kulkarni [1997] in
South-East Asia; Gershunov and Barnett [1998] in the U.S.; Grimm and Tedeschi [2009] in South America;
Cai et al. [2010] in Australia; Shaman and Tziperman [2010] in the Mediterranean; and Philippon et al.
[2012] in South Africa).

Climate-informed frequency analysis frameworks have been proposed to account for the effect of climate
variability. The general strategy is to abandon the assumption that the target hydrologic variable is identi-
cally distributed; instead, its distribution is conditioned on selected climate indices. For instance, ENSO-
dependent frequency analysis models have been used by El Adlouni et al. [2007] and Shang et al. [2011] in
California, Aryal et al. [2009] and Sun et al. [2014] in Australia, among many others.

1.3. Limitations of Standard Climate Indices

Standard climate indices such as NAO or ENSO result from a dimensionality reduction exercise: they
attempt to summarize the information contained in a full spatial field into a single number. The associated
information loss may result in a loss of predictive power for hydrology. In particular, some regions seem to
be out of the area of influence of these climate indices. As an illustration, Giuntoli et al. [2013] reported that
the influence of winter NAO is hardly discernable for French hydrologic regimes, despite the fact that this
influence is evident in nearby regions of Northern and Southern Europe. Similarly, Grantz et al. [2005]
discussed the limited predictive capability of standard climate indices such as the Southern Oscillation
Index (SOI) or the Pacific Decadal Oscillation index (PDOI) for some catchments in the Western U.S. Further
discussion of the limitations of standard climate indices can also be found in Westra and Sharma [2009].

Lavers et al. [2013] illustrated the reason why standard climate indices are sometimes poor predictors. They
mapped the correlation between monthly precipitation at one given location in Europe and sea-level pres-
sure over an extended North Atlantic region. While a clear NAO pattern appears in some seasons and some
regions (e.g. Northern and Southern Europe in winter), distinct patterns appear for other locations or sea-
sons, suggesting that atmospheric circulation patterns other than that described by NAO indices may be
more useful for predicting precipitation in such locations/seasons.

1.4. Identifying Climate Patterns Relevant to Regional Hydrology

The topic of identifying statistical relationships between climate fields and hydrologic variables has been
largely addressed in the literature, which is unsurprising given the limitations of standard climate indices
described above. Several approaches have been explored to identify modes of climate variability that are
relevant for hydrologic prediction in some specific target region. Arguably, the most natural approach is
based on the use of correlation maps, as illustrated for instance by Grantz et al. [2005] and Lavers et al.
[2013]. This is first useful as an exploratory tool, to identify in the oceanic or atmospheric field relevant
regions of influence for the target hydrologic variable. Moreover, it may be used to define “customized”
climate indices, e.g., by averaging the atmospheric or oceanic field over regions of high correlation as done
in Grantz et al. [2005]. These customized climate indices can then be used as explanatory variables in a
regression model to predict the hydrologic variable.

Alternative methods stemming from the data mining literature can also be used. Such methods include the
Canonical Correlation Analysis (CCA), or the Singular Value Decomposition (SVD) of a cross-covariance
matrix, as discussed by Bretherton et al. [1992]. These methods attempt to find the linear combination of
explanatory variables (e.g. SST) that best explains a linear combination of the target variables (e.g., a
regional hydrologic data set). More recently, Westra et al. [2008] and Westra and Sharma [2009] proposed
using the Independent Component Analysis (ICA) to build multisite predictive models using oceanic field
information (SST).
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1.5. The Quest for Explicit Probabilistic Models
While the approaches described above may yield skillful predictions for specific hydrologic variables [e.g.
Grantz et al., 2005], some limitations restrict their use. In particular:

1. They are based on correlation/covariance computations, which are not necessarily optimal for heavily
non-Gaussian data (e.g., extreme data, count data, or binary occurrence data).

2. While these methods are of interest to identify relevant climate patterns, they do not directly provide
probabilistic predictions at several sites. This is an important distinction: while establishing and describing
relationships between climate and hydrology is a valuable endeavor, it is not the same thing as building
a probabilistic predictive model based on climate information.

3. A complete treatment of uncertainties, including the uncertainty in the identified explanatory climate
pattern, is difficult.

These limitations necessitate the derivation of a fully probabilistic model to describe both hydrologic and
climate data, with the aim of identifying the most relevant mode of climate variability for a region and
simultaneously using it for making hydrologic prediction at several target sites. An explicit probabilistic
model for hydrologic/climate data has the following advantages: (i) it is easily interpretable since it directly
describes the original data set rather than some component(s) extracted from it; (ii) it allows making predic-
tions at individual target sites; (iii) it allows using standard statistical tools for inference, prediction, and
uncertainty quantification, e.g., Bayesian methods; (iv) it makes all assumptions explicit, which allows isolat-
ing them and subject each of them to empirical scrutiny; and (v) it offers the flexibility to modify model
structure and assumptions if needed, without modifying the whole inference framework.

The main objective of this paper is to present a regional frequency analysis framework based on such an
explicit probabilistic model.

1.6. Outline of the Paper

The paper is organized as follows. The theoretical basis of the proposed probabilistic model, the inference
equations, and the use of the model for prediction are provided in section 2. A case study assessing the rela-
tionship between geopotential heights over the North-Atlantic region and the frequency of floods in 16 catch-
ments in Mediterranean France is provided in section 3. Current limitations and directions for future work

are then discussed in section 4, before summarizing the main outcomes of this work in the concluding
section.

2. Theory

2.1. Notation

Let y=(y(X,t)),=1.n,c=1.n, denote observations of the target hydroclimatic variable to be predicted. Typi-
cally, y represents the hydrologic data, observed at N, locations over N, time steps. For instance y(x, t)
might be the annual mean flow recorded at site x for year t.

Moreover, let p=(¢(s, t))s—1., 1.y, denote observations from an explanatory hydroclimatic variable, which
will be used to predict the target variable. Typically, ¢ represents the climate data observed at N, locations
during N, time steps. It is assumed that climate data have been preliminarily centered (by removing the
empirical mean at each location s). Note that the space index is not the same for the two fields. Typically cli-
mate data may be taken from reanalyses [Kalnay et al., 1996; Uppala et al., 2005], and are hence available on
a regular grid (with N; grid points), while hydrologic data are station data (N, rain gauges or gauging sta-
tions). Without loss of generality, one can use climate data that leads the hydrologic data by a certain time
T (e.g. if y(x, t) denotes autumn precipitation totals, ¢ (s, t) may denote summer mean SST for the same
year). As long as the sampling interval is the same and the time vector length is N, for both data sets, they
do not even need to refer to the same averaging intervals (e.g., if y(x, t) denotes the annual minimum
streamflow, ¢ (s, t) may denote winter mean geopotential heights). The case where the climate and the
hydrologic data are concurrent may be useful for downscaling information from General Circulation Model
(GCM) climate simulations for retrospective or climate change scenarios. The case where the climate predic-
tors lead the hydrologic variables is of interest for hydrologic forecasts at seasonal or other lead times. In
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both cases, the probabilistic formulation allows one to assess the potential risk profile associated with a
hydrologic state, accounting for the uncertainty of parameter estimation given the training data.

Last, the shorthand notation “:" is used to denote all the elements from one dimension of a matrix. For
instance, ¢(:, t) denotes the vector containing the spatial field of climate data observed at time ¢,

while ¢(s, :) denotes the vector containing the time series at gridpoint s. All vectors are row vectors unless
noted otherwise.

2.2. Full Probabilistic Model

2.2.1. Probabilistic Assumptions

A two-level probabilistic model is proposed for describing the variability of predictand hydrologic data and
predictor climate data. The first level of the model addresses the predictand data, and can be formalized as
follows:

Level 1: Predictand hydrologic data

y(x,t) ~D(0(x,t), B(x)), where: (1a)

O(x, t)=2(x)(1+1(t)) (1b)

Conditional independence in time : (y(x,t;)Ly(x,t))|t(t1),t(t2) YVt # & (10)
Conditional independence in space : (y(xi,t)Ly(x2,t)) | T(t) VX1 # xz (1d)

Equation (1a) states that hydrologic data are realizations from a distribution D whose parameters vary in
both space and time. More precisely, the Ny parameters of D are split in two groups:

1. 0(x, t) is the single parameter varying in both space and time.
2. B(x) encompasses the Np— 1 remaining parameters, varying in space but not in time.

The assumption that a single parameter may vary in both space and time is made to avoid tedious notation
here: in principle, describing spatiotemporal variations in several parameters of D is possible. Typically, 0
will correspond to a location parameter of D (e.g., the mean for a Gaussian distribution, the location param-
eter for a Gumbel distribution). However, if one wishes to investigate how the variability of the hydrologic
data evolves in time, one may also consider a scale parameter as part of 0 (e.g., the standard deviation for a
Gaussian distribution, the scale parameter for a Gumbel distribution).

In equation (1b), the spatiotemporal variation of 0 is described using the simple formula
0(x, t)=1(x)(1+1(t)), which can be interpreted as a space-time separability condition:

1. A(x) corresponds to a local effect, and denotes the site-specific marginal value of the parameter 0 (i.e. the
value of 0(x, t) obtained when (t)=0).

2. the term (1+1(t)) corresponds to temporal modulations of the local effect A(x). The multiplicative nature
of such modulations allows interpreting the values of the temporal pattern z(t) as relative deviations
(e.g., 7(t)=—0.2 means that 0(x, t) is 20% below normal).

Note that since the temporal pattern T does not vary in space, the model in equation (1b) effectively
assumes that temporal modulations are identical for all sites. This is a rather strong hypothesis that
will be further discussed in the discussion section 4.2. In addition, note that a link function may be
used in equation (1b) to restrict the range of parameter 0: for instance, applying equation (1b) to
log (0) ensures that 0 is always positive [see McCullagh and Nelder, 1989, for more details on link
functions].

Equation (1c) assumes hydrologic data are independent in time given the values taken by the temporal pat-
tern 7(t). In other words, it is assumed that any temporal dependence in the hydrologic data is induced by
the temporal dependence of the temporal pattern.

Last, equation (1d) assumes hydrologic data are independent in space, conditional on the temporal pattern
7(t). Note that conditioning on the temporal pattern is central in this assumption. Indeed, observations
from nearby sites are likely to be dependent, but it is assumed that this dependence is explained by the
common temporal pattern modulating the value of the parameter 0 in time.
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The second level of the model is devoted to predictor climate data, and can be formalized as follows:

Level 2: Predictor climate data

$(:,t) ~ MG(u(:,), V) (2a)

u(s, )=y (s) = (1) (2b)

V:gzzw Zy(i7j):F(||5i_Sj||7y) (2C)

Conditional independence in time : (¢(s,t1) L(s, t))|t(t1), t(t2) Vi1 £ty (2d)

Equation (2a) states that at each time step, the climate field ¢(:, t) is a realization from a Multivariate Gaus-
sian (MG) distribution, with mean vector u(:, t) and covariance matrix V. The mean vector is decomposed as
the product of a time-invariant spatial pattern y/(s) and a space-invariant temporal pattern z(t) (Equation
(2b)). This is the same pattern that was used in equation (1), and it provides the link between the predictor
and the predictand. The covariance matrix V is written as azlv (equation (2c)), where X is a correlation
matrix and is parameterized by a spatially stationary distance-based dependence relationship with
unknown parameters y. Such a relationship can be chosen amongst the many admissible correlogram mod-
els existing in the geostatistical literature [e.g. Chiles and Delfiner, 1999]. Note that in order to keep notation
simple, equation (2¢) is effectively restricted to modeling stationary and isotropic fields. However, using
more advanced geostatistical models is feasible (e.g., to introduce anisotropy to describe zonal or meridio-
nal structures, or nonstationarity of the correlogram in space). Last, equation (2d) assumes that the climate
fields are independent in time, conditionally on the temporal pattern.

The factorization formalized in equations (2a)—(2c) can be thought of as a signal-noise decomposition of the
climate predictor field: the time-varying mean is the signal, and is factorized using a large-scale spatial pat-
tern y/(s) associated with the temporal pattern z(t). The covariance matrix is the noise, and describes the
remaining unexplained variability, which may have a local-scale spatial dependence structure.

2.2.2. Interpretation of the Probabilistic Model

The key element in the probabilistic model described in section 2.2.1 is the temporal pattern z(t), which is
present in both levels and therefore makes the link between them. In level 1, z(t) represents a common
temporal pattern that affects the distribution of the hydrologic variable in all sites within the target region.
The existence of such a common temporal variability might reflect the fact that all sites are subject to the
same climate forcing. The question is then to identify this forcing, i.e., to identify the spatial pattern y(s) in
the climate data that induces this temporal variability t(t). This can be achieved by performing a space-
time decomposition of the climate data with respect to the temporal pattern z(t).

Interestingly, the second level of the model is similar to the probabilistic principal component analysis
(pPCA) model proposed by Tipping and Bishop [1999]. More precisely, equations (2a) and (2b) correspond to
a single-component pPCA, while equation (2¢) is slightly more general than pPCA by allowing spatial
dependence. In this respect, the proposed model could be interpreted as an extension of PCA, with the first
level of the model making the link with the target hydrologic data. However, the aim is not to explain the
internal climate variability (as PCA does), but rather to maximize the explanation of the external hydrologic
variable by the identification of the leading mode in the climate data.

Last, note that the space-time decomposition formulas in equations (1b) and (2b) could be modified in
some case studies. In particular, the formula 0(x, t)=1(x)(1+1(t)) of equation (1b) expresses temporal vari-
ability as relative deviations. The rationale behind this choice is that the order of magnitude of hydrologic
data may strongly vary from site to site (e.g. due to different catchment sizes for a streamflow variable). This
formulation is a particular case of the more general model 0(x, t)=(/o+1(x))(to+71(t)). However, the lat-
ter model is not identifiable and requires adding two identifiability constraints. The constraints we used
here (1o=0 and to=1) were chosen because they yield an intuitive interpretation for the parameters (1(x)
are local “normal” values, 7(t) are relative deviations from the normal values). However, alternative choices

Ne o, N,
would also be perfectly legitimate: for instance, the constraints ZX:1 A1(x)=0and Zr; 71(t)=0 would

lead to interpreting 49 and 7 as spatial and temporal averages.

2.2.3. Inference
The model described in section 2.2.1 requires estimating the following unknown quantities:
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1. the local effects, A (size N,)

2. the temporal pattern, t (size N,)

3. the time-invariant parameters of D,  (size (Np—1)*N,)
4. the spatial pattern, \ (size Ny)

5. the parameters describing the geostatistical properties of the climate fields, ¢ and 7 (size depending of
the geostatistical model).

The posterior distribution of these quantities, given observed hydrologic and climate datay and ¢, can be
derived as follows:

p()\'7 r’ ﬁ? \II7 0.7 Y|y’ ¢) O<p(y|)"7 t’ ﬁ?‘l” a-’ Ya ¢)p()\'7 T7 p7\|l7 0-7 Y|¢)
08 p(y|)\" t? ﬁ?‘l/7 U'/ Y7 ¢)p(¢‘;\'7 T7 ﬁ7l|’7 0-7 ’Y)p()\'7 ‘c’ ﬂ?“l” 0-7 y)
[0S p(y|x7t7ﬁ) p(¢|‘£7‘|’1U?Y)p()"7r7ﬁa\|!107y)

——

hydrologic likelihood climate likelihood priors

The first two lines of equation (3) correspond to two successive applications of the Bayes theorem. The third
line corresponds to simplifications in the computation of hydrologic and climate likelihoods. Indeed, given
the first level of the model in equation (1), the hydrologic likelihood can be computed as:

N, N,
pylht. B)=] [ [T poy(x. 0120 (1+2(1)), B(x)) (4)

x=1t=1
where p,(z|y) is the probability density function (pdf) of the distribution D with parameters , evaluated at
value z.

Similarly, given the second level of the model in equation (2), the climate likelihood can be computed as:

Nt
Pl .. 1)=] [ Pu (8 () # x(0). 57X, ) ®)

where p,,(z|u, V) is the joint pdf of the N,-dimensional multivariate Gaussian distribution with mean u and
covariance matrix V, evaluated at vector z.

The posterior distribution in equation (3) is high dimensional and does not yield, in general, explicit estima-
tors. It is therefore explored by means of a Markov Chain Monte Carlo (MCMC) sampler. The adaptive MCMC
sampler used in this paper is described by Renard et al. [2006]. Alternative samplers, specifically geared
toward high-dimensional inferences, may be more efficient [e.g., Haario et al., 2005; Laloy and Vrugt, 2012;
Hoffman and Gelman, 2014]. Moreover, the implementation of a dedicated MCMC sampler, taking advant-
age of the specific two-level structure of the model, may also be considered. This, however, lies beyond the
scope of this paper and is left for future work.

2.2.4. Prediction

The ultimate aim of the proposed model is to make a probabilistic prediction for the hydrologic variable
y(x, t*) at prediction time t*, conditionally on the observed climate field ¢(:, t*). In this predictive context,
we assume that inference has already been performed as described in preceding section 2.2.3, and that we
observe the predictor climate field ¢(:, t*). However, the hydrologic data y(:, t*) are not observed—they
are the quantity to be predicted.

This prediction is based on equation (1), and therefore requires estimating the value of the temporal pattern
7(t*), which is unknown since the prediction time t* is not part of the calibration data set. The simplest way
to achieve this is to remark that, conditionally on 1/3, d, and 9, the maximum-likelihood estimator of 7(t*)
is explicit and can be computed as (see proof in Appendix section A1):

. “tarT
L eGe)(ety,) b
T(t")= - 7 (6)
v(e2x,) v
Equation (6) only provides a point estimate of the temporal pattern z(t*). However, a distributional estimate
can easily be obtained by propagating the MCMC samples of parameters y, ¢, and y in equation (6).
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2.3. An Exploratory Tool

In this section, we describe an exploratory tool based on simplified probabilistic assumptions yielding
explicit estimators of the spatial and temporal patterns. This enables simple and fast computations that can
be useful for preliminary analyses and to facilitate the tuning of MCMC samplers.

2.3.1. Simplified Probabilistic Assumptions
The first level assumes Gaussian hydrologic data, with a common mean 1(t) and a common variance equal
to one:

Level 1: Hydrologic data
7 (x.t) ~ N(x(t),1) (7a)
Independence in space and time, conditionally on z(t) (7b)

In practice, these assumptions are too restrictive to be applied to the raw hydrologic data y. Consequently,
the exploratory tool rather uses normal-score transformed data y:

y(x.)=g7" (F,(y(x,1))) (8)

where g is the cumulative distribution function (cdf) of the standard normal distribution and ﬁx is the empir-
ical cdf estimated at site x.

The second level is similar to that of the full model of section 2.2, with the exception that a spatial inde-
pendence assumption is now made:

Level 2: Climate data

$(s,)=N((s) * 7(t). 0?) (%)
Independence in space and time, conditionally ont(t) (9b)

2.3.2. Inference

Under the assumptions described in equation (7), the maximume-likelihood estimator of the temporal
pattern is simply equal to the spatial mean of transformed data y (see proof in Appendix section
A2.1):

NX
VESTIN, E()= DT O=mean(7 (-, 1) (10)
X x=1

Conditionally on this estimated temporal pattern z, the maximum-likelihood estimate of the spatial pattern
can be derived from equation (9) (see proof in Appendix section A2.2):

Zr LB, DT(0) _ sd(g(s, )
Ne =2 sd(7(:
> <t> )
where sd(.) denotes the empirical standard deviation of a vector and cor(.,.) the empirical correlation
between two vectors. Equation (11) therefore states that the estimated spatial pattern is nothing more than

a weighted correlation map between the estimated temporal pattern (stemming from hydrologic data) and
the spatial fields of climate data.

Vs=1:N, cor((s,:),7(:)) (11)

2.3.3. Prediction
As in section 2.2.4, the temporal pattern at prediction time t* can easily be estimated as follows (see proof
in Appendix section A2.3):

cor(¢(:,t"), ¥ () (12)

Note the distinction between 7, the temporal pattern estimated from the hydrologic data (equation (10)),
and 7, the temporal pattern reconstructed from the climate data (equation (12)).
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3. Case Study

This case study illustrates the application of the proposed model. The general objective is to predict the
number of flood events in Mediterranean catchments, given observed geopotential heights over the North-
Atlantic region. Moreover, we compare these predictions with the ones obtained from standard climate
indices.

3.1. Data

3.1.1. Climate Data

Geopotential heights at 500 hPa over the North-Atlantic region (100°W-40°E, 20°N-70°N) for the period
1948-2011 are used. Data are available at a daily time step on a 2.5° regular grid from the NCEP-NCAR rean-
alysis [Kalnay et al., 1996]. Daily data are averaged over the autumn season (October-December) and cen-
tered to yield the climate data ¢(s, t) (s = 1:1197 gridpoints, t = 1:64 autumns) that are used as explanatory
variables for hydrology.

We choose geopotential heights at 500 hPa because many standard climate indices are derived from this
particular variable. In particular, we also use in this case study three climate indices that have been shown
to have a noticeable effect on hydrological variables in Europe: the NAO [e.g., Shorthouse and Arnell, 1999],
the Eastern Atlantic Western Russia oscillation [EAWR, see e.g., lonita, 2014], and the Scandinavian Pattern
[SCAND, see e.g., Wibig, 1999]. The three time series for the period 1950-2013 have been downloaded from
NOAA climate prediction center (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml), and aver-
aged over the autumn season.

3.1.2. Hydrologic Data
Daily streamflow series for 16 catchments located in Mediterranean France are used (Figure 1), for the same
period 1948-2011. The catchment sizes range from 10 to 621 km? These catchments are typical of Mediter-
ranean hydrologic regimes, with very intense rainfall events producing flash floods during the autumn sea-
son (the most active period ranging from October to December). The variable of interest is the number of
flood events during autumn (OND). This variable is extracted from daily series using a Peak-Over-Threshold
(POT) approach [see Lang et al., 1999, for details and general guidelines]. At each site, the threshold is taken
as the 95th percentile of daily streamflows. Moreover, a minimum duration of 6 days between two succes-
sive flood events is imposed to avoid counting the same event several times. The number of flood events in
autumn at all 16 sites hence constitutes the hydrologic data y(x, t) (x = 1:16 sites, t = 1:64 autumns) used as
the target variable to be predicted from climate. Note that unlike climate data, missing values exist in
hydrologic data, since some stations do not cover the whole period 1948-2011. The treatment of missing
data will be described in the
\ \ﬁag- ,"1 e M| following sections.
5 bt

3.2. Exploratory Analyses
Before attempting to infer the
full model of section 2.2, pre-
liminary analyses are useful to
confirm that there is some
degree of predictability in the
data set, and to suggest possi-
ble simplifications. This is
achieved by means of the
exploratory tool described in
section 2.3. The treatment of
missing hydrologic data
accounts for the fact that the
estimated temporal pattern in
equation (10) is a spatial aver-
age: it is hence reasonable to
constrain the number of avail-
able stations to a minimum
Figure 1. Location of the gauging stations used in the case study. value. We therefore restrict the

RENARD AND LALL

©2014. American Geophysical Union. All Rights Reserved. 8


http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml

@AG U Water Resources Research 10.1002/2014WR016277

e < ° analysis to years with at least
c ] i id-
S o . . ° o half of thet 1§ stations proyld
§_ o '\/. . et e, \ 8 . 8 ..,'\ .o / \ ing nonmissing values. This
B Y .I Voo .\ \ ./ ) 0\.,. ¢ %y \s * yields a subset of 51 years from
8 9 - \ \/\ e o ® * the initial 64-year period 1948-
= o ®
8 5 | T (extracted fromY)  —e—  (reconstructed from ¢) 2011. Also no.te that‘ because

. T . . . . the hydrological variable of

0 10 20 30 40 50

interest only takes integer val-

Time step ues, one needs to decide how
(a) to treat ties in the empirical cdf
used for the normal-score
Spatial pattern transformation of equation (8).

We decided to follow the “ran-
dom rank” approach (e.g. for
the data y=(5,8,6,6), the ranks
may be either (1,4,2,3) or
(1,4,3,2), with the assignment
of ranks 2 and 3 being chosen
at random).

Figure 2a shows the two esti-
mates of the temporal pattern:
the pattern estimated from
hydrologic data (7 in equation
(10)) and the pattern recon-
structed from climate data (z in equation (12)). Despite some differences, the two patterns are in acceptable
agreement (the correlation coefficient is approximately 0.6), which indicates that the temporal variability
observed in the hydrologic data can be reconstructed (to some reasonable extent) using climate information.

Figure 2. Exploratory analysis: estimated temporal (a) and spatial (b) patterns.

Figure 2b shows the spatial pattern, which is characterized by a strong negative anomaly over the midlati-
tudes of the Eastern Atlantic, and positive anomalies at higher latitudes (especially over Scandinavia). This
pattern can be interpreted in relation to the target hydrologic data: strong low pressures off the coast lead
to a counterclockwise circulation that would steer moisture toward Mediterranean France. In addition, high
pressures over Scandinavia and North-Eastern Europe limit the possible trajectories of this moisture flux.

The exploratory tool is also used to assess the sensitivity of the results to the resolution of the climate grid.
Indeed, the full-resolution grid comprises 1197 gridpoints, which will be computationally penalizing in the
context of the full analysis using MCMC sampling. However, the pattern in Figure 2b has a large spatial scale
and is quite smooth, suggesting that similar results might be obtained with a lower-resolution grid. Figure 3
therefore compares the temporal patterns © (reconstructed from climate data) obtained with various grid
resolutions. It shows that even a low-resolution 10°-grid is sufficient to reconstruct this temporal pattern,
with barely noticeable differences with the full-resolution 2.5°-grid. This interesting result suggests that the
spatial resolution may not be of primary importance when one studies large-scale climate patterns. In fact,
when the relevant spatial pattern is large and smooth, using more finely gridded products may just intro-
duce redundant information that dramatically increases the dimension of the model, thereby complicating
its inference. Since we may not know a priori what resolution is adequate, an exploratory analysis such as
the one performed here is very useful to inform this decision.

3.3. Hydrologic Predictions Using the Full Model

This section implements the analysis using the full model, using all available hydrologic data over the 64-
year period 1948-2011. Moreover, given the results of the exploratory analysis described above, we sub-
sample the climate data on a low-resolution 10°-grid (90 gridpoints, compared to the 1197 gridpoints in the
original 2.5° resolution).

3.3.1. Model Specifications
We assume a Poisson distribution for the hydrologic data, with a rate parameter varying in both space and
time as described in equation (1b). Note that because the Poisson distribution has a single parameter, there
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< ¥ is no “additional parameter” f§
g o in this particular case study.
E o The treatment of missing
© hydrologic data is straightfor-
g8 ward in the full model: the
§> < e pgo Undyesoltion . terms corresponding to miss-
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Ti in the double product of the
ime step
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Figure 3. Exploratory analysis: sensitivity of the estimated temporal pattern to the spatial

resolution of the climate grid. Moreover, we use a S|mple

exponential correlogram for
describing spatial dependence. Following the notation of equation (2c), this can be formalized as:

%,o)) =T (s =5l 7)=exp (~lls=s/1/7) (3)

In order to compare the predictions from the full model with the predictions obtained using standard cli-
mate indices, we also use the following climate-informed model for the hydrologic data:

y(x,t) ~ Poisson(A(x)(1+wC(t))) (14)

where C(t) is one the climate indices (NAO, EAWR or SCAND) and parameter o controls the effect of the cli-
mate index on the distribution of hydrologic data.

Last, in order to compare the climate-informed predictions with baseline predictions, we also use the fol-
lowing climate-independent model for hydrologic data:

y(x,t) ~ Poisson(A(x)) (15)

This model simply estimates a time-invariant Poisson distribution at each site. The resulting predictions can
be viewed as “climatology” predictions, and can be considered as the baseline upon which any climate-
informed prediction should improve.

3.3.2. Estimation of the Full Model

Samples (100,000) from the posterior distribution in equation (3) are generated using MCMC sampling (see
section 2.2.3). The Gelman-Rubin statistic [Gelman and Rubin, 1992] is below 1.2 for all inferred quantities
with this number of iterations. The dimensionality of the inference is equal to 172 in this case study (16
stations+ 64 time steps + 90 gridpoints + 2 geostatistical parameters). Computing times are of the order of
1 h on a standard laptop (2.40 GHz CPU).

Figure 4 shows the estimation of local effects 4(x) for all 16 stations, which can be interpreted as the “nor-
mal” number of flood events expected on each site. Moderate variations between sites can be observed,
with the posterior medians ranging from approximately 1.5 to 2.5.

Figure 5 shows the estimated temporal and spatial patterns. Figure 5a focuses on the temporal pattern,

with the line representing the modal estimate (maximizing the posterior pdf) and the boxplots representing

the uncertainty. Figure 5a shows that the temporal pattern can be identified quite precisely, and the uncer-
tainty in individual estimates at

2 5 each time step is quite small
= ~ 8 8 E 8 ! compared to the temporal vari-
- | P 8 L E e ability of the pattern. Figures
ra H ' ! H 8 ' ' .
gt -mst - SiBsT 5b and 5¢ show the corre-
5 T = P e SR S Y = — and 5c¢ show the corre
ks 1 + 9z E 1:5_ - EEE S N ] H sponding spatial pattern, both
S 2o -~ e 1 e in terms of modal estimate
—— (Figure 5b) and uncertainty
1t 2 3 4 56 7 8 9 1011 12 13 14 15 16 (Figure 5¢). The modal estimate
Site x

is similar to the pattern that

Figure 4. Estimation of local effects. Boxplots from the posterior distribution of A(x) at each was obtained during the
site x are shown. exploratory analysis (Figure
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Figure 5. Estimation of temporal and spatial patterns. (a) Temporal pattern (boxplots represent the posterior distribution, the line and
points represent the modal estimate); (b) spatial pattern (modal estimate); and (c) uncertainty in the spatial pattern (measured by the pos-
terior standard deviation).

2b), with negative anomalies over the midlatitudes of the Eastern Atlantic, and positive anomalies at higher
latitudes. The uncertainty pattern (Figure 5c) also reveals an interesting structure, with areas of lower uncer-
tainty being located in the western part of the spatial domain, while areas of larger uncertainty are found in
the eastern part.

It is interesting to compare the temporal pattern inferred for the full model, % (t), with the ones induced by the
climate indices, @C(t) (& is the modal estimate from 100,000 MCMC samples). Figure 6 shows the result of
this comparison and yields several interesting insights. First, the temporal variability associated with EAWR and
NAO is rather weak, suggesting that these indices have little effect on the distribution of hydrologic data. Index
SCAND yields a larger temporal variability, which, however, remains smaller than the one resulting from the
full model. The predictions from the full model will therefore be more dynamic than the predictions from any
of the climate indices. Second, the information carried by the temporal pattern from the full model (z(t)) is dis-
tinct from the information carried by climate indices: correlation coefficients with NAO, EAWR, and SCAND tem-
poral patterns are equal to 0.60, 0.11, and 0.34, respectively. In other words, the mode of climate variability
identified with the full model does not correspond to any of the predefined modes (NAO, EAWR, and SCAND).

3.3.3. Prediction

The full model is now applied to make a probabilistic prediction of the hydrologic variable (number of flood
events in autumn), given the observed climate data (autumn average of geopotential heights). Figure 7
illustrates the principle of this climate-informed prediction. Given the observed geopotential field, the corre-
sponding value for the temporal pattern can be predicted using equation (6). In turn, this value can be
plugged in equation (1b) to estimate the distribution of the hydrologic variable at one particular site. Note
that throughout this section, we are actually using predictive distributions: instead of simply using “values”
corresponding to point estimates of inferred quantities, we systematically propagate forward the uncertain-
ties embedded in MCMC samples in order to take them into account in the predictions.

Figure 7 shows the predictive distributions at site 5, conditional on three particular realizations of the geo-
potential field:

1. The field for 2000 is similar to the spatial pattern shown in Figure 5b. This results in a “high” value of the
predicted temporal pattern (modal estimate (t*) ~ 0.7), which in turn results in a “higher-than-normal”
prediction for the number of flood events (green distribution in Figure 7).

2. The field for 1992 shows only small anomalies, resulting in a near-zero value of the predicted temporal
pattern (modal estimate 7 (t*) ~ —0.1), which in turn results in a “normal” prediction for the number of
flood events (red distribution in Figure 7).
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Figure 6. Comparison of the temporal patterns induced by climate indices (EAWR, NAO, SCAND) with the temporal pattern from the full
model. Numbers in brackets are the standard deviations of each time series.

3. The field for 1975 shows strong anomalies that are very dissimilar to the spatial pattern shown in
Figure 5b. The predicted temporal pattern is hence largely negative (modal estimate 7(t*) ~ —0.6),
which in turn results in a “lower-than-normal” prediction for the number of flood events (black dis-
tribution in Figure 7).

3.3.4. Cross Validation

In order to assess the quality of climate-informed probabilistic predictions, a leave-one-out cross-validation
experiment is carried out. All results in the remainder of this section are hence validation results in a truly
predictive context, with the value of the hydrological variable at prediction time being ignored for both esti-
mation and prediction.

The quality of these probabilistic predictions is evaluated using two approaches. The first approach is based
on the log pseudo marginal likelihood (LPML), which is a measure of predictive ability [Gelfand et al., 1992].
Let pe.(z|y(:, —t*), ¢) denote the pdf of the predictive distribution at time t* (evaluated at z), derived as
described in previous section 3.3.3. The notation y(:, —t*) is used to recall that in the cross-validation con-
text used here, the hydrologic data at prediction time t* are not used for inference and prediction. For one
given site x, the LPML is then defined as:

..Z‘
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o
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° o . ‘o
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S - A A A—e—g=-.g
T L T T T
0 2 4 6 8

Number of floods

Figure 7. Climate-informed prediction: predictive distribution of the number of floods for site 5, conditional on the observed geopotential
height fields for the years 1975, 1992, and 2000. Triangles represent the observed number of floods.
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Figure 8. Cross validation: difference of log pseudo marginal likelihoods (LPML) between climate-informed models and the climate-
independent baseline model.
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The predictive ability of two competing models can then be compared by computing the difference ALPML
between their LPMLs. The exponential of this difference can be interpreted as a pseudo Bayes factor [Gel-
fand et al., 1992].

Figure 8 shows the LPML difference between the climate-informed models (the full model + the models
using climate indices) and the climate-independent baseline model (15). According to Kass and Raftery’s
scale [Kass and Raftery, 1995], the evidence for the models using EAWR or NAO indices is weak (ALPML < 1)
for almost all sites, suggesting that they are not performing noticeably better than the baseline climate-
independent model. Predictions using the SCAND index show a larger improvement over the baseline, with
LPML differences corresponding to a positive evidence (1 < ALPML < 3) on many sites. Finally, the full model
shows the largest improvement over the baseline: evidence is positive (ALPML >1) for most sites, and is
often strong (ALPML >3) or very strong (ALPML >5).

The second approach for evaluating the quality of probabilistic predictions is based on reliability/sharpness
diagrams, which are commonly used in the context of probabilistic forecasting [e.g. Gneiting et al., 2007].
The reliability/sharpness diagrams in Figure 9 are based on the probability of occurrence of a given event
(for instance, “observing two floods or more”) and can be interpreted as follows:

1. The x axis corresponds to predicted probabilities, discretized into bins (here, 10 bins of width 0.1 are
used). The blue line corresponds to the frequency of each bin, i.e. the frequency with which the event
“N>1" was predicted with probability between 0 and 0.1, between 0.1 and 0.2, etc. The blue line hence
illustrates the sharpness of the prediction: sharp (“courageous”) predictions correspond to predicted
probabilities spanning the whole 0-1 segment, while nonsharp predictions correspond to weakly varying
predicted probabilities. Consequently, the peakier the blue line, the less sharp the prediction.

2. In addition to being sharp, the predictions should be reliable in the following sense: across all cases
where the event “N>1" was predicted with probability 0.2, the event should indeed occur with frequency
~20%. Reliability is hence illustrated by the red staircase curve, which counts the relative frequency of
the event “N>1" within each probability bin. A reliable prediction yields a red curve close to the diagonal
[see Brocker, 2007, for additional discussions on the reliability diagram].

3. A possible visual bias in Figure 9 stems from the fact that the number of elements within each bin
strongly varies. Consequently, an observed frequency of 10% does not carry the same information
depending on whether it has been computed within a bin of 10 or 10,000 elements. In order to account
for this issue, 95% predictive intervals around the diagonal are added to the plot. These intervals corre-
spond to the expected frequency of occurrence among the n elements within a given bin, under the reli-
ability assumption. They can easily be computed as binomial quantiles.

Figure 9 shows these diagrams for the event “N>1", for all sites pooled together, and for all models (the
climate-informed models + the climate-independent model of equation (15)). Note that site-specific
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Figure 9. Cross validation: reliability/sharpness diagrams associated with the prediction of the event “N>1."

reliability diagrams could be derived, but in practice the number of data (64 at most) is too low to yield any
meaningful conclusion.

Predictions from the climate-independent model have a low sharpness, as shown by the peaky blue
curve. Note that for one given site, this probability does not vary in time with the climate-
independent model: consequently, the variability observed in Figure 9 is purely spatial (the event
does not have the same probability from site to site because of the local parameters A(x) in equa-
tion (15)). The reliability (illustrated by the red staircase curve) is acceptable.

Predictions based on EAWR or NAO indices only show a marginal improvement over the baseline in terms
of sharpness. NAO-based predictions even show a worsening in terms of reliability. Predictions based on
the SCAND index appear more skillful: they improve upon the baseline predictions in terms of sharpness
(flatter blue curve), with no noticeable loss of reliability (red staircase curve in acceptable agreement with
the 1:1 line). Finally, predictions from the full model show the largest improvement over the baseline.
They are the sharpest of all predictions, and this improvement comes at no cost in terms of reliability.

4, Discussion

This section discusses current limitations of the proposed model and highlights avenues for further
improvement and generalization.

4.1. Model Checking Tools

As in any model-based approach, the assumptions made to build the probabilistic model should be
scrutinized and, if proven unrealistic, revised. In the case study of section 3.3, this was achieved in
an indirect way by performing a cross-validation experiment: the overall reliability of climate-
informed predictions suggests that the assumptions of the probabilistic model are at least reasonable
in this particular study. However, more specialized diagnostics would be valuable to isolate individual
assumptions of the model and scrutinize them more thoroughly. Such assumptions include:

1. The assumption of conditional independence in space for the hydrologic data: while the existence of a
common temporal pattern is likely to explain a part of the spatial dependence, some amount of depend-
ence might remain even after conditioning on the temporal pattern.
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2. The assumption that the temporal pattern is common to all sites (see discussion in next section).

3. The functional form assumed in equation (1b): such a simple linear relationship might not be opti-
mal. While using an alternative nonlinear formulation is perfectly feasible, identifying the most rele-
vant relationship requires developing dedicated diagnostics. For instance, data-driven analyses could
explore the temporal variation of the spatial mean, the spatial variability of the time mean, the
magnitude of space-time interactions, etc. Flexible modeling approaches such as k-nearest neigh-
bors and local likelihood methods are also of interest [e.g., Sankarasubramanian and Lall, 2003;
Steinschneider and Brown, 2012].

4. The geostatistical assumptions in equation (2c): in particular, identifying the most relevant correlo-
gram function and developing anisotropic models are topics of particular interest. Indeed, such
assumptions may have a nonnegligible impact on predictions since they directly act on the predicted
temporal pattern through equation (6). They may impact the estimated uncertainty of the prediction
if they are misspecified.

Scrutinizing all these assumptions require developing diagnostic tools tailored to the proposed two-level
model: this will be explored in future work.

4.2. On the Common Temporal Pattern Assumption

The assumption that the temporal pattern is common to all sites requires working in a hydrologic region
where one expects a common effect of climate. In the case study of section 3, the region was chosen
based on expertise, and the successful cross-validation exercise suggests that this choice was reasonable.
An interesting development would be to develop methods for automatically delineating such a region,
whose size should be the result of a tradeoff: indeed, the region should be small enough to concur with
the common temporal pattern assumption. On the other hand, a too small region only comprising a cou-
ple of sites might yield a temporal pattern mainly reflecting local peculiarities, whose predictability from cli-
mate might be reduced.

Note that this topic is somehow related to the notion of homogeneity used in standard RFA [e.g. Burn,
1997; Ouarda et al., 2001, among many others]: we aim at delineating a “homogeneous region” with respect
to the temporal pattern. But this notion of homogeneity fundamentally differs from the one used in stand-
ard RFA, where the objective is to select sites having the same time-invariant distribution (up to some scal-
ing factor). Whether or not these two types of homogenous regions would broadly coincide remains an
open question.

4.3. Prediction at Ungauged Sites

The local effects A(x) in equation (1b) are site-specific parameters. While this provides the flexibility to
describe local peculiarities, this does not allow using the model for prediction at an ungauged site. This
could be improved by regionalizing these parameters, through a regression with explanatory variables (e.g.
catchment size, elevation, etc.) or a hierarchical model (describing the stochastic variations of 4(x) in space)
or a combination of them [Micevski et al., 2006; Cooley et al., 2007; Lima and Lall, 2009; Renard, 2011]. Such
development would allow making climate-informed predictions at ungauged sites and, more generally,
mapping climate effects.

4.4. Multicomponent Models

The key assumption in the proposed model is that all hydrologic sites are impacted by a common tem-
poral pattern (equation (1b)), which itself is driven by one specific mode of climate variability (equation
(2)). However multiple influences of distinct modes of climate variability have been largely reported in
the literature [e.g. Verdon-Kidd and Kiem, 2009, in Australial. In the context of the proposed model, this
would call for considering several temporal patterns, yielding for instance the relationship:
0(x,t)=A4(x)(1+71,(t)+1,(t)). Each temporal pattern could correspond to distinct components extracted
from a unique climate variable (analogously to the successive components defined in PCA). Alterna-
tively, they could correspond to unique components extracted from two distinct climate variables (e.g.
geopotential heights and SST). The development of a multicomponent version of our model will be
undertaken in future work.
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4.5. Applications

The main objective of this paper was to describe the probabilistic model and to illustrate its application
based on a case study. However, a detailed investigation of the benefit of the proposed model for opera-
tional applications lies beyond the scope of this paper and was therefore not addressed in any depth in the
case study of section 3. Future work will investigate potential applications, in particular in terms of seasonal
forecasting and downscaling. Regarding the former application, introducing a lag between climate and
hydrologic data (which was not done in the case study of section 3) would enable making climate-
conditional forecasts. Many examples of such analyses can be found in the literature [Wedgbrow et al., 2002;
Sankarasubramanian and Lall, 2003; Wilby et al., 2004; Grantz et al., 2005; Westra et al., 2008; Lima and Lall,
2010, among many others]. Regarding the downscaling application, the relationship identified between cli-
mate and hydrology could be used to make hydrologic predictions conditionally on some future projection
of climate variables [Tisseuil et al., 2010; Tramblay et al., 2012b; Tramblay et al., 2012a]. Note that unlike sea-
sonal forecasting, this application does not require introducing a lag between climate and hydrologic data.

5. Conclusions

The objective of this paper was to describe a time-varying regional frequency analysis framework, based on
conditioning the parameters of at-site distributions on the values taken by some large-scale atmospheric or
oceanic field. This method is based on a two-level probabilistic model, which identifies: (i) a common tem-
poral pattern affecting a regional data set of hydrologic variables (level 1) and (ii) the spatial pattern in the
climate data set associated with this temporal variability (level 2). This allows making a probabilistic predic-
tion for the hydrologic variable conditionally on an observed atmospheric or oceanic field. This is to be
compared with an approach making prediction conditionally on some predefined climate indices (e.g. SOI,
NAO, etc.). Such indices, while explaining an important part of the internal climate variability, do not neces-
sarily provide the best explanation for a given region and a given hydrologic variable. The proposed model
allows identifying the most relevant mode of climate variability for the region/variable of interest. It also
improves on an approach such as the Canonical Correlation Analysis by providing a mechanism for a full
uncertainty analysis and the ability to work with non-Gaussian and Gaussian distributions for the
predictand.

Inference is performed within a Bayesian-MCMC framework. While this has important advantages (regarding
uncertainty quantification in particular), this also constitutes a significant computational challenge. Conse-
quently, a computationally efficient exploratory tool is also proposed in this paper to perform preliminary
analyses.

A case study illustrates the application of the proposed model for predicting the number of flood events in
16 catchments located in Mediterranean France using geopotential heights at 500 hPa over the North-
Atlantic region. The model identifies a particular spatial pattern in the geopotential heights data (negative
anomalies over the midlatitudes of the Eastern Atlantic, positive anomalies in Scandinavia) that is associated
with the temporal variability of hydrologic data. Results from a cross-validation experiment indicate that the
resulting climate-informed predictions are skillful, with an acceptable reliability and an improved sharpness
compared to baseline predictions that ignore climate information, or to predictions based on predefined cli-
mate indices (EAWR, NAO, and SCAND).

Since our approach is based on an explicit probabilistic model, it inherits both advantages and drawbacks
from such model-based approaches. An important advantage is the flexibility of the framework: the prob-
abilistic assumptions made to derive its constitutive components can be modified if need be. For
instance, nonlinear relationships between the hydrologic and climate components could be investigated.
Similarly, an extension of the currently single-component model to a multicomponent setup is also a
promising perspective. Moreover, the use of parametric probabilistic assumptions allows embedding the
model within a Bayesian framework, which in turns yields a natural and built-in quantification of uncer-
tainties. However, as any model-based approach, our model does make several restrictive assumptions
regarding the distribution of data, the form of the hydrology-climate relationship, etc. Such assumptions
should be individually scrutinized, which requires developing diagnostic tools tailored to the particular
structure of the proposed framework. This is a topic of primary importance that will be explored in future
work.
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Appendix A

A1. Prediction: Maximum Likelihood Estimator of the Temporal Pattern
Let (a;;); -1y, denote the elements of the matrix (?722?)71. At prediction time t¥, the log-likelihood of the
observed field ¢(:, t*) is equal to:

L(Pp(:,t7)]z(t7)) =~ %Iog (2m)— %Iog <det <&2Z?>)

- %Z(qm €)=2(t) < () (@0 €)=<(t") < () .
Deriving this quantity with respect to 7(t*) yields:
&fﬁ*) =- ;Z sy (0 G) (@0 €)=2(e") (i) = (1) (0, 6)—<() < ())) (A2)
The log-likelihood therefore has an extremum for:
aq.—a(i* 770

= Z (9G) (@0, £) =2t + (1)) + () (0, t) (') + (i) ) ) =0
ij=1

N N
=2 o (NP, t)=22(t") > oy () (1)
ij=1

ij=1 (A3)
S ()it
i —
D i G ()
1
¢(:,t*)(&22?> v
= 1(t")=— T
v(a2x,) v
Moreover, the second derivative of the log-likelihood is equal to:
L - Aos a5 \TAT
at(tr) __; ‘“iJ‘/’(J)'/’(’)__‘p(O' Zy) v (A4)

-1
The second derivative is therefore negative because the matrix (&2%) is positive-definite: this proves
that the value in equation (A3) maximizes the log-likelihood.

A2. Exploratory Tool: Maximum Likelihood Estimators
A2.1. Temporal Pattern Extracted From Hydrologic Data
The log-likelihood of normal-score transformed data y is equal to:

(x0=(t))? (AS)
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Moreover, the second derivative of the log-likelihood is equal to -N, and is hence negative, which proves
that the value in equation (A6) maximizes the log-likelihood.

A2.2. Spatial Pattern
Conditionally on the estimated temporal pattern 7, the log-likelihood of climate data ¢ is equal to:

N, N _ « 7 2
LglW)=3 " ~ Flog (21) ~log (o) - &IV ExT0) )
t=1 s=1
For any gridpoint k (=1, .., N,), the root of the partial derivative with respect to (k) is:
oL 1 .
G 0 2 2T 00—y 5(0)=0
N, (A8)
— o= PRI TI( )

S ROP

N
Moreover, the second derivative of the log-likelihood is equal to — 1, E -
7 t=1

which proves that the value in equation (A8) maximizes the log-likelihood.

[7(t))* and is hence negative,

A2.3. Temporal Pattern Reconstructed From Climate Data
The demonstration is identical to that in Appendix A1, simply replacing the matrix X, by the identity matrix.
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